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Reliability of Pharmacodynamic Analysis by Logistic
Regression

Mixed-effects Modeling
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Background: Many pharmacologic studies record data as bi-
nary, yes-or-no, variables with analysis using logistic regres-
sion. In a previous study, it was shown that estimates of C50, the
drug concentration associated with a 50% probability of drug
effect, were unbiased, whereas estimates of �, the term describ-
ing the steepness of the concentration–effect relationship, were
biased when sparse data were naively pooled for analysis. In
this study, it was determined whether mixed-effects analysis
improved the accuracy of parameter estimation.

Methods: Pharmacodynamic studies with binary, yes-or-no,
responses were simulated and analyzed with NONMEM. The
bias and coefficient of variation of C50 and � estimates were
determined as a function of numbers of patients in the simu-
lated study, the number of simulated data points per patient,
and the “true” value of �. In addition, 100 sparse binary human
data sets were generated from an evaluation of midazolam for
postoperative sedation of adult patients undergoing cardiac sur-
gery by random selection of a single data point (sedation score
vs. midazolam plasma concentration) from each of the 30 pa-
tients in the study. C50 and � were estimated for each of these
data sets by using NONMEM and were compared with the esti-
mates from the complete data set of 656 observations.

Results: Estimates of C50 were unbiased, even for sparse data
(one data point per patient) with coefficients of variation of
30–50%. Estimates of � were highly biased for sparse data for all
values of � greater than 1, and the value of � was overestimated.
Unbiased estimation of � required 10 data points per patient.
The coefficient of variation of � estimates was greater than that
of the C50 estimates. Clinical data for sedation with midazolam
confirmed the simulation results, showing an overestimate of �
with sparse data.

Conclusion: Although accurate estimations of C50 from sparse
binary data are possible, estimates of � are biased. Data with 10
or more observations per patient is necessary for accurate es-
timations of �.

A GOAL of pharmacodynamic modeling is to quantita-
tively describe the response to pharmacologic agents in
terms of a small number of parameters. For example, one

of the more common pharmacodynamic models assumes
that the effect of a drug (E) is described by the sigmoid
Emax, or Hill, equation, E � Emax[C�/(C� � C50�)], where
Emax is the maximal effect; C is the drug concentration;
C50 is the drug concentration associated with an effect
equal to 50% of Emax; and � is a measure of how steep the
drug concentration–effect relationship is.1 This model is
useful when the effect is a continuous variable. In anes-
thesia research, however, the response to a drug is often
not a continuous, but rather a binary variable. For exam-
ple, the patient may or may not be responsive after
administration of a hypnotic agent. In this case, Emax is
equal to 1 and the effect becomes the probability of a
particular response, given by P � C�/(C� � C50�). The
concentration–effect relationship is thus determined by
two parameters, C50 and �.2–12

Pharmacodynamic data are often sparse. That is, there
may be many data points, but there are few data points
from the same patient. This is a reflection of the diffi-
culty of repetitively observing the response to drug ad-
ministration in the same patient. In a previous study, we
investigated the accuracy of parameter estimates when
data consisting of one data point per patient was ana-
lyzed in a naive manner, i.e., an analysis in which the
interpatient variability of C50 was ignored.13 We found
that naive analysis of sparse data resulted in relatively
accurate estimates of C50. However, there was a substan-
tial bias in the estimate of �. In the current study, we
investigated whether a population analysis in which in-
terpatient C50 variability is taken into consideration, re-
sults in less biased estimates of �.

Methods

Simulations
Simulations were performed as previously described.13

Excel (Microsoft, Redmonds, WA) was used to generate
random values of C50 and �, assuming that both param-
eters had a log-normal distribution, i.e., that the param-
eters are distributed as P � PTVexp(�), in which P
denotes the parameter (C50 or �); PTV denotes the typical
value of the parameter; and � has a normal distribution
with mean value of zero and SD of 0.3. We assumed that
PTV for C50 was 100 and that PTV for � was 1, 1.5, 3, 4.5,
or 6. Simulations were performed for varying numbers of
patients (n � 10, 20, 30, 40, 50, 75, and 100) and varying
numbers of simulated data points for each patient (m �

This article is accompanied by an Editorial View. Please see:
Sani O, Shafer SL: MAC attack? ANESTHESIOLOGY 2003;
99:1249–50.

�

* Research Fellow, † Professor, ‡ Associate Professor.

Received from the Department of Anesthesiology, Emory University School of
Medicine, Atlanta, Georgia. Submitted for publication August 5, 2002. Accepted
for publication May 20, 2003. Support was provided solely from institutional
and/or departmental sources.

Address reprint requests to Dr. Bailey: Department of Anesthesiology, Emory
University School of Medicine, 1364 Clifton Road, NE, Atlanta, Georgia 30322.
Address electronic mail to: james.bailey@nghs.com. Individual article reprints
may be purchased through the Journal Web site, www.anesthesiology.org.

Anesthesiology, V 99, No 6, Dec 2003 1255

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/99/6/1255/338289/0000542-200312000-00005.pdf by guest on 09 April 2024



1, 3, 5, and 10). To begin each simulation, data points
were generated by randomly selecting n (number of
patients) � m (number of data points per patient) drug
concentrations distributed uniformly on a logarithmic
scale from 25 to 400 units by using the random number
generator of an Excel spreadsheet. This corresponds, in
a human study, to the investigator assigning a drug dose
to each patient enrolled in the study, with variability in
the plasma concentrations resulting from the dose. At
this point, if the concentration–effect relationship were
totally deterministic (i.e., � were infinite), a positive drug
effect would be observed if the drug concentration, C,
assigned to the data point exceeded C50. However, be-
cause we assess the concentration–effect relationship in
terms of the probability of the effect, there is obviously
an element of intrapatient randomness in the concentra-
tion–effect relationship, and this is reflected in the fact
that � is finite. To take into account this randomness, a
uniformly distributed random variable from 0 to 1 was
generated for each data point, again by using the random
number generator of an Excel spreadsheet. If this num-
ber was less than C�/(C50� � C�), the simulated patient
was assumed to have a positive drug effect; the response
variable, denoted R, was given a value of 1. Otherwise, it
was assumed that R is equal to 0. In this manner, re-
sponses were obtained for a range of concentrations,
and spreadsheets consisting of columns of C, the drug
concentration, and R, the response variable, were gen-
erated. For each simulation, the parameters (C50 and �)
were then estimated by maximal likelihood estimation
by using mixed-effects modeling.14 This was performed
by using the software package NONMEM (University of
California, San Francisco, San Francisco, CA) version 5.15

The Laplacian estimation technique was used. To mini-
mize the number of parameters estimated, the initial
analysis was performed by assuming that C50 had a log-
normal distribution, whereas � did not vary from patient
to patient. A subsequent analysis was performed by as-
suming that C50 and � had log-normal distributions. Each
simulation was repeated 100 times. Simulations were
performed for starting values of C50, �, and ��2� equal
to the true values, to 50% of the true values, or to 200%
of the true va(lues. Bias was defined as the estimate
minus the true value with the difference normalized to
the true value of the parameter estimate.

C50, �, and �(��2�) bias were calculated, as were the
coefficients of variation (SDs of parameter estimates nor-
malized to the mean estimates and denoted CV).

Human Studies
After obtaining approval from the Emory University

School of Medicine Human Investigations Committee
and written informed consent, 30 patients were enrolled
in a study of postoperative sedation of adult patients
undergoing cardiac surgery. The study was conducted in

the intensive care unit after elective coronary artery
bypass graft surgery. Patients with decreased left ventric-
ular function (ejection fraction of �40%), chronic pul-
monary disease, neuromuscular disease, or a history or
laboratory evidence of renal, hepatic, or hematologic
disease were excluded. Patients were also excluded
from the study if they required an intraaortic balloon
pump, showed evidence of active bleeding, or were
expected to be intubated for more than 72 h.

All patients were premedicated with diazepam,
0.1 mg/kg; morphine, 0.1 mg/mg; and scopolamine,
0.05 mg/kg. Anesthesia was induced with sodium thio-
pental and was maintained with fentanyl, 50 mcg/kg, or
sufentanil, 10 mcg/kg, supplemented with midazolam
(up to 10 mg) or sodium thiopental (up to 4 mg/kg)
during cardiopulmonary bypass. Muscle relaxation was
achieved with pancuronium or vecuronium.

After arrival in the intensive care unit, the level of
sedation was evaluated by a research nurse (not a care-
giver) using the following scale16: 1, no response to pain;
2, responds to pain only; 3, eyes closed, calm, responds
only to loud verbal or physical stimulus; 4, eyes closed,
calm, responds to verbal stimulus; 5, awake; 6, agitated.

Once patients had a sedation score of 3 or higher,
midazolam, 0.015 mg/kg, was administered every 2 min
until a sedation score of 2 was achieved or until a
maximum of 0.2 mg/kg was given. After this first dose or
series of doses, when a sedation score of 4 was observed,
midazolam, 0.015 mg/kg, was given to achieve a seda-
tion score of 3. If patients were coughing, despite
achieving the target sedation score, morphine was given
in 2-mg increments to suppress coughing. If patients
indicated pain in response to a direct question, 2–5 mg
morphine was given as needed. The last dose of mida-
zolam was given after midnight on the day of surgery,
but before 5:00 AM of the first postoperative day at the
discretion of the research nurse.

Arterial blood samples were drawn 5 min after each
dose or series of doses. Plasma midazolam concentra-
tions were assayed by high-performance gas chromatog-
raphy and mass spectroscopy.17 The interassay precision
was 4.1%, and the intraassay precision was 4.4%. The
limit of detection was 10 ng/ml.

To compare our ordinal clinical data with the results of
simulations of a binary effect, we converted the ordinal
clinical data to binary data by assuming that a positive
drug effect was a sedation score of 3 or less, whereas a
score of 4 or greater indicated a negative drug effect.
Data were analyzed with NONMEM by using the Lapla-
cian estimation technique. It was assumed that C50 had a
log-normal distribution in the population. Interpatient
variability in � was ignored. Furthermore, because these
data were collected at a time when high-dose opioid and
heavy premedication was used for cardiac anesthesia,
we considered a model that accounted for the residual
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and decaying effects of opioids, premedication, and ef-
fects of cardiopulmonary bypass on the level of con-
sciousness by including a “virtual” drug, as first intro-
duced by Somma et al.18 This virtual drug was modeled
by assuming that the effective midazolam concentration
is equal to the measured concentration plus a monoex-
ponential term, A exp(�kt), in which t is the time in the
intensive care unit and A and k are estimated by nonlin-
ear regression.

A total of 656 data points were available. To simulate a
population analysis of sparse data, a random number
generator was used to select one data point for each
patient. The set of data points for all 30 patients was then
analyzed with NONMEM as described above and incor-
porating the virtual drug effect. This random selection of
a sparse data set was repeated 100 times. The results
were compared with the results of a NONMEM analysis
of all 656 data points.

Results

Simulations
The bias of C50 estimates was small (within 5% of the

true value), even for sparse data (one data point per
simulated patient), as long as the total number of pa-
tients in the simulation was 20 or more (fig. 1). This was
true for all values of �, although we present only the
results for � � 1, 3, and 6 and omit the results for � � 1.5
and 4.5. This was also true whether interpatient variabil-
ity of � was ignored in the estimation procedure and
regardless of the parameter value used to start the pro-
cess. The results shown in fig. 1 and subsequent figures
present results in which � interpatient variability was
ignored and the starting parameter estimates were equal
to the true value. Despite the insignificant bias, we found
that the coefficient of variation of C50 estimates was
greater for sparse data (one data point per patient) than
for dense data (10 data points per patient). Figure 2
shows graphs for sparse and dense data of the coefficient
of variation of C50 estimates as a function of the number
of simulated patients and �.

In contrast to the insignificant bias of C50 estimates,
there was a large bias in the estimates of � for sparse data
when the true value of � was 3 or greater. Figure 3
shows � estimate bias as a function of numbers of sim-
ulated patients and number of data points per patient for
� � 1, 3, and 6. Bias is less pronounced for a low value
of �. For larger values of � (greater than 1), the bias for
� estimates was much higher than the bias for C50

estimates, unless the data were dense (10 data points per

Fig. 1. The bias of simulated C50 estimates (the true value minus
the mean of the estimate, normalized by the true value) for
different numbers of subjects and 1 (□), 3 (�), 5 (‘), or 10 (�)
data points per patient. The upper panel shows the results for
true � � 1; the middle panel shows the results for true � � 3; and
the lower panel shows the results for true � � 6.

Fig. 2. The coefficient of variation (the square root of the mean
squared difference between the true value and the estimate,
normalized to the true value) of C50 estimates as a function of
the number of patients for true � � 1 (�), true � � 1.5 (�), true
� � 3 (�), true � � 4.5 (□), and true � � 6 (‘). The upper panel
shows the results for one data point per patient, and the lower
panel shows the results for 10 data points per simulated patient.
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patient) and there were at least 20 patients in the simu-
lated study. The results were virtually identical regard-
less of whether interpatient � variability was ignored in
the estimation process. The results in figure 3 were
obtained by using starting values in the estimation pro-
cedure equal to the true value. When lower or greater
starting values are used, the bias is even greater.

The potential for bias in estimation of � when there
was only one data point per simulated patient was not
always indicated by the SE of the estimate. A large SE
would indicate the possibility of significant bias. The SE
of the estimate of � was large enough to encompass the
true value in only 30–60% (depending on the number of
simulated patients) of the simulations for a true value of
� � 6 and in 50–80% of the simulations for a true value
of � � 3.

In general, variability of � estimates was also greater
than that of C50 estimates. Figure 4 illustrates this for
sparse data (one data point per patient) and dense data
(10 data points per patient) with graphs of the coeffi-
cient of variation as a function of the number of simu-
lated patients and �.

Although estimation of C50 was performed with mini-
mal bias, this was not true for the estimation of the
population variance of C50, denoted ETA. Figure 5 shows
the bias of ETA estimates as a function of the number of
simulated patients and number of data points per patient
for � � 1, 3, and 6. In contrast to the bias of � estimates,
the bias of ETA estimates was greatest for a true value of
� equal to 1. In general, ETA bias decreased with the
number of simulated patients and the number of data
points per simulated patient.

Clinical Study
There were at least 10 data points for each patient in

the clinical study. The basic model that ignored a virtual
drug effect had an objective function (�2 times the
logarithm of the likelihood of the results) of 710, and the
estimate of C50 was 41.6 � 3.8 and the estimate of � was
2.69 � 0.43. Inclusion of a virtual drug in the model
decreased the objective function for the complete data
set by 99 units, which is a highly significant improve-
ment in the quality of the fit. The estimate of C50 was
47.5 � 4.7 ng/ml; the estimate of � was 4.17 � 0.59;
the coefficient of the virtual drug effect was 63.5 �
25.8 ng/ml; and the rate constant of the virtual drug effect

Fig. 4. The coefficient of variation (the square root of the mean
squared difference between the true value and the estimate,
normalized to the true value) of � estimates as a function of
the number of patients for true � � 1 (�), true � � 1.5 (�), true
� � 3 (�), true � � 4.5 (□), and true � � 6 (‘). The upper panel
shows the results for one data point per patient, and the lower
panel shows the results for 10 data points per simulated patient.

Fig. 3. The bias of simulated � estimates (the true value minus
the mean of the estimate, normalized by the true value) for
different numbers of subjects and 1 (□), 3 (�), 5 (‘), or 10 (�)
data points per patient. The upper panel shows the results for
true � � 1; the middle panel shows the results for true � � 3; and
the lower panel shows the results for true � � 6.
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was 0.00903 � 0.00416 min�1. When sparse data sets
were generated from the complete data set, the mean
estimate of C50 was 67.2 � 53.5 ng/ml. The mean estimate
of � from the 100 sparse data sets was 14.4 � 7.88.

Discussion

The results of the simulations of this study confirm our
previous finding that C50 may be estimated with insig-
nificant bias with sparse data.13 In the previous study,
we examined the use of naively pooled data analysis,
whereas the current study looked at population analysis,
implemented with NONMEM. It is, of course, not sur-
prising that the mathematically sophisticated analytic
technique, NONMEM, produced unbiased estimates,
given our previous observation that estimates derived
from naively pooled data analysis were unbiased. We

observed that the coefficient of variation of C50 estimates
with NONMEM was generally less than we reported
previously for naively pooled data, but the difference
was small. It appears that the use of population methods
does not significantly enhance our ability to estimate C50

with sparse data. The coefficient of variation of C50

estimates was greater for sparse data (one data point per
patient) than for dense data (10 data points per patient),
as expected, because the variance of an estimator of a
typical value will be of the order of 1/(nm).

In contrast to C50, estimates of � by NONMEM were
usually highly biased with sparse data. Bias was less
pronounced for the lowest true value of � � 1 and was
particularly notable for � � 6. In general, NONMEM
overestimated the value of �. This is an interesting con-
trast to our previous observation that naively pooled data
analysis underestimates �. The coefficient of variation for
estimates of � reflected this bias and was greater than we
previously reported for naively pooled data analysis. Bias
of � estimates decreased as the number of data points
per patient increased, but bias became insignificant only
if there were 10 data points per patient.

The estimation of the parameters used to generate
figures 1–5 were performed by assuming that each sim-
ulated patient had the same value of �; that is, we
ignored interpatient variability. We used this approach
for our initial estimations to minimize the number of
parameters that needed to be estimated. However, when
we assumed that � had a log-normal distribution in the
estimation step, the results were essentially identical
(data not shown). Also, the results presented in figures
1–5 were done by using starting parameter estimates
equal to the true values. We did this to present the best
case scenario for mixed-effects modeling. When we used
lower or higher starting values, the bias in the estimates
of � were often dramatically worse.

We further investigated the reliability of C50 and �
estimation by using population analysis using human
data on the sedation of patients with midazolam after
cardiac surgery. The data set consisted of 656 matched
observations of sedation score and midazolam plasma
concentration from 30 patients. The original six-point
ordinal sedation score was converted to binary data by
defining a positive drug effect as a patient who was
unresponsive or responsive only to pain or loud verbal
or physical stimulus. These data were collected in an era
when patients undergoing cardiac surgery received high
doses of opioids and heavy premedication, and our mod-
eling confirmed the conclusion of Somma et al. that
postulating a virtual drug with monoexponential kinetics
to account for the decaying effects of opioids and pre-
medication improved the fit of the model to the data.18

When the full data set, which contained more than 10
data points per patient, was analyzed, the estimate of C50

was 47.5 ng/ml and the estimate of � was 4.17. We then
randomly generated 100 sparse data sets (one data point

Fig. 5. The bias of simulated ETA estimates (the true value minus
the mean of the estimate, normalized by the true value) for
different numbers of subjects and 1 (□), 3 (�), 5 (‘), or 10 (�)
data points per patient. The upper panel shows the results for
true � � 1; the middle panel shows the results for true � � 3; and
the lower panel shows the results for true � � 6.
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per patient) and analyzed each of these. The mean esti-
mate of C50 from sparse data was 67.2 ng/ml, close to the
result from the full data set. However, the mean estimate
of � was 14.4, which was noticeably higher than the
result from the full data set. This confirms our observa-
tion that population analysis, at least as implemented
by NONMEM, overestimates the true value of � with
sparse data.

In our previous study of naively pooled data, we found
that � was underestimated,13 whereas in this study, we
report overestimation of �. It is instructive to consider
why NONMEM overestimates �, in contrast to naively
pooled data. With naively pooled data, interpatient vari-
ability in C50 is ignored. The response of the population
does not resemble any individual. However, with mixed-
effects modeling, each individual is allowed his or her
own C50. Now consider the situation in which we make
a single observation, a positive drug response at a drug
concentration C. The probability of that response is P �
C�/(C� � C50�), and the likelihood of the observed
response is maximized by any estimate of C50 less than
C, as long as the estimate of � � 	. Similarly, if the single
observation were a negative response, the probability of
the observation is P � C�/(C� � C50�), and again, the
likelihood of the observed result is maximized by any
estimate of C50 greater than C and an estimate of � � 	.
When data from multiple patients is pooled, NONMEM
estimates �C50�, the typical value of C50 in the popu-
lation. If the drug concentration, C, exceeds �C50� and
a positive drug response is observed or if the drug
concentration, C, is less than �C50� and a positive drug
response is not observed, NONMEM could maximize
likelihood with an infinite estimate of � (fig. 6) without
assuming any interpatient C50 variability. Of course, in-
finite estimates are not returned, and the reason is that,

because of intrapatient variability, in any real study, we
would expect to observe cases in which C is less than
�C50�, but there is a positive drug response and vice
versa. This intrapatient variability is reflected in a finite
value of �. Thus, there are two elements of the variance
of the model, interpatient C50 variability and intrapatient
variability. NONMEM estimates parameters by finding
those parameters that minimize an objective function
(�2 times the logarithm of the likelihood of the ob-
served results), which applies a penalty to the model
variance. If � is fixed at infinity, NONMEM could only
account for the variance of observations in which C is on
the wrong side of C50 by assuming a higher variance on
C50 (fig. 7).

Because of our observation that � may not be esti-
mated accurately from sparse data, it is interesting to ask
how many drugs commonly used in anesthesia have
been studied with sufficiently dense data to estimate �
accurately. Our simulations suggest that 10 data points
per patient are necessary. As noted earlier, it is difficult
to generate data sets this dense in anesthesia research.
For example, in the study of a hypnotic used for intra-
venous induction of anesthesia, it is almost impossible to
repetitively observe the response (i.e., loss of conscious-
ness) repetitively in the same patient. However, there is
one situation in which this type of research is more
feasible and that is the study of sedation in an intensive
care unit. Barr et al.19 administered propofol for inten-
sive care unit sedation and determined C50 and � values
for modified Ramsay sedation scores similar to those
used in our human study. Their data set comprised 643
observations from 20 patients, which is dense by the

Fig. 7. An illustration of a hypothetical study with two data
points, one at a concentration of 75 units/ml, for which a
positive drug effect is observed, and the other at a concentra-
tion of 125 units/ml, for which a positive drug effect is not
observed. The dashed curves illustrate that a model with an
infinite value of � requires that we postulate two values of C50,
one just slightly less than 75 units/ml and the other just slightly
greater than 125 units/ml, to explain the observed data. In
contrast, a model with a smaller value of � � 3 (solid curve) can
provide a fit to the data by postulating a single value of C50 equal
to100 units/ml. This example shows that if � is fixed at infinity,
NONMEM could only account for the variance of observations in
which C is on the wrong side of C50 by assuming a higher
variance on C50.

Fig. 6. An illustration of how data can be perfectly fit with an
infinite estimate of �. Two data points are shown, one at a
concentration of 75 units/ml, for which a positive drug effect is
not observed, and the other at a concentration of 125 units/ml,
for which a positive drug effect is observed. The solid curve
illustrates that a model with a single value of C50 (100 units/ml)
and an infinite value of � provides a perfect fit to both
observations.
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criteria we have identified. Thus, we think their estimate
of � by mixed-effects modeling, 1.7, is accurate and
unbiased. The same group also studied intensive care
unit sedation with midazolam and lorazepam, again de-
termining C50 and � for modified Ramsay sedation
scores.20 Although the number of observations is not
cited, inspection of figure 1 of reference 20 clearly indi-
cates that the data set was dense (greater than 10 obser-
vations per subject). The reported values of � estimated
by the naively pooled data approach was 4.5 for mida-
zolam and 3.5 for lorazepam. This estimate for midazo-
lam is within the SE for the estimate from our dense data
set using mixed-effects modeling. We have previously
reported that estimation with naively poled data tends to
underestimate � for sparse data, but we have performed
no simulations of this question for dense data.13 The
agreement of the estimate of � from our mixed-effects
analysis and the naively pooled data analysis of Barr et
al.19 suggests that naively pooled data may be accurate
for dense balanced data sets.

If the generation of a dense data set is not feasible, as
in a typical minimal alveolar concentration study, there
seem to be only two alternatives for analysis. One could
use the naively pooled data approach, realizing that it
will underestimate � but will avoid the infinite bias of a
single observation. Alternatively, one could fix the vari-
ance of C50 based on previous data, such as the variance
in the minimal analgesic concentrations.

One could ask how important the estimation of � is. In
pharmacodynamic modeling, we attempt to describe the
concentration–effect relationship in terms of a small
number of parameters. The midpoint of this relationship
is C50, which can be viewed as a location parameter. The
determination of C50 values is a major goal of pharma-
codynamic modeling. However, the value of C50 tells us
nothing about the shape or, alternatively, the scale of the
concentration–effect relationship. Estimation of C50

only is incomplete knowledge. As an example of the
clinical importance of the shape of the concentration–
effect relationship (�), consider two hypnotic agents,
both of which have C50 values of 100 units/ml, but for
drug A, � equals 1, and for drug B, � equals 6. We make
the assumption that, during maintenance of hypnosis,
the practitioner would not be satisfied with the patient
having a 50% chance of awareness and will assume
arbitrarily that it would be more appropriate to maintain
drug levels that guarantee at least a 95% chance of
hypnosis. We also assume that recovery will not be
complete until there is less than a 5% chance of hypno-
sis. Thus, the concentration decrement defining recov-
ery is the difference between C95 and C5. This concen-
tration decrement may be remarkably different for drug
A and drug B (figure 8). The concentration decrement
for drug B is so much smaller than that for drug A that
recovery from drug B could be faster even if the kinetics
were slower. We think this hypothetical example illus-

trates the importance of understanding the shape or
scale of the concentration–effect relationship and its
midpoint. This point can be illustrated using known data
for midazolam and propofol. The C50 values for deep
sedation (asleep, unresponsive to commands, able to be
aroused with shoulder tap or loud verbal stimulation)
and moderate sedation (asleep but able to be aroused
with simple verbal commands) are 208 ng/ml and
101 ng/ml, respectively, for midazolam using the opti-
mal model of Barr et al.20 The comparable values for
propofol are 0.74 and 0.5 �g/ml.19 The respective values
of � are 1.7 and 4.5 for propofol and midazolam. One
may reasonably postulate that recovery from deep seda-
tion could be defined as the time needed for a decrement
in the drug concentration associated with a 95% or
better probability of deep sedation to the drug concen-
tration defined by a 5% or less chance of moderate
sedation. By using the reported parameter estimates for
midazolam, this would require a decrease in plasma
concentration from 400 to 50 ng/ml, an eightfold de-
crease. By using the reported parameter estimates for
propofol, this would require a decrease in plasma con-
centration from 4 to 0.09 �g/ml, a nearly 40-fold de-
crease. Thus, the relative decrement in concentration
defining recovery is much less for midazolam than
propofol, although the difference in C50 values for the
two sedation scores is less for propofol. This concretely
shows how the value of � affects the concentration
decrement associated with recovery. However, it must
be emphasized that this argument is made to illustrate
the importance of the parameter, �, and not to actually
argue that recovery from midazolam is faster than recov-
ery from propofol. The argument could be more con-
crete only if the estimates of � are accurate and if the
definitions of recovery are well delineated.

In conclusion, the results of simulations, the study of
human subjects, and theoretical considerations each in-
dicate that, although estimation of C50 is accurate with

Fig. 8. The probability of drug effect for two hypothetical drugs
each with C50 � 100. The value of � for drug A (the steeper
curve) is 6 and the value of � for drug B is 2. The horizontal lines
(�) show the concentration decrement needed for a decrease
in the probability of drug effect from 95% to 5% for drug A
(upper line) and drug B (lower line).
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sparse population data, the estimation of � is not. Accu-
rate estimation of � requires dense data sets with 10 data
points per patient.
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