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Cholinergic Reversal of Isoflurane Anesthesia in Rats as
Measured by Cross-approximate Entropy of the
Electroencephalogram
Anthony G. Hudetz, B.M.D., Ph.D.,* James D. Wood, R.L.A.T.,† John P. Kampine, M.D., Ph.D.‡

Background: Pharmacologic modulation of the state of con-
sciousness is of interest for clinical practice and for a better
understanding of anesthetic mechanisms. The cholinergic acti-
vating system is an important regulator of the state of con-
sciousness during general anesthesia. Entropy of the electroen-
cephalogram has been proposed as a promising measure of
anesthetic depth. The authors have shown that volatile anes-
thetics decrease cross-approximate entropy (C-ApEn) of the
bihemispheric frontal electroencephalogram in rats. The effect
of cholinergic agents on C-ApEn has not been examined. Here,
the authors test the hypothesis that cholinergic activation re-
verses the effect of isoflurane anesthesia on C-ApEn.

Methods: An electroencephalogram in the 1- to 100-Hz range
was recorded bipolarly, with epidural leads from the frontal
cortex of both hemispheres, and used to calculate C-ApEn,
which reflects statistical independence of bihemispheric elec-
troencephalographic activity. Cholinesterase inhibitor, neostig-
mine (25 �g), or the muscarinic agonist oxotremorine (25 �g)
were infused intracerebroventricularly while the rats were in-
haling 1.0% (0.7 minimum alveolar concentration) isoflurane.
In other animals, isoflurane was lowered to 0.4% (0.3 minimum
alveolar concentration) to assess the electroencephalogram in a
sedated, waking state.

Results: At 1.0% isoflurane, C-ApEn decreased by 54% com-
pared with that at 0.4%, but the motor reflex response to tail
pinch was still present. Cholinergic agents reversed the electro-
encephalogram-depressant effect of isoflurane, i.e., C-ApEn
rose to the level measured at 0.4% isoflurane. The rise in C-
ApEn was paralleled by the appearance of spontaneous limb
and orofacial explorative movements, suggesting a return of
consciousness. In contrast, cholinergic agents fully blocked the
motor reflex to tail pinch.

Conclusions: C-ApEn of the bihemispheric electroencephalo-
gram correlates with the return of spontaneous motor signs but
not with the nociceptive reflex. Cerebral cholinergic activation
dissociates central and peripheral anesthetic effects. C-ApEn, a
novel measure of interhemispheric electroencephalogram in-
dependence, is a promising correlate of depth of sedation and
state of consciousness.

UNDERSTANDING the neural mechanism of anesthetic
modulation of consciousness is of interest for clinical
practice as well as for neuroscience. Cholinergic path-
ways of the ascending activating system have been

known to be important regulators of the state of con-
sciousness during the natural sleep–wake cycle and dur-
ing general anesthesia.1 Cholinergic activation by the
administration of selective agonists or cholinesterase in-
hibitors has been shown to produce cortical activa-
tion2–9 and increase the anesthetic requirement to pro-
duce unconsciousness.10 The cholinesterase inhibitor
physostigmine has been suggested as a reversal agent for
neuroleptanesthesia11 and has been shown to promote
the reversal of the anesthetic state, as indicated by the
return of response to verbal commands, waking electro-
encephalogram, and auditory evoked response.12

An objective assessment of the anesthetic state from
the electroencephalogram has been of interest for more
than half a century.13–16 Assessment of the state of hyp-
nosis should be based on a suitable electrophysiologic
parameter of cerebral function17 rather than the noci-
ceptive reflex, because general anesthetic–induced
areflexia to peripheral nociceptive stimulation is medi-
ated in large part at the spinal level.18,19 Although several
commercial instruments designed to monitor anesthetic
depth are now available,20–23 an understanding of the
neurophysiologic basis of anesthetic-induced uncon-
sciousness is incomplete and requires further
exploration.

Electroencephalogram entropy has recently been
tested as a promising measure of anesthetic drug effect
on the central nervous system (CNS) with propofol,24

desflurane,25 isoflurane,26 and sevoflurane.21 To date,
various definitions of entropy have been used21: most
commonly, spectral entropy, approximate entropy
(ApEn),24 and recently, cross-approximate entropy (C-
ApEn).27 C-ApEn measures the statistical dissimilarity or
independence of two concurrent biologic signals.28 In
this sense, C-ApEn describes both spatial and temporal
independence, whereas ApEn reflects only temporal ir-
regularity. Because conscious cognitive processes in-
volve large-scale distributed networks of the brain,29–31

an electroencephalographic index that incorporates
both spatial and temporal dynamics may in principle be
a more suitable indicator of the state of consciousness or
depth of sedation than an electroencephalographic in-
dex based on temporal properties alone. In particular,
prominent studies have suggested the importance of
interhemispheric coherence of cortical electromagnetic
signals during conscious perception31–35 and anesthe-
sia.16 C-ApEn could be a suitable parameter to quantita-
tively describe the interhemispheric relationship of neu-
roelectric signals underlying conscious perception and
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its depression during anesthesia. We postulate that ei-
ther disconnection or hypersynchronization of the hemi-
spheres by anesthetics may interfere with conscious
perception and may be detected by a change in C-ApEn.

We27 previously used C-ApEn to characterize the effect
of volatile anesthetics on the electroencephalogram in
the rat and showed that C-ApEn was decreased by both
anesthetics as the animals lost the righting reflex, a
behavioral index of consciousness. In the present work,
we examined whether the effect of isoflurane on C-ApEn
of the electroencephalogram may be modulated by the
administration of cholinergic agents. We hypothesized
that if a reduction in C-ApEn correctly reflected deepen-
ing anesthesia,27 then it should increase on cholinergic
arousal of the CNS. We chose to use neostigmine, a potent
cholinesterase inhibitor, and oxotremorine, a potent mus-
carinic receptor agonist, for cholinergic activation. Musca-
rinic receptors have been implicated in cholinergic electro-
encephalogram activation.36,37 Neostigmine does not cross
the blood-brain barrier; therefore, both agents were admin-
istered via the intracerebroventricular route.

Materials and Methods

The experimental procedures and protocols used in
this investigation were reviewed and approved by the
Institutional Animal Care and Use Committee of the
Medical College of Wisconsin, Milwaukee, Wisconsin.
All procedures conformed to the Guiding Principles in
the Care and Use of Animals of the American Physiologic
Society and were in accordance with the Guide for the
Care and Use of Laboratory Animals (National Acad-
emy Press, Washington, D.C., 1996).

Experiments were performed in 26 adult, male,
Sprague-Dawley rats. The animals were anesthetized
with 1.5% isoflurane and prepared for bihemispheric
electroencephalogram recording. The anesthetics were
vaporized into a gas mixture of 30% O2, 70% N2 that the
animals were breathing spontaneously through a gas
anesthesia mask (model 51610, Stoelting, Wood Dale,
IL). Anesthetic concentration was monitored (POET II
monitor; Criticare Systems, Inc., Waukesha, WI) through
a sampling line connected to the anesthesia mask. The
body temperature was maintained at 37°C with a ther-
mostat-controlled (model 73A, YSI, Yellow Springs, OH),
water-circulated (K-mod 100, Baxter Healthcare Corp.,
Chicago, IL) heating mat. For epidural electroencepha-
logram recording, two pairs of stainless steel screw elec-
trodes were placed through burr holes in the cranium
symmetrically over the left and right frontal cortices
(coordinates: 3.5 mm lateral and 3.2 mm rostral or
0.7 mm caudal from bregma). According to the stereo-
taxic atlas of Paxinos and Watson,38 these coordinates
corresponded to primary motor and forelimb somatosen-
sory regions, respectively. For the infusion of cholinergic

agents, a 30-gauge needle was implanted into the lateral
ventricle (coordinates: 1.2 mm lateral, 0.8 mm caudal,
and 3.5 mm deep from bregma). The screws were ad-
vanced to the level of the dura. In some animals, the
femoral arteries were cannulated for the measurement of
blood pressure and for the withdrawal of blood samples.
All surgical sites were treated with bupivacaine.

After surgery, the rats were stabilized for 1 h at 1.0%
inspired isoflurane, equivalent to 0.7 minimum alveolar
concentration (MAC) in the rat. In two separate groups
of rats (n � 7 and 8), the cholinesterase inhibitor
neostigmine (25 �g) or the muscarinic agonist ox-
otremorine (25 �g) was infused for 60 min at rates of 5
and 2.5 �l/min, respectively. The doses and infusion
rates were established in preliminary experiments to
attain maximum electroencephalographic effect and
minimum systemic (blood pressure, heart rate) effect,
respectively. Each animal received only one type of
drug. In a third group of rats (n � 5), the vehicle,
artificial cerebrospinal fluid, was infused. In all groups,
the electroencephalogram was recorded continuously,
starting 10 min before the infusion started. The motor
reflex to tail pinch was tested before and after the infu-
sion of agents. Arterial samples were taken at the same
time points. Tail pinch was performed with a hemostat,
applying a gentle force for a few seconds at approxi-
mately mid-tail, with the exact location varied at random.
If no response was seen, the pinch was repeated up to
three times at slightly different locations.

A fourth group of animals (n � 6) received no drug
infusion; these rats were instead allowed to emerge to an
awake, sedated state by reducing the isoflurane concen-
tration to 0.4%. Although bupivacaine was applied to all
surgical sites, we chose not to remove isoflurane com-
pletely so as to minimize stress to the animal. At the
beginning of the experiment, the anesthetized animals
were placed in a cylindrical, plastic restrainer of 6-cm
diameter (Harvard rodent restrainer, model AH-52-0292;
Harvard Apparatus, Holliston, MA) that gave them lim-
ited movement of their head and limbs but prevented
them from crawling out of the cylinder. The assembly
was then placed in a transparent Plexiglas anesthesia
box. The electroencephalogram was recorded continu-
ously. After a baseline had been established at 1.0%
isoflurane, the concentration was lowered to 0.4%. The
rats were observed continuously for alertness and the
absence of signs of discomfort. An orientation response
to gentle knocking on their housing and the presence of
spontaneous, calm snouting, sniffing, and whisking was
taken as an indication of normal waking state. Potential
signs of discomfort would be shaking, tremor, vocaliza-
tion, or persistent or fierce escape attempt. A final be-
havioral assessment was done at 1 h.

Bipolar electroencephalographic signals recorded
from the two hemispheres were analog-filtered for
1–100 Hz and digitized at 200 Hz using the WinDaq data
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acquisition software (DATAQ Instruments, Akron,
Ohio). We previously tried higher sampling frequencies,
such as 400 Hz, but found that C-ApEn worked best with
200-Hz data. This sampling rate makes C-ApEn relatively
sensitive to �-frequencies (30–80 Hz) but excludes high-
frequency noise. Although anesthetic agents may influ-
ence sub-� (�1 Hz) rhythms of the electroencephalo-
gram, these waves are often the most contaminated by
motion artifacts and therefore were filtered out. We also
theorized that the dominant electroencephalographic
features that may change with the anesthetic dose near
the threshold for loss of consciousness would be the
high-frequency rhythms.

For analysis, the electroencephalographic records
were divided into epochs of 2-s duration. Epochs con-
taining movement-related artifacts were dropped from
the analysis. A computer subroutine designed to detect
transient, large-amplitude deflections in the electroen-
cephalogram was used for this purpose. For each valid
epoch and hemispheric lead, the SD of the signal was
calculated and used for normalization. C-ApEn was cal-
culated as introduced by Pincus et al.28 We present the
definition in a simpler, but mathematically equivalent
form:

C-ApEn � (n � m � 1)�1�ln[Ci
m(r)/C1

m � 1(r)].

Here, Ci
m(r) is the relative frequency of finding the

same brief signal pattern of length m in both electroen-
cephalogram channels within the epoch. Ci

m � 1(r) is the
relative frequency of finding in both electroencephalo-
gram channels the same signal pattern extended to
length m � 1. The sum is for i � 1 to n � m � 1, where
n is the number of samples used for comparison. The
parameter r is the noise threshold; two samples differing
by less than r are considered equal. We chose parameter
values n � 20, m � 3, and r � 0.25 � SD, where SD is
the SD of the signal within each epoch. Using n � 20,
the temporal window of C-ApEn calculation was 100 ms.
We previously examined27 the dependence of the C-
ApEn–anesthetic concentration relationship on window
duration between 0.05 and 2 s and found that 100 ms,
equivalent to 20 points, produced optimal results in
terms of dynamic range and variance. We have also
evaluated the effect of choice of m between 1 and 4. The
most reproducible results were obtained with m � 3.
Another consideration to use m � 3 was to confer a
greater sensitivity of C-ApEn to high-frequency compo-
nents of the electroencephalogram (i.e., �). The strong
dependence of C-ApEn on electroencephalogram com-
ponents greater than 20 Hz was demonstrated previous-
ly.27 Note that the very-low-frequency electroencephalo-
gram components (less than 1 Hz) were attenuated at
the time of recording.

Calculations were performed using a program written
in QuickBASIC (Microsoft, Redmond, WA). In essence,
recorded electroencephalographic data were read from

disk in packets of 400 � 2 (2 s of data times two
channels), normalized, and processed to derive one C-
ApEn value for each epoch. The resulting data were
plotted as a function of time or averaged over 1-minute
intervals at selected time points. Statistical analysis was
carried out using Analysis of Variance of Microsoft Excel,
Office 2000, and NCSS 2001 Statistical Software (NCSS,
Kaysville, UT). For post hoc comparison of C-ApEn group
means, the Tukey-Kramer test was applied. The data
were tested for normality using the Shapiro-Wilk test,
which yielded no reason to reject the normality assump-
tion. Physiologic data means before and after cholinergic
activation were compared using a t test assuming un-
equal variances.

Results

Behavioral Observations
Animals receiving 0.4% (0.3 MAC) isoflurane produced

frequent movements of the snout, such as sniffing, chew-
ing, licking, and occasional gross limb movements, but
the animals showed no sign of stress or discomfort. Their
eyelid reflex to touch was present, and a motor response
to gentle tail pinch could invariably be elicited. In sepa-
rate, noninstrumented animals, this state of sedation was
associated with preserved righting reflex, suggesting a
conscious state.27

Animals anesthetized with 1.0% (0.7 MAC) isoflurane
showed no spontaneous motor signs. Animals subjected
to this dose of anesthesia invariably lose their righting
reflex,27 suggesting loss of consciousness. However, the
motor response to tail pinch was present in all animals,
as expected on the basis of the applied MAC fraction.

After the infusion of neostigmine or oxotremorine, ani-
mals showed motor signs similar to those under 0.4% isoflu-
rane. In some animals, gross motor behavior was observed
(in this case, the isoflurane concentration was immediately
raised, and the experiment was terminated). Although the
righting reflex was not tested in these animals, their behav-
ioral signs indicated a capability and motivation to right
themselves, thus suggesting that they were in the con-
scious state. In surprising contrast, the motor reflex to tail
pinch was absent with no exception, and the response
could not be elicited on any repeated trial. Cerebroven-
tricular infusion of artificial cerebrospinal fluid at 1.0%
isoflurane anesthesia produced no change in behavior.

Physiologic Parameters
Systemic physiologic parameters obtained in three

states are displayed in Table 1. The PCO2 was moderately
elevated, with a corresponding decrease in pH, during
1.0% isoflurane administration before cholinergic drug
administration, most likely because of depressed venti-
lation of the spontaneously breathing animals. This dif-
ference was diminished after cholinergic activation, sug-
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gesting restored respiratory drive. Similarly, MAP was
lower at 1.0% isoflurane (before cholinergic activation)
than at 0.4% isoflurane, but it was increased after cho-
linergic activation. In all three states, PO2 and MAP re-
mained within the physiologic limits and within the
range of cerebral blood flow autoregulation.

Electrophysiologic Findings
Electroencephalogram signals obtained from one ani-

mal are shown in figure 1. The electroencephalogram at
0.4% isoflurane was typical of the awake, sedated rat,
essentially desynchronized, with high-frequency activity
superimposed on runs of slower � waves. At 1.0% isoflu-
rane, synchronized � waves dominated the electroen-
cephalogram. After neostigmine or oxotremorine infu-
sion, the desynchronized electroencephalogram pattern
typical to the waking state returned.

With the chosen infusion rate, C-ApEn increased grad-
ually, reaching a maximum within 60 min. The effect
time courses for the two agents were similar and are
illustrated for neostigmine in figure 2. The maximum
effect was an approximately two-fold increase.

Figure 3 summarizes the finding that C-ApEn was sig-
nificantly lower at 1.0% isoflurane than at 0.4% isoflu-
rane, consistent with previous findings.27 Both neostig-
mine and oxotremorine, administered in the presence of
1.0% isoflurane, increased C-ApEn to approximately the
same degree. Postinfusion C-ApEn values were not sig-

nificantly different from those measured in animals re-
ceiving 0.4% isoflurane alone. Cerebroventricular infu-
sion of artificial cerebrospinal fluid in animals
anesthetized with 1.0% isoflurane did not change
C-ApEn.

Discussion

Recent years have seen a growing interest in applying
novel electroencephalogram-derived indices, particu-
larly various entropies and complexity measures, to as-
sess the depth of anesthesia and loss of conscious-
ness.21,24–26 Although visual inspection of raw
electroencephalogram traces can be informative of the
anesthetic state, the use of a suitable electroencephalo-
gram-derived index could greatly improve the accuracy,
speed, and consistency of the assessment of anesthetic
depth.13–15 In addition, an examination of specific prop-
erties of the electroencephalogram, such as its complex-
ity39 or interhemispheric synchrony, may help us to
better understand the neurophysiologic basis of con-
scious perception32,34,35,40 and anesthetic action on the
CNS.16

Most previous studies calculated ApEn from single-
channel recordings of the electroencephalogram. A non-
linear, inverse relation between ApEn and the anesthetic
dose in human subjects has been established for various
anesthetics.24–26 Whereas the single-channel ApEn mea-
sures the temporal complexity of the electroencephalo-

Table 1. Systemic Physiologic Parameters

PO2 POCO2 pH MAP

0.4% Isoflurane 156 � 28 44 � 8 7.39 � 0.04 132 � 11
1% Isoflurane 124 � 15 58 � 10* 7.31 � 0.06* 88 � 8*
1% Isoflurane � cholinergic agent 140 � 28 44 � 7 7.39 � 0.05 117 � 23

* P � 0.05 vs. 1% isoflurane � cholinergic agent.

MAP � mean arterial pressure, mmHg.

Fig. 1. Examples of rat frontal electroencephalogram in three
states: (A) sedation with 0.4% isoflurane, (B) anesthesia with
1.0% isoflurane, (C) after neostigmine administration in the
presence of 1.0% isoflurane. B and C were obtained in the same
animal before and after neostigmine administration. Note the
similarity between traces A and C. Vertical scale � 0.1 mV per
division; horizontal scale � 0.2 s per division.

Fig. 2. Time course of the effect of intracerebroventricular in-
fusion of neostigmine on cross-approximate entropy (C-ApEn)
of the electroencephalogram in rats anesthetized with 1.0%
isoflurane. Solid curve shows mean values from seven experi-
ments; dotted lines show mean � SD. Neostigmine infusion
started at time zero. A maximum effect was reached within 1 h.
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gram, the two-channel C-ApEn reflects the spatial and
temporal independence of cortical potentials from two
remote sites. The temporal relationship between the
electroencephalograms of the two hemispheres has tra-
ditionally been assessed in terms of cross-correlation or
coherence.31–34 Anesthetic-induced changes in inter-
hemispheric electroencephalogram coherence have
been demonstrated in surgical patients16 and in healthy
adults during drowsiness.41 The application of cross-
correlation and coherence techniques requires station-
arity and linearity of signals, conditions not typical of the
electroencephalogram. Entropy measures, conversely,
can be reliably calculated for relatively short runs of data
and are less sensitive to nonstationarity.

We recently argued27 that C-ApEn may be interpreted
as a statistical measure of the number of neural states
independently accessible by the two hemispheres. Thus,
a decrease in C-ApEn during anesthesia would reflect a
decrease in the number of independent hemispheric
states, which may interfere with perceptual information
processing. This interpretation is consistent with the
strong dependence of C-ApEn on high-frequency elec-
troencephalogram components27 that reflect fast corti-
cal state transitions.

We previously showed that C-ApEn was reduced by
isoflurane in rats27 and that this reduction occurred at an
agent concentration that abolished the rats’ righting re-
flex. The righting reflex in rats is lost at a MAC fraction

similar to that which produces a loss of response to
verbal commands in humans.42 We hypothesized that if
C-ApEn correctly reflects the level of sedation, then
cholinergic activation that restores wakeful behavioral
signs should also reverse the anesthetic effect on C-
ApEn. We indeed found that cholinergic agents admin-
istered to isoflurane-anesthetized animals increased C-
ApEn to a value measured in a lightly sedated, possibly
conscious state at 0.4% isoflurane concentration. The
level of sedation at 0.4% isoflurane is significantly lighter
than that which would ablate the righting reflex.27 Al-
though the return of spontaneous motor signs after cho-
linergic activation does not guarantee the return of con-
sciousness, the comparably high value of C-ApEN after
cholinergic activation suggests that it may have in fact
reflected a conscious state.

Cholinergic mechanisms have been known to be im-
portant regulators of the state of consciousness43 and to
play a key role in conscious information processing.44

The important role of cholinergic systems in general
anesthesia has also been recognized.1 Halothane and
enflurane have been shown to decrease acetylcholine
turnover in the rat cerebral cortex.45 Isoflurane and
halothane dose-dependently depress acetylcholine re-
lease in cortex and striatum.46,47 Halothane, isoflurane,
and enflurane decrease acetylcholine concentration in
the pontine reticular formation,48 a source of cortical
arousal. In human subjects, isoflurane-induced reduc-
tions in regional cerebral metabolism are correlated with
muscarinic receptor density, suggesting an involvement
of cholinergic antagonism in isoflurane anesthesia.49

The behavioral and electroencephalogram-activating
effects of cholinergic agents have been studied in freely
moving animals. Infusion of the cholinergic agonist car-
bachol into the pontine reticular formation of rats in-
creased the time spent in rapid eye movement sleep.7,8

Microinjection of neostigmine into the dorsal pontine
tegmentum of freely moving cats produced electroen-
cephalogram desynchronization.4 Intracerebroventricu-
lar administration of oxotremorine in rats suppressed
neocortical sleep spindles.9 The systemic, blood-brain–
permeable cholinesterase inhibitor physostigmine pro-
duced hemispheric electroencephalogram asymmetry in
rats.50 This result is consistent with a greater hemi-
spheric independence, as indicated by the rise in C-ApEn
after cholinergic activation in our study.

Cholinergic agents have also been shown to exert an
anesthetic sparing or reversal effect. In humans, pretreat-
ment with physostigmine increased the anesthetic re-
quirement to produce unconsciousness in human sub-
jects.10 In a recent study, a close correlation between the
return of response to verbal commands, bispectral in-
dex, and auditory steady-state response after physostig-
mine infusion and continued administration of propofol
at hypnotic dose was found.12 The antimuscarinic agent
scopolamine reduced interhemispheric electroencepha-

Fig. 3. Effects of cholinesterase inhibitor neostigmine and mus-
carinic agonist oxotremorine on cross-approximate entropy
(C-ApEn) of the electroencephalogram in isoflurane-anesthe-
tized rats. Both drugs were administered at constant 1.0% isoflu-
rane concentration. Both agents increased C-ApEn approxi-
mately twofold, to a level comparable to that measured in
control animals receiving 0.4% isoflurane and no cholinergic
agent. Infusion of vehicle, artificial cerebrospinal fluid, had no
significant effect. 1%I � 1% isoflurane; 1%I�A � 1.0% isoflu-
rane plus artificial cerebrospinal fluid infusion; 1%I�N � 1.0%
isoflurane plus neostigmine; 1%I�O � 1.0% isoflurane plus
oxotremorine; 0.4%I � 0.4% isoflurane. *P < 0.001 versus 1%I
and 1%I�A. Data shown are mean � SD. Means marked with *
are not significantly different from one another. Means without
* are not different from one another.
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logram coherence in human volunteers.51 In rats, both
physostigmine and oxotremorine reduced the duration
of ketamine anesthesia.5,6 In dogs, acetylcholinesterase
inhibitors were found to antagonize halothane anesthe-
sia and produce an awake-like electroencephalogram.2,3

In rats, injection of carbachol into the pontine reticular
formation antagonized sleep spindles during halothane
anesthesia.52

In our experiments, cholinergic agents produced an-
tinociception concurrently with their arousing effect on
the electroencephalogram. Roy and Stullken3 and others
have noted this divergence between CNS arousal and no-
ciceptive depression by cholinesterase inhibitors in dogs.
In rats, Hartvig et al.53 showed that physostigmine infusion
produced analgesia, as indicated by an increase in latency
of the tail-flick response to radiant heat. These results are
consistent with the differing mechanisms of action for
hypnosis and areflexia by general anesthetics.18,19

The mechanism of antinociception by neostigmine is
not quite clear and may be caused by either a central or
a peripheral effect. In the study by Horrigan,2 both
neostigmine and physostigmine reduced anesthetic MAC
requirement in halothane-anesthetized dogs. Because
only physostigmine, not neostigmine, crosses the blood–
brain barrier, this suggests a mode of peripheral action.
However, the effectiveness of neostigmine administered
via the intracerebroventricular route implicates a central
mechanism of antinociception. The antinociceptive and
sedative effects of neostigmine injected into the pontine
reticular formation support a mechanism of central
modulation.54,55

The similar nociceptive and electroencephalographic
effects of oxotremorine and neostigmine further impli-
cate the involvement of muscarinic receptors.56 Antino-
ciception produced by carbachol injection into the
brainstem reticular formation was blocked by the mus-
carinic antagonist atropine55 or a specific M2 antago-
nist.57 Some investigators55,58 found the MAC sparing of
oxotremorine but not of physostigmine in isoflurane-
anesthetized rats.58 This difference may be a result of a
lower dose or a different route of administration of the
cholinesterase inhibitor.

Cholinergic agents may activate the electroencephalo-
gram by reversing an effect of isoflurane on the cholin-
ergic system, or they may work through an independent
pathway. General anesthetics depress cholinergic trans-
mission in the CNS59 and have been suggested to affect
consciousness through nicotinic receptors.60 A recent
study by Flood et al.61 suggests that nicotinic acetylcho-
line receptors are unlikely to be involved in isoflurane-
induced immobility and hypnosis, although they may
play a role in amnesia and analgesia. Conversely, the
involvement of M1 and M2 muscarinic receptors in pre-
frontal electroencephalogram activation in the rat has
been supported.36,37 Thus, it is likely that the electroen-
cephalographic effects of cholinergic activation reflect

the reversal of a muscarinic receptor–mediated anes-
thetic action.

Certain limitations of the present study should be rec-
ognized. First, the rats were restrained, which may have
contributed to their arousal after cholinergic activation.
Second, because of the restraint, we were not able to
record an electroencephalogram at zero percent isoflu-
rane. For the same reason, the righting reflex could not
be assessed in the same animal in which the electroen-
cephalogram was recorded. Future experiments should
be performed in chronically instrumented, freely moving
rats to verify and extend the present findings. Also, more
specific cholinergic agonists and antagonists could be
used and injected at multiple doses at selected cortical
and subcortical sites to further delineate the neurophys-
iologic mechanisms that contribute to the observed
changes in the electroencephalogram and C-ApEn. With
respect to the electroencephalogram, we derived
C-ApEn from frontal leads only. To obtain a fuller char-
acterization of functional connectivity throughout the
cortex that may affect consciousness, it would be inter-
esting to examine the electroencephalogram from pos-
terior sites as well and to analyze their intrahemispheric
relationship as a function of anesthetic dose. Intracorti-
cal electrodes could be used for a better localization of
the recorded field potentials. In addition to spontaneous
activity, the effect of anesthesia on functional connectiv-
ity derived from cortical evoked potentials would be
informative for an assessment of cortical sensory pro-
cesses. Such a study is in progress in our laboratory.

In summary, our present data are consistent with the
cortical arousing and antinociceptive effect of cholines-
terase inhibitors and cholinergic agonists as found in
humans and most mammalian species. They lend further
support to the previously recognized mechanistic diver-
gence of anesthetic actions on consciousness and the
nociceptive reflex. They suggest that the degree of inde-
pendence of the frontal hemispheric electroencephalo-
gram, as measured by the interhemispheric C-ApEn, cor-
relates with conscious behavior but not with the
nociceptive response. C-ApEn promises to be a suitable
indicator of anesthetic hypnosis.
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