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 Abstract 

o Background 

Research on electronic health record physiological data is common, invariably including 

artifacts. Traditionally, these artifacts have been handled using simple filter techniques. The 

authors hypothesized different artifact detection algorithms, including machine learning, may 

be necessary to provide optimal performance for various vital signs and clinical contexts. 

o Materials and Methods 

In a retrospective single center study, intraoperative OR and ICU electronic health record 

datasets including heart rate, oxygen saturation, blood pressure, temperature, and capnometry 

were included. All records were screened for artifacts by at least two human experts. Classical 

artifact detection methods (cutoff, multiples of standard deviation (z-value), interquartile 

range, and local outlier factor) and a supervised learning model implementing long short-term 

memory neural networks were tested for each vital sign against the human expert reference 

dataset. For each artifact detection algorithm, sensitivity and specificity were calculated.  

o Results 

A total of 106 (53 operating room and 53 ICU) patients were randomly selected, resulting in 

392,808 data points. Human experts annotated 5,167 (1.3%) data points as artifacts. The 

artifact detection algorithms demonstrated large variations in performance.  The specificity 

was above 90% for all detection methods and all vital signs. The neural network showed 

significantly higher sensitivities than the classic methods for: heart rate (ICU: 33.6%, 95% CI: 

33.1–44.6), systolic invasive blood pressure (both in the OR (62.2%, 95%  CI: 57.5–71.9) and 

ICU (60.7%, 95% CI: 57.3–71.8), and temperature in the OR (76.1%, 95% CI: 63.6–89.7). 

The confidence intervals for specificity overlapped for all methods. Generally, sensitivity was 

low, with only the z-value for oxygen saturation in the operating room reaching 88.9%. All 

other sensitivities were less than 80%. 
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o Conclusion 

No single artifact detection method consistently performed well across different vital signs 

and clinical settings. Neural networks may be a promising artifact detection method for 

specific vital signs. 
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 Introduction 

The collection of physiological data is common in anesthesia and intensive care, and a large 

variety of high-resolution vital signs are generated and stored routinely in hospitals with 

electronic health record (EHR) systems. The availability of large datasets of vital signs offers 

a tremendous opportunity to conduct clinical research using data from thousands of patients. 

For example, large datasets of blood pressure values have enabled researchers to determine 

associations between intraoperative hypotension and clinically relevant outcomes, such as 

acute kidney injury, stroke, and myocardial injury. 1–7 

This large-scale collection of vital signs invariably includes collecting artifacts as well, with a 

value outside the normal ranges of the vital sign in question being likelier to be an artifact 

than a value with normal ranges, according to some reports.8,9 These artifacts can originate 

from different factors, such as electrocautery, disconnected arterial lines, or movement of the 

lines.10 Although artifacts are typically recognized easily and ignored by the treating staff in 

real-time, retrospective analysis of large datasets does not have documentation of this thought 

process. Artifact data can alter clinical outcome classification and impact descriptive and 

inferential analyses.8,11,12 Artifact filtering can have a substantial impact on hypotension 

prevalence and a small effect on the reported association between hypotension and 

myocardial injury.12 To date, most large retrospective studies use simple filter techniques, 

whereas some studies do not comment on artifact handling at all.1 The most commonly used 

filters are cutoff filters and moving mean/median. Moving mean/median is different from all 

other filters, as it modifies nearly every data point.13 It is unclear which artifact detection 

algorithm may be suitable for perioperative and critical care data, since large-scale studies 

about artifact detection in these data are rare.8,9,13,14  

To compare different artifact filtering methods, we applied the currently used methods and 

augmented them with algorithms known in data science as well as a neural network specially 

trained for artifact filtering. 13,15 Supervised learning algorithm frameworks that implement 
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neural networks in pattern recognition have shown numerous successes. Since artifacts are 

also a type of pattern, or rather a break of a certain type of pattern, testing neural networks for 

artifact recognition is an obvious choice.16,17 The main objective of this project was to provide 

guidance on which algorithm is best suited for filtering the artifacts of each of the most 

common vital parameters: heart rate, blood pressure, temperature, capnometry, and peripheral 

oxygen saturation. We hypothesized that a specially trained neural network would outperform 

classic algorithms. 

 Materials and Methods 

o Study Design 

The University of Vienna’s ethical committee approved this study and waived the need for 

informed consent (reference number 2179/2020). The Medical University of Vienna is a 

tertiary care hospital with approximately 50,000 surgical procedures and 7,000–8,000 ICU 

admissions per year. We conducted a retrospective study using the Medical University of 

Vienna’s perioperative database. The study population for this study consisted of all patients 

who underwent surgery between 1/1/2019 and 9/1/2020. To ensure that only complete 

datasets were included, ICU patients had to have at least 120 hours of records of all five vital 

parameters (heart rate, blood pressure, temperature, capnometry, and peripheral oxygen 

saturation). Device data sources for each of these parameters are described below. Surgical 

patients had to have at least 30 minutes of records of the five parameters. 

The sample size was defined using a pragmatic approach to how much data could be 

annotated in a reasonable time (approximately 4.5 hours per expert reviewer participant) 

while providing the team with enough data points to split data and use all filtering algorithms. 

The sample included 53 patients admitted to the ICU and 53 patients undergoing surgery. The 

patients were randomly selected from a list of all included patients using a random number 

generator in Python.18 To limit the amount of ICU patient data, only 120 hours of records 

were used per patient. Data from surgical cases were used in total. 
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The study followed the Enhancing the Quality and Transparency of Health Research 

(EQUATOR) Standards for Reporting Diagnostic Accuracy Studies (STARD) Guideline.19 

The checklist used can be found in the supplement (https://links.lww.com/ALN/D489). 

o Data Sources 

Data were collected from the perioperative database. The perioperative database is constantly 

synchronized with the Philips IntelliSpace Critical Care and Anesthesia (Philips, Amsterdam, 

Netherlands) electronic health record (EHR), recording all patients perioperatively and in the 

ICU. The database contains data on vital parameters and manually entered 

observations/actions by all healthcare professionals. In the operating room, discrete vital 

parameters are stored every 15 seconds; in the ICU, the temporal resolution is 15 minutes. No 

artifact recognition method is applied before saving the data; therefore, the raw parameters are 

saved and can be used for scientific applications. Heart rate, blood pressure, temperature, and 

pulse oximeter values were collected via a Draeger Infinity monitoring system consisting of 

both the Draeger Infinity Delta and Infinity M540 systems (Draeger, Luebeck, Germany). 

Capnometry values were collected via an anesthesia machine (Draeger Primus or Draeger 

Perseus) in the operating room. In the ICU, CO2 is measured using Draeger monitors. The 

heart rate parameter studied in this analysis was the ECG heart rate; pulse rate from the 

arterial line was not available. During artifact filtering, the human experts had the opportunity 

to see the pulse rate from the oxygen saturation. Blood pressure was collected both 

noninvasively using a cuff and invasively using arterial lines (mainly radial). For both blood 

pressure signals, no further signal processing was undertaken to provide all methods with the 

“raw” data available in the EHR. For cases in which both invasive and noninvasive blood 

pressure signals were available, both were annotated by the reviewers.  
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o Data Processing 

All available values of the five vital signs of interest were extracted from the database for the 

randomly selected patients. No further processing of the data was performed, except for 

deleting all capnometry values below 2 mmHg. These values are transferred to the EHR by 

the anesthesia machines as soon as they are switched on by default. Beyond that, no further 

changes were made to the data; no interpolation was performed. 

In the first step, vital sign artifacts were annotated independently by five human experts: after 

their 4-month anesthesia internship in the operating theater, final-year medical students 

received four hours of training both as a group and individually, as well as feedback on 

demand. Further details can be found in the supplemental material 

(https://links.lww.com/ALN/D493). A web-based front-end interface was used to review the 

patient charts and annotate the artifacts. In this self-developed front end, all reported vital 

signs plus pulse rate from pulse oximetry could be seen singly or combined. Artifacts can be 

annotated either by clicking on single data points or by circling them to mark more than one. 

Across two training sessions, the experts were instructed to annotate every data point that they 

believed to be an artifact. This included a discussion of the most important causes: 

disconnected/displaced lines, blood sampling, electrocautery, patient movement, etc. Four of 

the experts annotated 53 patients each (equally distributed between the ICU and operating 

room). Each patient was annotated independently by two experts. If the two experts had 

conflicting annotations, the fifth member of the expert panel made the final decision regarding 

whether the data point was an artifact by majority vote.  

o Artifact Detection Algorithms 

Parallel and independent from the human artifact filtering used as the reference standard 

during algorithm comparison, the following artifact detection algorithms were applied to the 

data (invasive and non-invasive blood pressure signals had the same handling throughout):  
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 Cutoff: For the cutoff algorithm, the following ranges were defined as valid (and 

physiologically possible), and all values beyond these ranges were defined as artifacts: 

systolic blood pressure, 20–300 mmHg; mean blood pressure, 10–250 mmHg; 

diastolic blood pressure, 5–225 mmHg; capnometry, 5–150 mmHg; temperature, 25–

45°C; heart rate, 5–300/min; and SpO2, 0–100%.7 

 Z-value: The z-value was calculated for each vital sign and for each patient. All 

values lying outside three multiples of the standard deviation were defined as artifacts. 

By using 3 standard deviations as the threshold, all values lying outside 99.73% of the 

mean were marked as artifacts. 

 Interquartile range: The interquartile range was calculated for each vital sign and for 

each patient. All values lying outside the three multiples of the interquartile range 

were defined as artifacts. By using 3 interquartile ranges as the threshold, all values 

lying outside 99.73% of the median were marked as artifacts. 

 Local outlier factor: The local outlier factor was calculated as described by Breuning 

et al. 20 Seconds for Euclidean distances were on the x-axis, and the vital sign-specific 

values (mmHg for blood pressure, % for SpO2, etc.) were on the y-axis. A k = 7 was 

chosen primarily to identify extreme changes in the time series. A local outlier factor 

greater than or equal to 1.5 was used to label the data points as artifacts. 20 

Additionally, a long short-term memory neural network was trained using the human 

reference standard to show its ability to predict this standard in another part of the dataset. 

The dataset was transformed into batches of time series. The steps for this method included 

(1) normalizing the input features to an interval of [-1,1], (2) calculating the first and second 

derivatives of the time-dependent input values, and (3) creating a time series for each data 

feature within a defined time window. Any data points outside the observed period were set to 

0. The dataset was then randomly split into a training set (80%) and a test set (20%) while 

ensuring that data from a single patient was not split. The network architecture comprised an 
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input layer, a long short-term memory neural network layer, and an output layer optimized for 

the size of the time window and batches. The process was halted once the accuracy, 

specificity, sensitivity, and area under the receiver operator characteristics curve (ROC) did 

not improve in the test set. The number of neurons was estimated based on the input size, 

output size, batch size, and size of the observed time interval. The loss function was applied 

using an entropy gradient function with the ADAM21 optimizer. To implement these 

algorithms, Python 3.818 (primarily with the pandas22, numpy23, scikit-learn24, and scipy25 

packages) was used; the code used can be found in the supplementary information 

(https://links.lww.com/ALN/D490, https://links.lww.com/ALN/D491). 

o Statistical Analysis 

The main objective of this study was to compare the sensitivity and specificity of all used 

artifact filtering methods to provide a guide on which algorithm is best suited for further 

research. For calculation of sensitivity and specificity, the human reviewer standard defined 

the “true values” of the presence or absence of artifacts. Sensitivity was defined as the ratio of 

artifacts correctly annotated by each algorithm compared to the human reviewer reference 

standard. Specificity was defined as the ratio of data points correctly annotated as not being 

an artifact consistent with the human reviewer reference standard. After all the artifact 

detection algorithms were applied, the results were compared to the human reference 

standard. For each artifact detection algorithm, true positive, true negative, false positive, and 

false negatives were calculated. Specificity, sensitivity, positive predictive value, and negative 

predictive value including 95% confidence intervals (CI) calculated using Wilson’s 

method26,27 were displayed per vital sign parameter and artifact detection algorithm. 

Comparisons of confidence intervals were done using the complete non-overlap method.28 

Observations were viewed as independent—no within-person clustering of performance was 

conducted. Descriptive statistics were calculated using mean and standard deviation or 

median and 25% and 75% quartiles, respectively, as appropriate. A formal comparison of 
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artifact detection methods was conducted by comparing the 95% confidence intervals of 

sensitivity/specificity. The null hypothesis was that there was no difference in sensitivity and 

specificity between the neural network and any other method. All statistical analysis was done 

using Python 3.818 as described above. 

Sensitivity Analysis 

As most of the tested algorithms relied on the definition of thresholds or factors, a sensitivity 

analysis was conducted using different thresholds. For all algorithms, receiver-operator-

characteristic curves are shown, and the area under the curve was calculated. Furthermore, all 

key statistical figures (sensitivity, specificity, positive predictive value, and negative 

predictive value) are shown in the main analysis. 

Defining thresholds for the cutoff method was challenging. Multiple ways of calculating a 

reference range are described in the literature, with a 95% CI being mostly used, especially 

for laboratory values.29–31 Indeed, the literature about reference ranges of vital signs is sparse, 

often relying on cohort studies focusing on outcomes.32 In oxygen saturation, for example, 

normal values and values not requiring treatment differ in certain patient groups (e.g., acute 

respiratory distress syndrome or acute myocardial infarction). 33–35 

Therefore, four additional thresholds were defined: (1) using a 95% confidence interval from 

the complete dataset, (2) values outside of physiological ranges, (3) values that would worry 

the treating healthcare professionals, and (4) values needing urgent treatment. Details can be 

found in Table 5.  

For the z-value and interquartile range, in addition to using three as factors, all values between 

2 and 3.5 were tested in 0.5 steps. For the calculation of the receiver-operator-characteristics 

curve, all values between 0.5 and 5 were used. 
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 Results 

The study population consisted of 28,388 operating room patients and 1,262 ICU patients 

with available data for all 5 vital signs. A total of 106 patients (53 ICU and 53 operating 

rooms) were randomly selected from the study population. Demographic details can be found 

in Table 1. 

For the operating room data and ICU data, the mean duration of observation was 2.6 h (SD: 

1.8 h) and 120.0 h (SD: 0.2 h), respectively. During that time, a total of 395,213 data points 

were included. After excluding the capnometry values < 2 mmHg, 392,808 data points 

remained. The mean number of data points per operating room patient was 3087.1 (SD: 

3117.0); in the ICU, it was 4324.4 (SD: 2880.6). Of these, the four human experts annotated a 

total of 11,699 data points as artifacts, including the data points annotated by two experts 

evaluating each patient. In 2,891 data points, consensus was met by the first step, leaving 

5,917 data points (50.6%) for the third expert’s decision. In 2,276 of those cases (38.5%), he 

decided that the data point was an artifact, resulting in 5,167 annotated artifacts (1.3% of the 

data points). Splitting the data into a training set (80%) and a test set (20%) resulted in 

310,085 instances without artifacts and 4,162 instances (1.33%) with artifacts in the training 

set. In the test set, there were 77,557 instances without artifacts and 1,005 instances with 

artifacts (1.28%). 

The application of the artifact detection algorithms resulted in a large variation in annotated 

artifacts. For example, the interquartile range method resulted in 6,196 artifacts annotated, 

while the local outlier factor annotated only 1,189 data points as artifacts. Details can be 

found in Table 2. Data describing the long short-term memory neural network are missing in 

Table 2 due to the dataset split. 

The hypothesis that the neural network showed significantly higher sensitivities than the 

classic methods was found to be true for the following vital signs: heart rate (ICU: 33.6%, 

95% CI: 33.1–44.6), systolic invasive blood pressure (both in the operating room (62.2%, 
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95%  CI: 57.5–71.9) and ICU (60.7%, 95% CI: 57.3–71.8), and temperature in the operating 

room (76.1%, 95% CI: 63.6–89.7). Specificity was very similar in all methods. As expected, 

the interquartile range and z-value performed very similar, and the data were equally 

distributed. The best-performing methods are summarized in Tables 3 and 4. 

The specificity was above 90% for all detection methods and all vital signs. However, the 

sensitivity was low for cutoff, z-value, interquartile range, and local outlier factor, with only 

the z-value for saturation in the operating room reaching 88.9%. All other sensitivity values 

were less than 80%, with the local outlier factor not exceeding 10% of the sensitivity. An 

example of the neural network’s performance can be found in Figure 1. 

A comparison of the performance across methods revealed significant differences between 

vital signs, methods, and clinical locations. For example, for heart rate in the ICU, the long 

short-term memory neural network showed a significantly higher sensitivity of 33.6% and 

specificity of 99.2%, whereas the interquartile range showed 19.5%/99.4%, the z-value 

performed similarly (25.3%/99.6%), and the cutoff showed a sensitivity of only 3.8%, with a 

specificity of 100%. By contrast, the cutoff showed better results for invasive mean arterial 

pressure (MAP) in the operating room (sensitivity: 74.9%, specificity: 100%) but not in the 

ICU (9.3%/100%). Details, including 95% confidence intervals, can be found in Table 3, 

showing performance in data from the operating room, and in Table 4, showing performance 

in data from the ICU.  

To show the performance of different thresholds when using the interquartile range and z-

value, a sensitivity analysis was conducted: all threshold values from 0.5 to 5 were tested, as 

well as different cutoff values. The results showed that using values other than those 

previously described resulted in better sensitivity, while specificity stayed at an acceptable 

level. For example, the second threshold level (values worrying the treating healthcare 

professionals) resulted in 75% sensitivity for invasive MAP. However, specificity decreased 

to 92%, while those originally used showed 39.8%/100%. This trend was seen in all used 
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thresholds: increased sensitivity led to rapidly decreasing specificity. All calculations can be 

found in Table 5 and in the supplement (https://links.lww.com/ALN/D489). 

All ROC area under the curve (AUC) values were above 0.61, with most exceeding 0.85. For 

example, applying the z-value to MAP resulted in an ROC-AUC of 0.88, while applying the 

interquartile range to CO2 resulted in an AUC of 0.96. The resulting ROC curves, including 

all AUC values, can be found in the supplementary materials 

(https://links.lww.com/ALN/D489).  

 Discussion 

In the present study, we found that artifact filtering methods performed differently both in 

terms of specific vital signs and clinical context of intraoperative versus intensive care unit. 

No one method was found to be consistently superior across different vital signs and clinical 

contexts. Compared to  human experts annotating artifacts retrospectively,8,9,36 the methods of 

interquartile range, z-value, and cutoff filters showed high specificity but only intermediate 

sensitivity; the local outlier factor had a sensitivity below 10%. By contrast, a specially 

trained, long short-term memory neural network showed higher sensitivity values, while 

specificity remained as high as the other methods. Narrowing the thresholds of the cutoff filter 

in a sensitivity analysis also increased sensitivity; however, specificity decreased rapidly. The 

thoughtful selection of artifact detection methods for each clinical parameter is important. For 

specific clinical parameters, the use of neural networks demonstrated higher artifact filtering 

performance. 

Artifact filtering is of the utmost importance, as it has the potential to alter scientific 

results.8,12 In the vast majority of anesthesiologic and intensive care publications to date, only 

basic methods of artifact detection in recordings of continuous vital parameters have been 

reported.1–3,7 Some studies have not described any detail of artifact detection at all. However, 

a broad variety of artifact detection algorithms and highly specialized neural networks have 
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been published for artifact detection in retrospective data.37–39 In the present study, it was 

shown that different artifact detection methods perform differently on each vital sign. 

Blood pressure is the focus of many perioperative and critical care research efforts, with both 

MAP and systolic pressure being reported.1,3,5,7 No single method performed best for invasive 

MAP: In the operating room, the cutoff method performed best, while in the ICU, the neural 

network performed best. The sensitivity analysis showed that narrowing the limits rapidly 

increased sensitivity, with a drop in specificity. This further emphasizes the relevance of 

choosing the right algorithm with the right threshold. This is especially relevant when looking 

at pathological states, such as intraoperative hypotension or hypothermia: erroneously 

flagging vital signals as artifacts would lead to the exclusion of relevant information. 

The same importance of choosing the right method for the right parameter was seen for heart 

rate, for which all algorithms showed a sensitivity of less than 40% with large differences 

between the ICU and the operating room. Although the sensitivity analysis showed a tendency 

toward increased sensitivity, specificity dropped rapidly. The most probable cause for the low 

sensitivities is rapid changes in heart rate: electrocautery in the operating room and movement 

or arrhythmia in the ICU. These artifacts can easily be detected when using the pulse rate 

from the oxygen saturation—a signal not available to the artifact detection methods.  

Data on artifact filtering for vital signs other than heart rate and blood pressure are sparse. The 

current data demonstrate that each method performed differently for temperature, pulse 

oximetry, and capnometry, with regard to sensitivity and specificity. In contrast to heart rate 

and blood pressure, z-value and interquartile range performed well, while the neural network 

showed mixed results.  

As with blood pressure and heart rate, choosing the right threshold—especially for cut-off 

filters—is an important topic. Although sensitivity was increased by changing the thresholds, 

specificity dropped for temperature and capnometry. Only for pulse oximetry did the 
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specificity remain stable, which can most probably be attributed to the special distribution of 

values.  

Interestingly, all algorithms performed worse in the ICU than in the operating room. There are 

multiple potential explanations for this difference, with the decreased resolution of data in the 

ICU being the most important. For example, although an artifact due to blood sampling can 

easily be detected in the arterial blood pressure signal with a 15-second resolution, it will 

diminish at a 15-minute resolution.  

Due to the similar statistical approaches used for the interquartile range and z-value, similar 

results were expected. Nevertheless, for datasets with a “low resolution” vital sign, such as the 

noninvasive blood pressure in this study, the z-value often performed better compared to the 

interquartile range. Generally, the local outlier factor performed poorly throughout all vital 

signs, with sensitivity never exceeding 15%. One conclusion may be that the use of the local 

outlier factor in anesthetic data is questionable, contrary to other datasets.40 The topic of data 

granularity itself could not be studied in this project, as the data resolution was evenly 

distributed. Further research is necessary, especially on the effects of data granularity on 

artifact filtering algorithms and the characterizations of different vital signs, which are most 

often subsequently used for statistical analysis. As the collection of high-resolution vital 

signs, including waveforms, becomes increasingly popular, the problem of low granular data 

will improve —at least in perioperative data. 

Limitations 

One significant limitation of this study is the use of retrospective EHR data as the foundation 

for creating the human reference standard rather than real-time point of care annotation. This 

possibly explains why the rate of artifacts marked by the reviewers (1.3%) was lower than in 

some previous studies reporting up to 14%.8,9,39 Using retrospective data can lead to missing 

artifacts. For example, the wrong elevation of a blood pressure transducer cannot be identified 

in retrospective data, patient movement cannot be seen, and the dislocation of a saturation 
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sensor can only be assumed. However, as the main objective was a comparison of artifact 

filtering methods for use in retrospective data, we decided to choose a retrospective approach 

for human experts as well. 

The neural network used has some limitations. Of importance is the fact that the tested 

network was trained with the human reference standard and therefore could at best predict the 

reference standard. External validation to prove generalizability is needed before using the 

model in other centers. In this case, approximately 450 person-hours were needed to annotate 

all 106 patients, including the majority vote, for artifacts where two reviewers disagreed. 

Another limitation is that humans, classic artifact detection algorithms, and neural networks 

may not be comparable. Although the neural network is trained with actual reference standard 

data, such as human expert reviewer annotations, the classic algorithms do not have access to 

individually annotated data. Classic algorithms are based on thresholds, population 

distributions, or mathematical transformations. Humans, by contrast, can utilize much more 

information to filter artifacts than is available for long short-term memory neural networks. 

The use of electrocautery or the movement of cables is obvious to the human eye but difficult 

to learn for long short-term memory neural networks. Neural network training has the 

potential to overfit, which was decreased using a randomly split internal test dataset. As 

shown in the supplementary materials (https://links.lww.com/ALN/D489), the neural 

network’s calibration plots had poor calibration for certain variables, such as pulse oximetry 

values and temperature, both in the ICU and the operating room, whereas they showed good 

performance for others, such as systolic blood pressure of heart rate, in both clinical settings. 

This indicates that there may be a relevant risk of decision errors in particular risk ranges. 

The use of human experts is a significant limitation of this study. Although all experts had 

experience in clinical anesthesia and intensive care, incorrect filtering was always possible. 

To address this concern, every data point was independently evaluated by two experts. The 

distribution of patient data to two of the four experts was performed randomly. For cases in 

17

Acc
ep

ted
 Prep

roof

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/doi/10.1097/ALN
.0000000000004971/702084/aln.0000000000004971.pdf by guest on 20 M

arch 2024



which these two experts diverged, a third expert decided with a majority vote. The number of 

data points in which this majority vote was necessary was high (50.6% of annotated data 

points), leading to the concern that the analysis relied on an imperfect reference standard. The 

use of three independent experts is the maximum previously described in the literature, 

leading to the assumption that the reference standard used is the best possible in that setting. 

8,39 Following Walsh, we conducted a naïve analysis accepting that results may be 

underestimated or overestimated, while other methods seemed impractical in this case. 41 

A further limitation is the single-center data source, which has limited generalizability. The 

highly standardized way in which monitoring devices are produced and used is encouraging, 

but we cannot exclude systematic errors, such as those described previously. 42,43 In addition, 

many commercially available EHRs record only intraoperative physiologic data every 60 

seconds, calling into question the validity of our findings in these datasets. Validation of the 

neural network used on external, completely new data is essential to establish the potential 

value of the network on broad patient populations. 

 Conclusion 

The use of simple, universal physiologic artifact detection methods seems inferior to vital 

sign-specific artifact detection algorithms. Commonly used artifact detection methods 

performed very differently when tested for different vital signs and for different settings (ICU 

vs. operating room). Using a pretrained neural network for artifact filtering in retrospective 

data may be a possible additional valid option as an artifact detection method, although 

performance may be worse in different datasets and potential overfitting is a an important 

limitation.  

Supplemental Digital Content 

Supplement 1: ROC curves, calibration plots, STARD checklist, 

https://links.lww.com/ALN/D489 

Supplement 2: Jupyter notebook of Python code, https://links.lww.com/ALN/D490 
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Supplement 3: Jupyter notebook with a simplified LSTM’s code for learning, 

https://links.lww.com/ALN/D491 

Supplement 4: Supplemental Table 1: Artifact detection algorithms’ performance in combined 

data; Supplemental Table 2: Sensitivity analysis of cut-off method, 

https://links.lww.com/ALN/D492 

Supplement 5: Description of the human reviewers’ training, 

https://links.lww.com/ALN/D493 
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 Figures Legends 

Figure 1: Example of the neural network performance compared to the human experts in a 

sample of heart rates from one specific patient (example signal: normalized heart rate). By 

converting the minimal heart rate to -1 and the maximal heart rate to 1, the performance of the 

neural network is facilitated, while intervals between values of heart rate remain the same. 
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o Table 1: Demographic Details 

 OR (n = 53) ICU (n = 53) 

Age (Quartile) 
59.0 (42.0, 

68.0) 
60.0 (49.0, 67.0) 

BMI (Quartile) 1.9 (1.7, 2.0) 1.9 (1.8, 2.1) 

Female gender (%) 20 (37.7%) 21 (39.6%) 

Length of stay [hours] 
(Quartile) 

2.5 (1.9, 3.6) 
335.9 (237.2, 

551.8) 

ASA classification n (%)   

ASA 1 8 (15.1%) nA 

ASA 2 24 (45.3%) nA 

ASA 3 20 (37.7%) nA 

ASA 4 1 (1.9%) nA 

Surgical Specialty n (%)   

General surgery, Gynecology, 
Urology 

24 (45.3%) nA 

Cardiothoracic, Vascular 6 (11.3%) nA 

ENT, Maxillofacial, 
Dermatology 

6 (11.3%) nA 

Ortho, Trauma, 
Ophthalmology 

11 (20.8%) nA 

Neurosurgery 5 (9.4%) nA 

Robotic surgery 1 (1.9%) nA 

Type of ICU admission n (%)   

Planned nA 23 (43.4%) 

Unplanned nA 30 (56.6%) 

Surgical status n (%)   

Planned surgery nA 11 (20.8%) 

Urgent surgery nA 29 (54.7%) 

No surgery nA 13 (24.5%) 

 

Table 1 shows basic demographic details of the included patients. OR: operating room, n = 

number, ASA: ASA physical status, Ortho: orthopedics, CPR: cardiopulmonary resuscitation 
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o Table 2: Number of annotated artifacts 

Vital sign Data points Human IQR z-value LOF Cutoff 

 ICU OR Total ICU OR 
Tota

l 
ICU OR 

Tota
l 

ICU OR 
Tota

l 
ICU OR 

Tota
l 

ICU OR 
Tota

l 

Heart rate 38,307 34,998 73,305 655 990 
1,64

5 
344 597 941 329 470 799 115 50 165 25 22 47 

SpO2 38,247 35,066 73,313 88 36 124 
1,16

1 
951 

2,11
2 

455 416 871 82 24 106 0 0 0 

Blood pressure                   

Systolic, invasive 36,927 15,451 52,378 487 423 910 157 374 531 257 240 497 106 59 165 57 252 309 

MAP, invasive 36,901 15,414 52,315 440 382 822 182 348 530 261 264 525 107 56 163 41 287 328 

Diastolic, invasive 36,887 15,411 52,298 464 375 839 216 398 614 310 256 566 97 49 146 42 90 132 

Systolic, 
noninvasive 

611 3,017 3,628 0 7 7 0 18 18 5 24 29 24 3 27 0 0 0 

MAP, noninvasive 612 3,017 3,629 2 7 9 0 32 32 7 28 35 24 3 27 0 0 0 

Diastolic, 
noninvasive 

611 3,017 3,628 0 11 11 0 27 27 7 32 39 24 3 27 0 0 0 

Capnometry 18,487 34,903 53,390 29 523 552 235 
1,04

5 
1,14

2 
148 644 792 207 37 244 

1,95
4 

1,80
0 

3,75
4 

Temperature 21,604 3,320 24,924 210 38 248 227 22.0 249 200 18 218 119 0 119 94 10 104 

Total 
229,19

4 
163,61

4 
392,80

8 
2,375 

2,32
5 

5,16
7 

2,86
6 

4,38
7 

6,19
6 

2,30
8 

2,86
2 

4,37
1 

1,02
0 

33
4 

1,18
9 

2,23
8 

701 
4,67

4 

Table 2 shows details of the included data points as well as the number of annotated artifacts by detection method. OR: operating room, IQR: 

interquartile range, LOF: local outlier factor, SpO2: peripheral oxygen saturation, MAP: mean arterial pressure 
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Table 3: Performance of the Algorithms in the Operating Room 

 

Vital sign Method Sensitivity (CI95) Specificity (CI95) PPV (CI95) NPV (CI95) 

CO2 IQR * 72.5 (68.5, 76.1) 98.1 (97.9, 98.2) 36.3 (33.4, 39.2) 99.6 (99.5, 99.6) 

Z-value 70.6 (66.5, 74.3) 99.2 (99.1, 99.3) 57.3 (53.4, 61.1) 99.6 (99.5, 99.6) 

Local outlier 

factor 4.2 (2.8, 6.3) 100 (99.9, 100.0) 59.5 (43.5, 73.7) 98.6 (98.4, 98.7) 

Cutoff 1.5 (0.8, 3.0) 94.8 (94.5, 95.0) 0.4 (0.2, 0.9) 98.4 (98.3, 98.6) 

Neural Network 71.1 (61.5, 79.3) 99.6 (99.6, 99.8) 64.6 (63.4, 81.6) 99.7 (99.5, 99.8) 

Heart rate IQR 34.2 (31.4, 37.3) 99.2 (99.1, 99.3) 56.8 (52.8, 60.7) 98.1 (98.0, 98.2) 

Z-value 29.7 (26.9, 32.6) 99.5 (99.4, 99.6) 62.6 (58.1, 66.8) 98 (97.8, 98.1) 

Local outlier 

factor 4 (3.0, 5.5) 100 (99.9, 100.0) 80 (67.0, 88.8) 97.3 (97.1, 97.4) 

Cutoff 2.2 (1.5, 3.3) 100 

(100.0, 

100.0) 100 (85.1, 100.0) 97.2 (97.1, 97.4) 

Neural Network 

* 39.5 (33.7, 44.8) 98.9 (98.9, 99.2) 42.9 (38.5, 50.6) 98.7 (98.6, 99.0) 

SpO2 IQR 72.2 (56.0, 84.2) 97.4 (97.2, 97.5) 2.7 (1.9, 4.0) 100 (99.9, 100.0) 

Z-value * 88.9 (74.7, 95.6) 98.9 (98.8, 99.0) 7.7 (5.5, 10.7) 100 

(100.0, 

100.0) 
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Local outlier 

factor 8.3 (2.9, 21.8) 99.9 (99.9, 100.0) 12.5 (4.3, 31.0) 99.9 (99.9, 99.9) 

Cutoff 0 (0.0, 9.6) 100 

(100.0, 

100.0)  (nan, nan) 99.9 (99.9, 99.9) 

Neural Network 13.6 (8.3, 45.8) 100 

(100.0, 

100.0) 
100 

(100.0, 

100.0) 99.9 (99.9, 100.0) 

Temperature IQR 23.7 (13.0, 39.2) 99.6 (99.3, 99.8) 40.9 (23.3, 61.3) 99.1 (98.7, 99.4) 

Z-value 31.6 (19.1, 47.5) 99.8 (99.6, 99.9) 66.7 (43.7, 83.7) 99.2 (98.8, 99.5) 

Local outlier 

factor 0 (0.0, 9.2) 100 (99.9, 100.0)  (nan, nan) 98.9 (98.4, 99.2) 

Cutoff 26.3 (15.0, 42.0) 100 (99.9, 100.0) 100 (72.2, 100.0) 99.2 (98.8, 99.4) 

Neural Network 

* 76.1 (63.6, 89.7) 99.9 (99.8, 100.0) 74.5 (66.7, 90.9) 99.9 (99.8, 100.0) 

Systolic, IBP IQR 49.4 (44.7, 54.2) 98.9 (98.7, 99.1) 55.9 (50.8, 60.8) 98.6 (98.4, 98.8) 

Z-value 36.9 (32.4, 41.6) 99.4 (99.3, 99.5) 65 (58.8, 70.8) 98.2 (98.0, 98.4) 

Local outlier 

factor 13.5 (10.5, 17.1) 100 

(100.0, 

100.0) 96.6 (88.5, 99.1) 97.6 (97.4, 97.9) 

Cutoff 59.6 (54.8, 64.1) 100 

(100.0, 

100.0) 100 (98.5, 100.0) 98.9 (98.7, 99.0) 

Neural Network 

* 62.2 (57.5, 71.9) 99.9 (99.8, 100.0) 88.7 (84.4, 95.0) 99.5 (99.4, 99.6) 
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Diastolic, IBP IQR * 49.9 (44.8, 54.9) 98.6 (98.4, 98.8) 47 (42.1, 51.9) 98.7 (98.6, 98.9) 

Z-value 46.9 (41.9, 52.0) 99.5 (99.3, 99.6) 68.8 (62.8, 74.1) 98.7 (98.5, 98.9) 

Local outlier 

factor 12.5 (9.6, 16.3) 100 

(100.0, 

100.0) 95.9 (86.3, 98.9) 97.9 (97.6, 98.1) 

Cutoff 24 (20.0, 28.6) 100 

(100.0, 

100.0) 100 (95.9, 100.0) 98.1 (97.9, 98.3) 

Neural Network 33.3 (21.5, 41.3) 99.9 (99.8, 100.0) 75.8 (57.9, 87.5) 99.4 (99.1, 99.5) 

MAP, IBP IQR 47.1 (42.2, 52.1) 98.9 (98.7, 99.0) 51.7 (46.5, 56.9) 98.7 (98.5, 98.8) 

Z-value 46.1 (41.1, 51.1) 99.4 (99.3, 99.5) 66.7 (60.8, 72.1) 98.6 (98.4, 98.8) 

Local outlier 

factor 14.1 (11.0, 18.0) 100 

(100.0, 

100.0) 96.4 (87.9, 99.0) 97.9 (97.6, 98.1) 

Cutoff * 74.9 (70.3, 79.0) 100 

(100.0, 

100.0) 99.7 (98.1, 99.9) 99.4 (99.2, 99.5) 

Neural Network 54.4 (38.4, 56.7) 99.8 (99.7, 99.9) 75.6 (69.8, 88.7) 99.4 (99.1, 99.4) 

Systolic, 

NIBP 

IQR 0 (0.0, 35.4) 99.4 (99.1, 99.6) 0 (0.0, 17.6) 99.8 (99.5, 99.9) 

Z-value* 28.6 (8.2, 64.1) 99.3 (98.9, 99.5) 8.3 (2.3, 25.8) 99.8 (99.6, 99.9) 

Local outlier 

factor 0 (0.0, 35.4) 99.9 (99.7, 100.0) 0 (0.0, 56.1) 99.8 (99.5, 99.9) 

Cutoff 0 (0.0, 35.4) 100 (99.9, 100.0)  (nan, nan) 99.8 (99.5, 99.9) 

Neural Network         
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Diastolic, 

NIBP 

IQR 0 (0.0, 25.9) 99.1 (98.7, 99.4) 0 (0.0, 12.5) 99.6 (99.3, 99.8) 

Z-value* 36.4 (15.2, 64.6) 99.1 (98.7, 99.4) 12.5 (5.0, 28.1) 99.8 (99.5, 99.9) 

Local outlier 

factor 0 (0.0, 25.9) 99.9 (99.7, 100.0) 0 (0.0, 56.1) 99.6 (99.3, 99.8) 

Cutoff 0 (0.0, 25.9) 100 (99.9, 100.0)  (nan, nan) 99.6 (99.3, 99.8) 

Neural Network         

MAP, NIBP IQR * 42.9 (15.8, 75.0) 99 (98.6, 99.3) 9.4 (3.2, 24.2) 99.9 (99.7, 99.9) 

Z-value * 42.9 (15.8, 75.0) 99.2 (98.8, 99.4) 10.7 (3.7, 27.2) 99.9 (99.7, 99.9) 

Local outlier 

factor 0 (0.0, 35.4) 99.9 (99.7, 100.0) 0 (0.0, 56.1) 99.8 (99.5, 99.9) 

Cutoff 0 (0.0, 35.4) 100 (99.9, 100.0)  (nan, nan) 99.8 (99.5, 99.9) 

Neural Network         

 

Table 3 shows the sensitivity, specificity, positive predictive value, and negative predictive value of all artifact detection algorithms separated in 

the operating room. CI95: 95% confidence interval, OR: operating room, PPV: positive predictive value, NPV: negative predictive value, MAP: 

mean arterial pressure, Systolic: systolic blood pressure, Diastolic: diastolic blood pressure, IBP: invasive blood pressure, NIBP: non-invasive blood 

pressure, IQR: interquartile range, Neural Network: long-short term memory (machine learning algorithm). Note that too little information was 

available to train the neural net for non-invasive blood pressure. All cells with a sensitivity above 70% and a specificity above 95% are marked in 

bold. Asterisks mark methods with the highest sensitivity, specificity was >97% in all marked methods. 
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o Table 4: Performance of the algorithms in Intensive Care Unit 

 

Vital sign Method Sensitivity (CI95) Specificity (CI95) PPV (CI95) NPV (CI95) 

CO2 IQR 51.7 (34.4, 68.6) 98.8 (98.6, 99.0) 6.4 (3.9, 10.3) 99.9 (99.9, 100.0) 

Z-value 62.1 (44.0, 77.3) 99.3 (99.2, 99.4) 12.2 (7.8, 18.4) 99.9 (99.9, 100.0) 

Local outlier factor 10.3 (3.6, 26.4) 98.9 (98.7, 99.0) 1.4 (0.5, 4.2) 99.9 (99.8, 99.9) 

Cutoff 6.9 (1.9, 22.0) 89.4 (89.0, 89.9) 0.1 (0.0, 0.4) 99.8 (99.8, 99.9) 

Neural Network * 72.6 (61.4, 79.2) 99.7 (99.6, 99.8) 74.5 (63.4, 81.8) 99.6 (99.5, 99.8) 

Heart rate IQR 19.5 (16.7, 22.8) 99.4 (99.3, 99.5) 37.2 (32.3, 42.4) 98.6 (98.5, 98.7) 

Z-value 25.3 (22.2, 28.8) 99.6 (99.5, 99.6) 50.5 (45.1, 55.8) 98.7 (98.6, 98.8) 

Local outlier factor 6.6 (4.9, 8.7) 99.8 (99.8, 99.8) 37.4 (29.1, 46.5) 98.4 (98.3, 98.5) 

Cutoff 3.8 (2.6, 5.6) 100 

(100.0, 

100.0) 100 (86.7, 100.0) 98.4 (98.2, 98.5) 

Neural Network * 33.6 (33.2, 44.6) 99.2 (98.9, 99.2) 47.6 (38.6, 50.8) 98.6 (98.6, 99.0) 

SpO2 IQR 64.8 (54.4, 73.9) 97.1 (96.9, 97.3) 4.9 (3.8, 6.3) 99.9 (99.9, 99.9) 

Z-value * 73.9 (63.8, 81.9) 99 (98.9, 99.1) 14.3 (11.4, 17.8) 99.9 (99.9, 100.0) 

Local outlier factor 0 (0.0, 4.2) 99.8 (99.7, 99.8) 0 (0.0, 4.5) 99.8 (99.7, 99.8) 

Cutoff 0 (0.0, 4.2) 100 

(100.0, 

100.0)  (nan, nan) 99.8 (99.7, 99.8) 
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Neural Network 18.2 (9.1-45.0) 100 

(100.0, 

100.0) 
100 

(100.0, 

100.0) 
100 

(99.9, 100.0) 

Temperature IQR * 71.9 (65.5, 77.5) 99.6 (99.6, 99.7) 66.5 (60.2, 72.3) 99.7 (99.6, 99.8) 

Z-value 68.1 (61.5, 74.0) 99.7 (99.7, 99.8) 71.5 (64.9, 77.3) 99.7 (99.6, 99.8) 

Local outlier factor 1.4 (0.5, 4.1) 99.5 (99.4, 99.5) 2.5 (0.9, 7.2) 99 (98.9, 99.2) 

Cutoff 42.4 (35.9, 49.1) 100 (99.9, 100.0) 94.7 (88.1, 97.7) 99.4 (99.3, 99.5) 

Neural Network 66.7 (37.5, 83.3) 100 

(100.0, 

100.0) 100 

(100.0, 

100.0) 99.7 (99.4, 99.9) 

Systolic, IBP IQR 29.8 (25.9, 34.0) 100 (99.9, 100.0) 92.4 (87.1, 95.6) 99.1 (99.0, 99.2) 

Z-value 37 (32.8, 41.3) 99.8 (99.7, 99.8) 70 (64.2, 75.3) 99.2 (99.1, 99.3) 

Local outlier factor 7.6 (5.6, 10.3) 99.8 (99.8, 99.9) 34.9 (26.5, 44.4) 98.8 (98.7, 98.9) 

Cutoff 11.7 (9.1, 14.9) 100 

(100.0, 

100.0) 100 (93.7, 100.0) 98.8 (98.7, 98.9) 

Neural Network * 60.7 (57.3, 71.8) 99.9 (99.8, 100.0) 88.3 (84.1, 95.0) 99.5 (99.4, 99.6) 

Diastolic, IBP IQR 38.1 (33.8, 42.6) 99.9 (99.9, 99.9) 81.9 (76.3, 86.5) 99.2 (99.1, 99.3) 

Z-value * 41.6 (37.2, 46.1) 99.7 (99.6, 99.7) 62.3 (56.7, 67.5) 99.3 (99.2, 99.3) 

Local outlier factor 6.2 (4.4, 8.8) 99.8 (99.8, 99.9) 29.9 (21.7, 39.6) 98.8 (98.7, 98.9) 

Cutoff 9.1 (6.8, 12.0) 100 

(100.0, 

100.0) 100 (91.6, 100.0) 98.9 (98.7, 99.0) 

Neural Network 28.9 (21.4, 42.1) 99.9 (99.8-100.0) 74.3 (58.1, 87.5) 99.2 (99.1, 99.5) 
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MAP, IBP IQR 34.8 (30.5, 39.3) 99.9 (99.9, 99.9) 84.1 (78.1, 88.7) 99.2 (99.1, 99.3) 

Z-value 40 (35.5, 44.6) 99.8 (99.7, 99.8) 67.4 (61.5, 72.8) 99.3 (99.2, 99.4) 

Local outlier factor 9.1 (6.7, 12.1) 99.8 (99.8, 99.9) 37.4 (28.8, 46.8) 98.9 (98.8, 99.0) 

Cutoff 9.3 (6.9, 12.4) 100 

(100.0, 

100.0) 100 (91.4, 100.0) 98.9 (98.8, 99.0) 

Neural Network * 51.5 (38.9, 57.7) 99.8 (99.7, 99.9) 80.7 (69.7, 88.7) 99.2 (99.1, 99.4) 

Systolic, 

NIBP 

IQR  (nan, nan) 100 (99.4, 100.0)  (nan, nan) 100 (99.4, 100.0) 

Z-value  (nan, nan) 99.2 (98.1, 99.6) 0 (0.0, 43.4) 100 (99.4, 100.0) 

Local outlier factor  (nan, nan) 96.1 (94.2, 97.3) 0 (0.0, 13.8) 100 (99.3, 100.0) 

Cutoff  (nan, nan) 100 (99.4, 100.0)  (nan, nan) 100 (99.4, 100.0) 

Neural Network         

Diastolic, 

NIBP 

IQR  (nan, nan) 100 (99.4, 100.0)  (nan, nan) 100 (99.4, 100.0) 

Z-value  (nan, nan) 98.9 (97.7, 99.4) 0 (0.0, 35.4) 100 (99.4, 100.0) 

Local outlier factor  (nan, nan) 96.1 (94.2, 97.3) 0 (0.0, 13.8) 100 (99.3, 100.0) 

Cutoff  (nan, nan) 100 (99.4, 100.0)  (nan, nan) 100 (99.4, 100.0) 

Neural Network         

MAP, NIBP IQR 0 (0.0, 65.8) 100 (99.4, 100.0)  (nan, nan) 99.7 (98.8, 99.9) 

Z-value * 50 (9.5, 90.5) 99 (97.9, 99.5) 14.3 (2.6, 51.3) 99.8 (99.1, 100.0) 
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Local outlier factor 

* 50 (9.5, 90.5) 96.2 (94.4, 97.5) 4.2 (0.7, 20.2) 99.8 (99.0, 100.0) 

Cutoff 0 (0.0, 65.8) 100 (99.4, 100.0)  (nan, nan) 99.7 (98.8, 99.9) 

Neural Network         

 

Table 4 shows the sensitivity, specificity, positive predictive value, and negative predictive value of all artifact detection algorithms in the ICU. CI95: 

95% confidence interval, OR: operating room, PPV: positive predictive value, NPV: negative predictive value, MAP: mean arterial pressure, 

Systolic: systolic blood pressure, Diastolic: diastolic blood pressure, IBP: invasive blood pressure, NIBP: non-invasive blood pressure, IQR: 

interquartile range, Neural Network: long-short term memory. Note that too little information was available to train the neural net for non-

invasive blood pressure. All cells with a sensitivity above 70% and a specificity above 95% are marked in bold. Asterisks mark methods with the 

highest sensitivity, specificity was >96% in all marked methods. 
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Table 5: Values used for Sensitivity Analysis 

Threshold 95% CI Physiologic Worrying  Urgent 

HR [/min] 40-117 50-80 30-140 25-200 

Systolic blood 
pressure[mmHg] 

70-170 90-140 60-180 40-240 

MAP [mmHg] 45-113 60-80 50-100 35-140 

Diastolic blood 
pressure 
[mmHg] 

28-90 60-90 40-90 20-130 

Temp [°C] 34-39.9 36-38 33-41 30-42 

SpO2 [%] 95-100 90-100 80-100 50-100 

etCO2 [mmHg] 27-47 35-45 30-55 25-80 

 

Table 5 shows the Thresholds used for cut-off method in the sensitivity analysis. Values 

outside the shown limits were defined as artifacts. HR: Heartrate, Systolic: Systolic blood 

pressure, MAP: Mean arterial blood pressure, Diastolic: diastolic blood pressure, Temp: 

Temperature, SpO2: oxygen saturation, etCO2: capnometry, 95% CI: values inside a 95% CI in 

the dataset, Physiologic, Worrying, Urgent: definitions as in the text. 
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Figure 1
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