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Mechanical Function of the Left Atrium

New Insights Based on Analysis of Pressure–Volume Relations and Doppler
Echocardiography
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THE left atrium (LA) serves three major roles that exert
a profound effect on left ventricular (LV) filling and
overall cardiovascular performance. The LA is a contrac-
tile chamber that actively empties immediately before
the onset of LV systole and establishes final LV end-
diastolic volume.1,2 The LA is a reservoir that stores
pulmonary venous return during LV contraction and
isovolumic relaxation after the closure and before the
opening of the mitral valve.3 Lastly, the LA is a conduit
that empties its contents into the LV down a pressure
gradient after the mitral valve opens4 and continues to
passively transfer pulmonary venous blood flow during LV
diastasis. These contraction, reservoir, and conduit func-
tions of the LA mechanically facilitate the transition be-
tween the almost continuous flow through the pulmonary
venous circulation and the intermittent filling of the LV.5

The contractile activity of the LA was initially de-
scribed by William Harvey in 1628.6 This “booster
pump” contribution to cardiac output7–10 normally ac-
counts for approximately 20% of LV stroke volume11 but
becomes increasingly important to the preservation of
cardiovascular performance in patients with reduced LV
compliance.12,13 The enhanced significance of atrial sys-
tole to LV filling in patients with LV dysfunction is
emphasized by the frequently observed development of
clinical signs and symptoms of heart failure when LA
contraction is improperly timed14–16 or eliminated with
the onset of atrial tachyarrhythmias.11 These adverse
effects are reversed with the subsequent restoration of
normal sinus rhythm and LA contraction.11 The relative

impact of LA reservoir function on early LV filling was
initially recognized by Henderson et al.,17 and the de-
pendence of reservoir function on LA compliance was
later identified by Suga.5 While these and other early
studies provided seminal information about LA function,
comprehensive evaluation of LA performance in the nor-
mal and diseased heart was limited by lack of effective
techniques for reproducibly measuring continuous LA
volume and pulmonary venous blood flow until the
1980s. This objective has subsequently been facilitated
by the application of pressure–volume theory adapted
from LV function analysis and by the widespread use of
two-dimensional and Doppler echocardiography. This
article critically reviews recent advances in the under-
standing of LA physiology derived from pressure–volume
relations and echocardiography, discusses the mechanical
consequences of primary LA dysfunction, examines LA
mechanical adaptation to LV dysfunction, and describes
current knowledge about the actions of volatile and
intravenous anesthetics on LA function in vivo.

Left Atrial Pressure and Volume Waveforms

Precise recording of the LA pressure waveform re-
quires the use of a high-fidelity, intravascular pressure
transducer. Placement of a micromanometer-tipped
catheter into the LA chamber may be conducted directly
through the LA body or appendage or indirectly using a
proximal pulmonary vein in the experimental laboratory
or during open heart surgery. An intraatrial transseptal
technique or a retrograde approach through the mitral
valve have been used to measure LA pressure in the
cardiac catheterization laboratory.18 The LA pressure
waveform is composed of three major deflections during
normal sinus rhythm (fig. 1).19 After the P wave of atrial
depolarization is recorded on the electrocardiogram, the
LA contracts, causing an a wave that occurs late in LV
diastole. This a wave may be enhanced by preload aug-
mentation (i.e., Frank-Starling mechanism) or increases
in intrinsic LA myocardial contractility. The rate of de-
celeration of the a wave is an index of LA relaxation.20

With the onset of LV systole, ventricular contraction
causes a pressure wave to be transmitted in retrograde
fashion by closure of the mitral valve, resulting in a small
increase in LA pressure (i.e., the c wave). This c wave
may be more pronounced in the presence of mitral valve
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prolapse because excessive leaflet motion into the body
of the LA occurs during early LV isovolumic contraction.
During late LV isovolumic contraction, LV ejection, and
the majority of LV isovolumic relaxation, pulmonary
venous blood progressively fills the LA and gradually
increases LA pressure, resulting in the LA v wave. This v
wave may be accentuated during mitral regurgitation or
reductions in LA compliance.21

Measurement of continuous LA volume has been suc-
cessfully performed using a variety of techniques. Left
atrial volume is often estimated invasively from long and
short axis dimensions measured using epicardial orthog-
onal sonomicrometry assuming prolate ellipsoid LA ge-
ometry.22 Left atrial volume determined using this
method has been shown to correlate closely with true
LA volume measured using water displacement–atrial
cast studies,23 but its use is restricted to the experimen-
tal laboratory. Noninvasive assessment of continuous LA
volume in humans has been conducted using two- or
three-dimensional24 echocardiography with automated
boundary detection,18,25,26 tissue Doppler echocardiog-
raphy,27 radionuclide angiography,28,29 cine computed
tomography,30 and magnetic resonance imaging.24,31 In
contrast to the LA pressure waveform, the LA volume
waveform is essentially monophasic. Minimum LA vol-
ume occurs immediately after the completion of LA
contraction and corresponds closely to the closure of the
mitral valve. Maximal LA volume is observed immedi-
ately before the mitral valve opens. When combined

with high-fidelity measurement of LA pressure, these
determinations of continuous LA volume allow assess-
ment of LA function in pressure–volume phase space.

The Left Atrial Pressure–Volume Diagram
As a result of the multiple deflection morphology of

the LA pressure waveform, the steady state LA pressure–
volume diagram consists of two loops arranged in a
horizontal figure-of-eight pattern that incorporates both
the active (A loop) and passive (V loop) components of
LA function (fig. 1).3 Beginning at LA end-diastole, the
active component of the diagram proceeds in a counter-
clockwise fashion during atrial systole as blood is ejected
from the LA into the LV through the mitral valve. In
contrast to the observations in the LV pressure wave-
form that facilitate the definition of end-diastole, precise
identification of LA end-diastole has varied between in-
vestigators. An easily detectable nadir in LA pressure may
not always occur immediately before the onset of LA
contraction as a result of continuous pulmonary venous
return during diastasis. Left atrial end-diastolic pressure
may be defined as the pressure occurring immediately
before atrial contraction that corresponds to the LA
end-systolic pressure32 or may be chosen to occur at a
fixed time point before peak LA pressure.33 For the sake
of this review, we will use the former definition of LA
end-diastole pressure and its corresponding volume
(EDV). Despite these relatively minor differences in the
definition of LA end-diastole, most investigators have

Fig. 1. Left atrial (LA) pressure and volume
waveforms (left) and the corresponding
steady state LA pressure–volume diagram
(right) during a single cardiac cycle. Also
illustrated are corresponding schematic
pulmonary venous and transmitral blood
flow velocity waveforms (left). The a wave
of LA pressure corresponds to atrial con-
traction, the c wave represents the small
increase in LA pressure that occurs early
during left ventricular (LV) isovolumic
contraction, and the v wave identifies the
increase in LA pressure associated with LA
filling. In contrast, the conformation of
the LA volume waveform is monophasic.
The resulting LA pressure–volume diagram
inscribes a figure-of-eight pattern. The ar-
rows indicate the time-dependent direc-
tion of movement around the diagram.
The A portion of the diagram (left loop)
incorporates active LA contraction and
temporally proceeds in a counterclock-
wise fashion. The V portion of the diagram
(right loop) represents passive LA reser-
voir function and proceeds in a clockwise
manner over time. Mitral valve closure and
opening (MVC and MVO, respectively) are

also depicted on the individual waveforms and the LA pressure–volume diagram. Left atrial end-diastole (ED) was defined as the time
point at which LA pressure (immediately before LA contraction) corresponded to LA end-systolic (ES) pressure (horizontal dashed
line). Left ventricular isovolumic contraction, ejection, and the majority of isovolumic relaxation occur during the time between MVC
and MVO illustrated on the LA pressure–volume diagram. The pulmonary venous blood flow waveform consists of an atrial reversal
(AR) wave that corresponds to atrial contraction, a biphasic S wave that occurs during LV systole, and a D wave that occurs in
conjunction with opening of the mitral valve (LV diastole; see text). The corresponding atrial systole (A) and early LV filling (E) waves
of transmitral blood flow velocity are also illustrated. The AR and D waves of pulmonary venous blood flow velocity occur in
conjunction with the A and E waves of transmitral blood flow velocity, respectively.

976 PAGEL ET AL.

Anesthesiology, V 98, No 4, Apr 2003

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/98/4/975/407194/0000542-200304000-00027.pdf by guest on 20 M
arch 2024



reported remarkably similar values of LA stroke vol-
ume using pressure–volume relations in vivo. Left
atrial end-systole marks the end of atrial contraction
and is most often defined by minimal LA volume.
Maximal LA elastance (i.e., the ratio of LA pressure to
volume34) during contraction has also been used to
define of LA end-systole in the normal heart analogous
to definition of LV end-systole commonly used in LV
pressure–volume analysis.35,36 We will define LA end-
systolic pressure and volume (ESV) at minimal LA
volume in this review.

Identification of LA end-diastole and end-systole on the
LA pressure–volume diagram facilitates the calculation of
LA stroke volume (i.e., EDV � ESV) and emptying frac-
tion (i.e., stroke volume/EDV). Although frequently used
to describe LA contractile function, these ejection phase
measures of LA pump performance are highly dependent
on LA loading conditions and may not be used as strict
quantitative indices of LA inotropic state. After the mitral
valve closes, LA filling occurs during LV systole and
isovolumic relaxation. Left atrial pressure and volume
progressively increase as the chamber expands during
the reservoir phase, forming the bottom portion of the A
loop and the upper portion of the V loop. The area of the
A loop represents active LA stroke work37 analogous to
LV stroke work defined as the area inscribed by the LV
pressure–volume diagram.38 Under normal circum-
stances, a small amount of blood contained within the
LA at end-diastole refluxes into the pulmonary veins
during atrial systole. This retrograde pulmonary venous
blood flow does not usually appear in the LA pressure–
volume diagram because the peristaltic-like configura-
tion of atrial contraction and the unique valve-like anat-

omy of the pulmonary vein–LA junction minimize atrial
regurgitation at normal LA pressures.39 However, in-
creases in the amount of this atrial regurgitant blood
flow into the pulmonary veins occur during increases in
LA pressure that may falsely elevate LA emptying fraction
by reducing minimal LA volume as depicted in the LA
pressure–volume diagram.

In contrast to the active part of the LA pressure–
volume diagram, the passive component (V loop) pro-
ceeds in a clockwise direction over time, indicating that
alterations in LA pressure and volume occurring during
this period of the cardiac cycle result from external
forces acting upon the LA. Total LA reservoir volume is
easily determined from the pressure–volume diagram as
the difference between maximum and minimum LA vol-
umes obtained by direct examination of the A and V
loops, respectively.20 The area of the V loop represents
the total passive elastic energy stored by the LA during
the reservoir phase20 and is an index of reservoir func-
tion.40 Static compliance of the LA may be assessed from
the pressure–volume diagram by determining the slope
of the line between minimal LA pressure of the A loop
and maximal LA pressure in the V loop.41 Decreases in
LA compliance are indicated by increases in the slope of
this relation. For example, regional myocardial isch-
emia42 or severe LV dysfunction41 produces a decrease
in LA compliance that may be quantified using this
method. When LV pressure falls below LA pressure near
the end of LV isovolumic relaxation (i.e., during early LV
diastole), the mitral valve opens, and blood that has
accumulated in the LA during the reservoir phase flows
down a pressure gradient into the LV. Left atrial empty-
ing during this phase of LV diastole results in a rapid

Fig. 2. Continuous left ventricular (LV)
pressure, LV dP/dt, aortic pressure, left
atrial (LA) pressure, LA short and long axis
dimensions, and LA volume waveforms
(left) and corresponding LA pressure–vol-
ume diagrams (right) resulting from intra-
venous administration of phenylephrine
(200 �g) in a dog. The LA maximum elas-
tance (solid dots) and end-reservoir pres-
sure and volume (solid squares) for each
pressure–volume diagram were used to ob-
tain the slopes (Ees and Eer) and extrapo-
lated volume intercepts of the LA end-sys-
tolic and end-reservoir pressure–volume
relations using linear regression analyses
to quantify myocardial contractility and
dynamic chamber stiffness, respectively.
Reprinted with permission.33
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decline in LA volume that forms the bottom portion of
the V loop and also produces a concomitant rapid in-
crease in LV volume. Additional pulmonary venous re-
turn also enters the LA during LV diastasis but does not
substantially affect LA volume because this blood flows
directly through the open mitral valve. Thus, the LA
conduit phase is defined between mitral valve opening
and LA end-diastole, and LA conduit volume is calculated
as the difference between maximum and end-diastolic
volumes (fig. 1). The areas inscribed by the A and V
loops and the crossover point between these compo-
nents of the steady state LA pressure–volume diagram
are ultimately determined by the complex interrelation
between LA loading conditions, LA and LV inotropic
state, the rate and extent of LA relaxation, LA passive
elastic properties, and blood flow through the pulmo-
nary circulation. For example, an increase in LA preload
or myocardial contractility or a reduction in LA afterload
produce a corresponding increase in A-loop area consis-
tent with the performance of greater stroke work. In
contrast, a reduction in LA compliance decreases the
relative size of the A loop by shifting the crossover point
to the left.

Acute alterations in LA loading conditions produced by
mechanical or pharmacological techniques may be used
to assess intrinsic LA myocardial contractility using LA
end-systolic pressure–volume relations (fig. 2) in the
isolated34,43 and intact heart.41,44 Changes in LA inotro-
pic state may be assessed by alterations in the slope (Ees)
of the LA end-systolic pressure–volume relation44 in a
manner analogous to the well-established evaluation of
LV contractility using this method.45 For example, LA Ees

has been used to quantify changes in LA inotropic state
produced by chronic LV disease41 (fig. 3) or volatile
anesthetics33 (fig. 4). Similar to the LV end-systolic pres-
sure–volume relation,46 the LA end-systolic pressure–
volume relation has been shown to be a relatively heart
rate– and load-independent index of LA contractile state
in vivo.34,44,47 The ratio of LA Ees derived from these
pressure–volume diagrams and LV elastance (ELV; deter-
mined using the ratio of LA end-systolic pressure and LA
stroke volume) also provides a useful index of mechan-
ical matching# between the LA and the LV that quantifies
the relation between the contractile state of the LA and
forces resisting its ejection (e.g., LA afterload)33,41 based
on a series of elastic chamber models originally de-
scribed for LV–arterial coupling.48,49 For example,
LA–LV coupling is markedly attenuated in the presence
of reduced LV compliance in patients with heart fail-
ure.41 In addition, this same series of differentially loaded

LA pressure–volume diagrams may also be used to deter-
mine the dynamic compliance of the LA in response to
alterations in load (fig. 2)22,33,50 similar to the methods
extensively validated in the LV.51 This technique has
been used to describe changes in dynamic LA stiffness
produced by surgical maneuvers (e.g., pericardectomy,50

LA appendage excision22) and by the administration of
vasoactive drugs, including volatile33 and intravenous52

anesthetics.

Doppler Echocardiographic Evaluation of Left
Atrial Function
Analysis of the pulmonary venous blood flow velocity

waveform is commonly used with or without concomi-
tant evaluation of transmitral blood flow velocity to
determine the severity of LV diastolic dysfunction,53

quantify the degree of mitral regurgitation,54–56 or esti-
mate pulmonary capillary occlusion and mean LA pres-
sures.57–60 The pattern of pulmonary venous blood flow
velocity also provides important information about the
active and passive mechanical behavior of the LA in
the normal and diseased heart (fig. 1). Measurement of
the pulmonary venous blood flow velocity may be con-
ducted invasively in the experimental laboratory using
Doppler flow probes placed around61 or implanted with-
in62 a pulmonary vein immediately proximal to the LA
chamber. However, pulmonary venous blood flow ve-
locity is most often determined noninvasively using
transthoracic or transesophageal pulse wave Doppler
echocardiography as previous studies61,62 have demon-
strated an excellent correlation between this modality
and invasively derived techniques. Transesophageal
echocardiography has evolved into the preferred nonin-
vasive method for pulmonary venous blood flow velocity
analysis63 because the anatomical proximity of the right
and left upper pulmonary veins to the esophagus pro-
vides optimal imaging windows with minimal ultrasound
scatter by intervening tissue. It is important to note that
patterns of pulmonary venous blood flow velocity have
been shown to be highly dependent of LA loading con-
ditions, LA contractile state, and LV function,61,64 and
conclusions about alterations in LA function derived
using this methodology require interpretation within the
constraints of these potential limitations.

The normal pulmonary venous blood flow velocity
waveform is composed of a single small negative deflec-
tion that illustrates retrograde flow from the LA into the
pulmonary veins (the atrial reversal [AR] wave; figure 1)
and two large positive deflections that depict forward
flow from the pulmonary veins into the LA chamber.65

Another model of pulmonary venous blood flow analysis
using four separate deflections that also incorporates
specific flow during diastasis has also been proposed.66

The first positive deflection (S wave) occurs during LV
systole and isovolumic relaxation when the mitral valve
is closed and displays a biphasic morphology.61,63,67 The

# Coupling or mechanical matching uses a definition of the cardiovascular
system as a series of elastic chambers to describe the efficiency of transfer of
blood from one chamber to another (such as between the LA and the LV or
between the LV and the arterial circulation). For example, LV–arterial coupling
is described as the ratio of LV to effective arterial elastance derived from
pressure–volume relations.
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magnitude and velocity–time integral of the S wave are
indices of LA reservoir function that closely correlate
with reservoir volume measured using the steady state
LA pressure–volume diagram. For example, reductions
in LA compliance observed during primary atrial disease
states21 cause declines in S-wave velocity indicative of
compromised reservoir function.

The second positive deflection (D wave) of the pulmo-
nary venous blood flow velocity waveform occurs imme-
diately after the opening of the mitral valve. This forward
pulmonary venous flow occurs as a result of the rapid
drop in LA pressure that accompanies early LV filling and
is an index of LA conduit function.63 The peak velocity
and velocity–time integral of the D wave are dependent
upon the extent of early LV filling.68 Thus, factors that
attenuate early LV filling, such as delayed LV relaxation,
may reduce D-wave velocity, indicating that LA conduit
function has been adversely affected (fig. 5).69,70 The
velocity of the D wave is also reduced by the mechanical
obstruction to early LV filling observed in patients with
severe mitral stenosis, indicating that LA conduit func-
tion is dependent on normal mitral valve motion.71

Left atrial systolic performance is most often noninva-
sively evaluated using the A wave of transmitral blood
flow velocity (fig. 1). The velocity–time integral of the
transmitral A wave correlates with LA stroke volume
determined from the LA pressure–volume diagram. The
atrial reversal component of the pulmonary venous
blood flow waveform is also directly related to LA con-
traction. Peak AR blood flow velocity and its correspond-
ing velocity–time integral have been shown to correlate
closely with mean LA pressure and volume, respective-
ly.59 These data verify that increases in the quantity of
atrial regurgitant blood into the pulmonary veins occurs
concomitant with elevations in LA pressure associated
with increased LA preload, mitral valve disease, or severe
LV dysfunction. The AR peak velocity and its velocity–
time integral have been combined with peak transmitral
A-wave velocity and its respective velocity–time integral
to evaluate alterations in LA–LV coupling in patients
with elevated LV end-diastolic pressure and LA afterload

mismatch resulting from dilated, infiltrative, or hypertro-
phic obstructive cardiomyopathy.72,73 These variables
may also be used to noninvasively estimate LA �dP/
dtmax as an index of LA systolic function.74

Determinants of Left Atrial Function
Several early investigations compared the mechanical

properties of isolated and intact atrial and ventricular
myocardium and examined the factors that affect LA
contractility. These studies demonstrated that the maxi-
mum velocity of shortening of LA myocardium was equal
to75 or greater than76,77 LV myocardium under similar
loading conditions. Left atrial myocardium was also less
sensitive to increases in afterload than LV myocardium
in vivo.75 Systolic shortening of the LA is primarily
dependent on LA preload and inotropic state in the
intact heart,78 but LA emptying fraction is reduced and
conduit function enhanced when LA diameter exceeds
optimal fiber length.79 Alterations in autonomic nervous
system activity produce characteristic changes in LA
inotropic state that are similar to those observed in the
LV.80 For example, increases in LA emptying fraction and
LA contribution to LV filling are observed in normal
subjects performing a sustained hand grip81 or rapidly
standing from a supine position82 in part as a result of
activation of the sympathetic nervous system. In con-
trast, parasympathetic nervous system stimulation re-
duces LA pump performance,80 although the resulting
bradycardia may offset this response by enhancing LA
preload and augmenting LA emptying fraction through
the Frank-Starling mechanism.78,83

In the absence of mitral stenosis, LA afterload is deter-
mined primarily by the elastic properties of the LV and
the pressure within this chamber. Thus, LA afterload and
LA energy expenditure progressively increases as LV
diastolic function deteriorates and LV pressure during
diastole increases. Up-regulation of the � myosin isoform
in atrial myocardium has been observed with increased
LA mechanical work84,85 that further augments the
Frank-Starling response to LA dilatation. These compen-
satory actions enhance LA emptying fraction, but

Fig. 3. Left atrial (LA) end-systolic pres-
sure–volume relations (solid lines) ob-
tained by volume administration in typical
patients with normal cardiac function (left;
controls) and those with acute myocardial
infarction (AMI; middle) and congestive
heart failure (CHF; right). A compensatory
increase in LA contractility (Ees) is ob-
served in patients with acute myocardial
infarction. In contrast, patients with end-
stage congestive heart failure demonstrate
reduced LA Ees. Adapted with permission.41
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increased workload imposed on the LA myocardium by
LA afterload mismatch may contribute to the subsequent
development of primary LA contractile dysfunction.47,60,69

For example, an initial increase in LA emptying fraction
has been observed early in the course of evolving heart
failure,86 but LA systolic function eventually becomes
severely depressed as LV chamber stiffness and LV end-
diastolic pressure continue to increase. Conversely, in-
direct increases in LV compliance produced by chronic
arterial vasodilator therapy act to reduce LA afterload
and improve the active contribution of the LA to LV
stroke volume in patients with LV pressure-overload
hypertrophy resulting from essential hypertension.87

Left atrial remodeling and reduced compliance may also
occur in response to LV diastolic dysfunction. These

effects contribute to an exaggerated pressure response
during small increases in LA volume, restrict pulmonary
venous blood flow into the LA during the reservoir
phase, and lead to the development of pulmonary
edema.

Multiple factors combine to determine LA reservoir
and conduit function. Relaxation of the LA chamber and
the resultant reduction in LA pressure that occurs imme-
diately after atrial systole facilitates forward flow from
the pulmonary veins into the LA during early LV isovolu-
mic contraction.20,88,89 These events produce the early
peak of the biphasic S wave of pulmonary venous blood
flow velocity observed with Doppler echocardiogra-
phy.67 Left ventricular systolic function also plays a very
important role in determining early LA reservoir func-
tion. The cardiac base descends toward the apex during
LV systole, acting like a piston to draw additional blood
from the pulmonary venous circulation into the LA.20,29

The mitral annulus has been shown to descend approx-
imately 1.3 cm during LV systole in normal subjects, but
this annular motion is markedly attenuated in patients
with dilated cardiomyopathy, and as a result, early pul-
monary venous blood flow may be blunted or absent.90

Transmission of the right ventricular systolic pressure
pulse through the pulmonary circulation contributes to
the increases in LA pressure and volume observed later
during the reservoir phase64,91 and has been shown to
be responsible for the second peak of the biphasic pul-
monary venous S wave.67

Intrinsic LA compliance plays a major role in determin-
ing reservoir and conduit function by facilitating venous
return from the pulmonary circulation.5 Atrial diseases in
which LA compliance is markedly reduced are associ-
ated with impaired LA filling.21,92,93 The LA appendage
has been shown to be more compliant than the main
body of the LA using pressure–volume relations in iso-
lated94 and intact LA preparations.22,32 Temporary
clamping95 or surgical excision22 of the LA appendage
reduced LA compliance, decreased reservoir function as
quantified by declines in the pulmonary venous blood
flow velocity S/D ratio, and attenuated the rate of LV
rapid filling. These data indicate that the LA appendage
plays an important role in LA reservoir function, espe-
cially during increases in LA pressure or volume.94,95 The
pericardium has also been shown to affect LA distensi-
bility as pericardiectomy increased LA compliance, en-
hanced early LV filling rate, and augmented conduit to a
greater extent than reservoir function in an elegant study
using both LA pressure–volume relations and Doppler
echocardiographic analyses of transmitral and pulmo-
nary venous blood flow velocities.50

Exercise produces characteristic changes in the deter-
minants of LA function in humans. Left atrial myocardial
contractility increases and the LA contribution to cardiac
output is more pronounced during aerobic exercise96,97

as a result of sympathetic nervous system activation. Left

Fig. 4. Histograms depicting the slope (Ees; top) of the left atrial
(LA) end-systolic pressure–volume relation, LA relaxation (RLA;
middle), and the slope (Eer; bottom) of the LA end-reservoir
pressure–volume relation (dynamic chamber stiffness) under
baseline conditions (CON) and during the administration of 0.6,
0.9, and 1.2 MAC desflurane (solid bars), sevoflurane (open
bars), or isoflurane (hatched bars). Data are mean � SEM from
eight experiments conducted in acutely instrumented dogs in
each group. *Significantly (P < 0.05) different from CON; †sig-
nificantly (P < 0.05) different from 0.6 MAC. Reprinted with
permission.33
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atrial reservoir but not conduit function is augmented
during exercise as quantified by pulmonary venous
blood flow velocity measurements.97 This increase in LA
reservoir function combines with a pronounced reduc-
tion in minimum LV pressure resulting from enhanced
LV isovolumic relaxation98 to produce a larger LA–LV
pressure gradient during early LV filling,97 thereby aug-
menting LV stroke volume and cardiac output during
exercise. In contrast, a compensatory increase in con-
duit function has been observed concomitant with LA
dilatation in well-conditioned athletes at rest compared
to normal subjects.99

Increases in LA volume and reductions in passive LA
emptying have been observed in healthy elderly subjects
(aged � 70 yr) studied using a combination of transmi-
tral Doppler and two-dimensional echocardiographic
techniques.100 Dilatation of the LA produces a compen-
satory increase in LA ejection force101 and augments
active LA contribution to LV filling.100,102,103 Left atrial
storage fraction (defined by the ratio of storage volume
of the LA during reservoir phase to total LV stroke vol-
ume) increases in elderly patients in association with LA
dilatation and is inversely related to LV ejection frac-
tion.104 The LA dilatation observed in elderly patients
may contribute to increases in LA wall stress and even-
tual LA contractile dysfunction.105

Mechanical Consequences of Left Atrial Dysfunction
Stiff Left Atrium Syndrome. An isolated reduction in

LA compliance that occurs independent of mitral valve
disease or LV dysfunction is the pathognomonic finding
in patients with stiff LA syndrome.21,106 Left atrial dila-
tation is a common associated finding in this syndrome,
but the increase in LA volume does not coincide with

observed decreases in LA compliance.107 Left atrial res-
ervoir function is severely compromised as a result of the
noncompliant LA. Cardiac catheterization typically re-
veals a large LA pressure v wave without evidence of
mitral regurgitation or a significant mitral valve gradi-
ent.106 Patients with this disorder invariably develop
pulmonary hypertension, pulmonary edema, and right
ventricular failure because LA filling is profoundly im-
paired, initially during exercise but later at rest as well.21

A time-varying load model of the pulmonary vasculature
supported these clinical observations and indicated that
isolated reductions in LA compliance cause increases in
pulmonary and LA pressures that are similar to those
observed in stiff LA syndrome.108 Severe fibrosis and
calcification of the LA are characteristic autopsy findings
in these patients.21

Atrial Fibrillation. Loss of LA contraction with the
onset of atrial fibrillation is commonly associated with a
reduction in cardiac output. An early study by Mitchell
and Shapiro11 demonstrated that several compensatory
mechanisms are recruited to maintain cardiac output at
rest or during mild to moderate cardiac stress (e.g.,
exercise) in the presence of atrial fibrillation, but de-
clines in cardiovascular performance occur with the loss
of atrial systole during more profound stress or concom-
itant LV dysfunction. A reduction in LA compliance and
an increase in the LA pressure peak v wave have been
observed with onset of atrial fibrillation.18,109 The in-
crease in LA pressure enhances the LA–LV pressure gra-
dient during early LV filling to maintain stroke volume in
the absence of atrial booster pump function.110 Admin-
istration of dobutamine reduces LA chamber stiffness
and LA size assessed with LA pressure–area relations in
humans with atrial fibrillation (fig. 6), presumably by

Fig. 5. Histograms illustrating the percent
contribution to left ventricular (LV) fill-
ing volume of left atrial (LA) reservoir,
conduit, and contractile function evalu-
ated with pulmonary venous blood flow
Doppler echocardiography in patients
with normal, impaired relaxation, and
restrictive LV filling patterns. Note that
impaired relaxation is characterized by
increases in LA reservoir and contractile
function but conduit function is reduced.
In contrast, a restrictive LV filling pattern
is associated with enhanced conduit
function and reduced reservoir and con-
tractile contributions to total LV filling
volume. Reprinted with permission.69
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indirectly improving LA afterload.18 Left atrial reservoir
function and early LV filling are maintained by increased
LA compliance during infusion of dobutamine despite
the reduction in LA preload, and LV stroke volume in-
creases as a result of direct positive inotropic effects on
LV myocardium.18 The S wave of pulmonary venous
blood flow velocity may be attenuated in patients with
atrial fibrillation because LA relaxation after active con-
traction does not occur.111 Nevertheless, the S wave and
its corresponding velocity–time integral provide effec-
tive indices of LA filling, and LA reservoir function has
been shown to be preserved to a greater extent in
patients with isolated atrial fibrillation than in those with
dilated cardiomyopathy using this technique.111

Atrial fibrillation most often results from sustained in-
creases in LA afterload that cause enlargement of the LA
chamber.112 Conversely, progressive LA dilatation also
occurs in patients with atrial fibrillation independent of
alterations in LV function or geometry.113 As a result, the
presence of atrial fibrillation may establish a positive
feedback loop that precipitates further LA enlargement,
reduces the likelihood that chemical or electrical cardio-
version will be successful, and increases the probability

of thrombus formation. Atrial fibrillation increases LA
myocardial oxygen consumption and coronary blood
flow and reduces the peak reactive hyperemic re-
sponse.114 Coronary vasodilator reserve is not com-
pletely exhausted during atrial fibrillation, but limitations
in coronary flow reserve may also contribute to devel-
opment of LA ischemia, fibrosis, and further perpetua-
tion of the arrhythmia.115 Atrial fibrillation and other
atrial tachyarrhythmias116 also produce a characteristic
biatrial myopathy117 that is very similar to experimental
tachycardia-induced cardiomyopathy.118 The presence
of this dysfunctional atrial myocardium also contributes
to continuation of the atrial fibrillation.118 Thus, preser-
vation of normal sinus rhythm and atrial contraction may
eliminate the detrimental effects of LA dilatation, avert
the potentially adverse reductions in atrial perfusion, and
prevent the development of atrial cardiomyopathy that
sustain atrial fibrillation once it has been estab-
lished.115,117,119 Advanced age has been identified as the
major risk factor for the development of postoperative
atrial fibrillation that is associated with increased mor-
bidity and prolonged hospitalization.120

Atrial stunning occurs after defibrillation from or spon-
taneous conversion to sinus rhythm after brief or pro-
longed periods of atrial fibrillation that reduce the active
contribution of the LA to LV filling and increases throm-
boembolic risk.121,122 The degree of contractile dysfunc-
tion observed during atrial stunning after cardioversion
is inversely related to LA chamber size.123 Reduced LA
emptying fraction has been observed after 30 min of
atrial fibrillation in dogs.124 Treatment with verapamil
attenuated but the calcium channel agonist Bay K 8644
exacerbated the development of atrial stunning, suggest-
ing that this process is mediated in part by intracellular
calcium overload.125 As few as several minutes of atrial
fibrillation may be sufficient to produce stunned atrial
myocardium after cardioversion in humans.126 Vera-
pamil also improved the recovery of LA emptying frac-
tion in this setting.126 However, inhibition of Na�–H�

exchange more effectively reduced the severity of LA
stunning in a canine rapid pacing model of atrial fibril-
lation than nifedipine.127 These data are similar to those
observed in stunned ventricular myocardium128 and im-
plicate a role for intracellular acid–base balance and its
indirect action on the Na�–Ca2� exchanger in the patho-
physiology of atrial stunning.

Left atrial stunning was demonstrated after spontane-
ous conversion of atrial fibrillation of only 60 min dura-
tion to sinus rhythm in normal canine hearts.129 Inter-
estingly, LA appendage stunning was more prolonged
than contractile dysfunction of the LA body,129 suggest-
ing potential mechanisms by which overall LA emptying
fraction remains depressed130 and thrombosis may occur
in the appendage after cardioversion.129 The LA append-
age displays a characteristic pattern of emptying that
may be assessed by Doppler echocardiographic measure-

Fig. 6. Typical left atrial (LA) pressure–area diagrams under
resting conditions (top) and during administration of dobut-
amine (bottom) in a patient with atrial fibrillation. The arrows
indicate the temporal movement of the diagram. Note that no
active work is performed during atrial fibrillation. The clock-
wise movement of each diagram indicates that forces external
to the LA determine the observed changes in pressure and
volume over time. Dobutamine produced a decrease in LA min-
imum and maximum volumes consistent with enhanced left
ventricular (LV) contractility and reduced LA afterload. Re-
printed with permission.18
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ment of peak outflow blood flow velocity.122,131 Throm-
bus formation has been shown to be associated with
appendage dilatation and contractile dysfunction in pa-
tients during sinus rhythm.132 Thus, it is not surprising
that LA appendage dysfunction before cardioversion pre-
disposes to thrombosis.122 Left atrial appendage stun-
ning also occurs in patients with atrial flutter, but the
risk of thromboembolic events after cardioversion ap-
pears to be less in these patients as compared to those
with atrial fibrillation, presumably because LA append-
age systolic function is maintained to a greater
extent.133

Electrical cardioversion of atrial fibrillation produces
LA pump dysfunction that is more severe and persists for
a greater duration than either spontaneous conversion to
or pharmacologically induced restoration of normal
sinus rhythm.134 For example, cardioversion using ami-
odarone produces relatively rapid restoration of LA
emptying fraction in the vast majority of patients with
new-onset atrial fibrillation.135 In contrast, endocar-
dial defibrillation or external cardioversion may pro-
duce LA chamber and appendage stunning in these pa-
tients.136–138

Internal atrial defibrillation in particular results in de-
pressed LA emptying fraction and may cause accumula-
tion of spontaneous echocardiographic contrast (an
indicator of blood stasis and a risk factor for thrombo-
embolism) or the development of thrombosis after car-
dioversion,136 but the severity of stunned atrial myocar-
dium appears to be independent of the electrical energy
used for cardioversion in this setting.137 Atrial stunning
and transient spontaneous echocardiographic contrast
have also been observed after a 15-min episode of atrial
fibrillation followed by internal defibrillation in patients
with documented cardiac disease.138 Atrial stunning per-
sisted but spontaneous echo contrast resolved rapidly
after defibrillation in this study, suggesting that throm-
boembolic risk may be remain relatively low after resto-
ration of sinus rhythm despite a continued reduction in
LA emptying fraction.138 In contrast to atrial stunning
observed after defibrillation following a short episode of
atrial fibrillation, cardioversion-induced restoration of si-
nus rhythm in patients with chronic atrial fibrillation is
associated with a gradual increase in LA emptying frac-
tion and cardiac output over 4 weeks in the majority of
patients. However, cardiac output may decrease initially
in some patients. This initial depression of cardiac out-
put may persist for up to a week after cardioversion and
contributes to an increased incidence of pulmonary
edema and thromboembolic complications.139 Another
study demonstrated that LA emptying fraction and res-
ervoir function gradually improve over 3 months after
cardioversion of chronic atrial fibrillation.140

Dilated and Infiltrative Cardiomyopathy. Reduc-
tions in LA emptying fraction occur in patients with
idiopathic dilated cardiomyopathy concomitant with LA

dilatation consistent with the presence of a primary
atrial myopathy.141 These findings contrast with those
observed in patients with pressure-overload hypertro-
phy or ischemic cardiomyopathy in which declines in LA
emptying fraction occur primarily as a consequence of
increases in LA afterload.141,142 Histologic evidence of
atrial fibrosis is more apparent in patients with dilated
cardiomyopathy as compared to those with remote myo-
cardial infarction, suggesting that a primary atrial disease
process occurs in dilated cardiomyopathy that cannot be
attributed solely to LA mechanical overload.143 Exercise
capacity is directly related to LA emptying fraction and
inversely related to LA volume in dilated cardiomyopa-
thy, observations that emphasize the critical importance
of LA pump performance to functional capacity in pa-
tients with this disease.144 Marked reductions in LA sys-
tolic function and kinetic energy transfer to the LV have
also been observed in patients with AL (amyloid light
chain) amyloidosis (formerly known as primary amyloid-
osis) that occur as a consequence of amyloid infiltration
into atrial myocardium92,145 and are associated with a
grave prognosis.146 However, LA emptying fraction re-
mains relatively normal before amyloid infiltration be-
comes echocardiographically apparent.145 Declines in
LA compliance also occur in both dilated and infiltrative
cardiomyopathy that attenuate LA reservoir function,
increase pulmonary arterial pressures, and contribute to
the development of right ventricular failure.

Experimental models of atrial myopathy provide addi-
tional insight into the mechanical consequences of LA
contractile dysfunction that mimic many of the features
observed in dilated and infiltrative cardiomyopathy.
Rapid atrial pacing (400 beats/min) for 1 week in dogs
produces an atrial myopathy characterized by impaired
global and regional LA systolic shortening with relative
preservation of LV function.147 An increase in the trans-
mitral E-to-A ratio and a decrease in the pulmonary ve-
nous S-to-D ratio were observed consistent with reduced
LA emptying fraction and increased conduit function,
respectively.147 Rapid atrial pacing of longer duration (6
weeks) also produces decreases in LA compliance, LA
systolic dysfunction, impaired reservoir function, and
enhanced conduit function as assessed with LA pres-
sure–volume relations.148 Interestingly, LA failure in-
duced by rapid atrial pacing has little or no effect on
cardiac output and right ventricular function if LV func-
tion remains normal because increases in conduit func-
tion offset reductions in emptying fraction and reservoir
capability.148,149 However, augmented conduit function
is unable to compensate for impaired LA systolic perfor-
mance and reservoir function in the presence of concom-
itant LV diastolic dysfunction.149 This experimental finding
may be especially important in dilated and infiltrative car-
diomyopathy during which profound abnormalities in
LV systolic and diastolic function are observed.
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Hypertrophic Obstructive Cardiomyopathy. Sub-
stantial increases in LA chamber stiffness and reductions
in reservoir function that may influence cardiac output
have been reported in patients with hypertrophic ob-
structive cardiomyopathy.150 These declines in LA com-
pliance are proportionally greater in hypertrophic ob-
structive cardiomyopathy as compared to other forms of
pressure-overload LV hypertrophy.82 Declines in LA
emptying fraction may also occur earlier in the natural
history of hypertrophic obstructive cardiomyopathy.151

Increases in LA afterload produced by hypertrophied LV
myocardium and elevations in LV end-diastolic pressure
contribute to a reduction in LA emptying fraction and
increase retrograde pulmonary venous blood flow dur-
ing atrial systole.152 Mitral regurgitation during middle
and late LV systole also markedly attenuates LA reservoir
function by dramatically increasing LA pressure. Patients
with hypertrophic obstructive cardiomyopathy demon-
strate abnormal echocardiographic indices of LA relax-
ation and filling.93 These findings support the contention
that hypertrophic obstructive cardiomyopathy is a dis-
ease that directly affects both atrial and ventricular myo-
cardium153 regardless of the distribution of LV hypertro-
phy or the severity of LV outflow tract obstruction.93

Nonsurgical septal reduction154 in patients with hyper-
trophic obstructive cardiomyopathy reduces LA size and
improves LA ejection force and kinetic energy expendi-
ture in conjunction with a decline in the LV outflow tract
pressure gradient, resolution of mitral insufficiency, and
improved LA diastolic function.155,156 These findings are
associated with concomitant increases in passive LV fill-
ing and exercise capacity.156

Heart Transplantation. Passive emptying of the LA is
impaired in patients after heart transplantation because
of alterations in LV diastolic function in the donor or-
gan.157 As a consequence, LA preload is greater in these
patients, and LA stroke volume may be maintained or
even augmented by activation of the Frank-Starling
mechanism. This effect plays an important role in pre-
serving LV stroke volume despite reductions in intrinsic
LA myocardial contractility.157,158 The contractile ele-
ments of the donor heart dominate overall LA booster
pump function after heart transplantation. Nevertheless,
overall LA emptying fraction may be reduced in the
transplanted as compared to the normal heart because
some dysfunctional LA myocardium remains intact in the
recipient.159 Left atrial emptying fraction may also be
depressed after heart transplantation as a result of atrial
contractile asynchrony because recipient atrial remnants
are electrically isolated and contract independent of do-
nor atrial and ventricular myocardium.160 Heart trans-
plantation using selective bicaval and pulmonary venous
anastomoses is associated with relative preservation of
active and passive LA function as compared to conven-
tional biatrial techniques.161

Left Atrial Adaptation to Left Ventricular
Dysfunction
Myocardial Ischemia and Infarction. Acute myo-

cardial ischemia or infarction resulting from brief or
prolonged occlusion of the left anterior descending cor-
onary artery (LAD) produces LA dilation, enhances LA
preload, and increases LA emptying fraction162 by the
Frank-Starling effect37,40 that serves to maintain LV
stroke volume despite the reduction in LV systolic func-
tion.163 These compensatory alterations in LA size and
emptying fraction are often manifested by electrocardio-
graphic evidence of LA stress during and after the acute
ischemic event.164 Left atrial pressure–area relations de-
rived using a micromanometer and echocardiographic
automated boundary detection in patients with isolated
LAD stenoses indicate that LV supply or demand isch-
emia produced by balloon occlusion or rapid pacing,
respectively, is associated with enhanced LA stroke
work (i.e., A-loop area) and reservoir function (i.e., V-
loop area) concomitant with increases in LA preload (fig.
7).42 These findings confirmed the well-established role
of augmented atrial booster pump function for the main-
tenance of cardiovascular performance in patients with
acute myocardial infarction.12 In contrast, patients with
left circumflex coronary artery (LCCA) stenoses of simi-
lar severity failed to display enhanced LA emptying frac-
tion but instead demonstrated increases in LA static
compliance and conduit function during supply or de-
mand ischemia.42 These observations were attributed to
the presence of LA ischemia because coronary arterial
blood supply to the LA is derived from branches of the
LCCA.165,166 Thus, LA systolic compensation for LV isch-
emia is adversely affected by the presence of simulta-
neous LA ischemia. Pressure–volume analysis of adapta-
tion to increases in mechanical load associated with
remote myocardial infarction and ventricular hypertro-
phy also indicated that augmented LA emptying fraction
contributes to the preservation of LV filling, but adverse
reductions in static LA compliance (fig. 8) and reservoir
function were also observed that may limit further com-
pensatory responses,41 especially during exercise.

Left atrial afterload mismatch and impaired LA–LV cou-
pling have been observed in dogs during acute myocar-
dial infarction produced by prolonged LAD occlusion
despite simultaneous increases in LA emptying frac-
tion.167 This afterload mismatch may be attributed to
elevations in LV end-diastolic pressure resulting from LV
diastolic dysfunction. Administration of dobutamine re-
versed these detrimental effects by further enhancing LA
emptying fraction and indirectly reducing LV chamber
stiffness via declines in arterial load.167 Thus, adminis-
tration of positive inotropic drugs or arterial vasodilators
may facilitate more efficient transfer of LA stroke volume
to the LV in the presence of ischemic injury. The impor-
tance of efficient mechanical matching between the LA
and LV after myocardial infarction is further emphasized
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by the observations that LV dilatation and increased LV
end-diastolic pressure also may lead to progressive re-
ductions in LA stroke volume index in patients with
remote myocardial infarction.168 Such an inverse corre-
lation between LA stroke volume and LV end-diastolic
pressure has also been described in patients with symp-
tomatic coronary artery disease using Doppler echocar-
diography.169 Left atrial systolic dysfunction associated
with afterload mismatch contributes to the development
of pulmonary edema and right ventricular failure170 and
has been shown to be closely related to secretion of
atrial natriuretic peptide as a compensatory response to
perceived volume overload.171 Nevertheless, LA empty-
ing fraction may be relatively preserved even in patients
with severe ischemic cardiomyopathy,142 in contrast to
the findings in those with idiopathic dilated141 or hyper-

trophic obstructive cardiomyopathy.151 Interestingly,
the extent of LA emptying fraction at rest has been
shown to predict LV diastolic filling and cardiac output
during exercise in patients with recent myocardial in-
farction.172 These latter findings emphasize the critical
role of enhanced LA emptying fraction and relatively
normal LA–LV coupling in determining the functional
capacity of these patients.

Pressure-Overload Hypertrophy. Left ventricular
pressure-overload hypertrophy caused by pathologic
conditions, such as essential hypertension and aortic
stenosis, delays LV isovolumic relaxation, impairs early
LV filling, increases LV chamber stiffness, and elevates
LV filling pressures.173 These factors combine to in-
crease LA afterload and produce compensatory LA dila-
tation.174 In the absence of other demonstrable causes,
this enlargement of the LA in patients with hypertension
appears to be most highly correlated with elevated noc-
turnal arterial blood pressure175 and may represent an
early clinical sign of hypertensive heart disease detected
using two-dimensional echocardiography before any
electrocardiographic changes become evident.176 In-
creases in LA reservoir and reductions in conduit func-
tion have been observed in patients with long-standing
hypertension that occur as a consequence of LV diastolic
dysfunction and elevations in LA afterload.87,174,177 Im-
paired LA–LV coupling resulting from this afterload mis-
match has also been quantified in patients with pressure-
overload hypertrophy.72 The increase in LA preload
associated with LA dilatation contributes to enhanced LA
emptying fraction by activation of the Frank-Starling
mechanism that is partially responsible for maintenance
of LV stroke volume in hypertensive patients.174 Sympa-
thetic nervous system stimulation also appears to play a
role in augmented LA inotropic state in patients with

Fig. 7. Typical left atrial (LA) pressure–area diagrams under
control conditions and immediately after pacing-induced isch-
emia obtained from a patient with a left anterior descending
coronary artery (LAD) stenosis (A, top) and a patient with a left
circumflex coronary artery (LCx) stenosis (B, bottom). An up-
ward shift of the LA pressure–area diagram was observed in the
patient with the LAD stenosis. In contrast, an upward and right-
ward shift in the diagram was observed in the patient with the LCx
stenosis. The area of the A loop of the LA pressure–area diagram
increased in the patient with the LAD stenosis but not in the
patient with the LCx stenosis. Reprinted with permission.42

Fig. 8. Steady state left atrial (LA) pressure–volume diagrams in
typical patients with normal cardiac function (bottom left) and
those with acute myocardial infarction (AMI; top left) and con-
gestive heart failure (CHF; top right). Linear regression lines
(dashed lines) indicate LA stiffness (K) measured from the bot-
tom of the A loop and the top of the V loop (solid dots). Note
that both acute myocardial infarction and congestive heart fail-
ure increase LA stiffness. Adapted with permission.41
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essential hypertension, in contrast to the findings in
patients with remote myocardial infarction.40 However,
chronic increases in active LA workload and energy
expenditure may produce LA hypertrophy, reduce LA
compliance, compromise reservoir function, and con-
tribute to an eventual reduction in LA pump perfor-
mance.87 Such a reduction in LA systolic function may
eventually contribute to the development of heart failure
in patients with pressure-overload hypertrophy. Never-
theless, LA emptying fraction appears to be relatively
well-preserved in the vast majority of patients with es-
sential hypertension, in contrast to those with idiopathic
dilated141 or hypertrophic obstructive cardiomyopa-
thy151 in whom evidence of atrial myopathy has been
demonstrated. Left atrial dilatation may contribute to the
development of atrial arrhythmias in patients with hy-
pertension and may be associated with paroxysmal atrial
fibrillation and subsequent atrial stunning that signifi-
cantly impair LV filling.178 Antihypertensive therapy
with a diuretic or an angiotensin-converting enzyme
inhibitor normalizes alterations in indices of active and
passive LA function concomitant with regression of LV
hypertrophy.87 Nifedipine has also been shown to re-
verse hypertension-induced alterations in LA function
concomitant with improvements in LV diastolic function
in humans.179

The contribution of atrial systole to LV filling and
performance in patients with severe aortic stenosis is
well-known180 as the loss of LA pump function with the
onset of atrial fibrillation is often poorly tolerated in
these patients.181 Left atrial dilatation in aortic stenosis is
directly related to LV mass.182 Frank-Starling–induced
increases in LA emptying fraction serve to counterbal-
ance the depressed reservoir function that occurs as a
result of decreases in LV compliance. Thus, LA dilation
and augmented LA systolic function are important com-
pensatory mechanisms that serve to maintain LV stroke
volume and cardiac output in these patients.182

Mitral Valve Disease. The mitral valve does not con-
tribute substantially to resistance of blood flow from the
LA to the LV under normal circumstances. However,
restricted motion of the mitral apparatus becomes the
predominant factor affecting LA afterload in mitral ste-
nosis. Left atrial pressure and volume increase in direct
proportion to the severity of the stenosis. Despite the
increase in LA preload, the contribution of atrial systole
to total LV filling in patients with mitral stenosis is
reduced during sinus rhythm in comparison to normal
subjects because LA contractile force cannot overcome
the mechanical obstruction.180 Intrinsic myocardial con-
tractility of the LA is depressed in long-standing mitral
stenosis as a result of chronic elevations in workload and
wall stress,183 and the contribution of the LA appendage
to overall LA emptying fraction is also reduced.184 As a
result, loss of LA contractile function with the onset of
atrial fibrillation may be less responsible for hemody-

namic decompensation in patients with mitral stenosis
than a rapid ventricular response and limited LV diastolic
filling time.25,185

Left atrial compliance is an important determinant of
LA pressure in patients with mitral stenosis during nor-
mal sinus rhythm in addition to the pressure gradient
across the mitral valve.186 Declines in LA compliance
have been shown to correlate with increases in LA pres-
sure and progressive narrowing of the mitral valve ori-
fice.187 These reductions of LA compliance and eleva-
tions in LA pressure are associated with compromised
reservoir function. Left atrial pressure–area relations
have been recorded in patients with mitral stenosis be-
fore and after retrograde balloon valvuloplasty that pro-
vide important insights into the mechanical conse-
quences of this disease.188 Significant increases in A-loop
area were observed after valvuloplasty in the presence of
sinus rhythm consistent with enhanced emptying frac-
tion and stroke work (fig. 9). In contrast, V-loop area
increased after the procedure in patients with atrial
fibrillation, indicating that reservoir function had been
improved. Increases in LA static compliance also oc-
curred concomitant with reductions in pressure and
volume in both groups.188 These data confirm that mitral
stenosis produces profound alterations in LA function
that may be acutely reversed in large part with valve
repair.

The effects of chronic mitral regurgitation on LA func-
tion have been examined using LA pressure–dimension
relations.189 Left atrial size and mass increase during
chronic mitral regurgitation, and the LA contribution to
LV filling is augmented in sinus rhythm as a result of
activation of the Frank-Starling mechanism. The LA also
becomes more compliant, and reservoir function may be
enhanced. Thus, enlargement of the LA is an important
compensatory mechanism in chronic mitral regurgita-
tion by attenuating increases in LA pressure while simul-
taneously maintaining adequate LV filling volume.189

However, LA volume overload and pronounced dilata-
tion of the chamber may eventually lead to reductions in
LA emptying fraction because optimal myocardial fiber
length is exceeded. This concept is emphasized by the
observation that LA size alone predicts outcome after
mitral valve replacement in patients with symptomatic
chronic mitral regurgitation because LA size reflects the
severity and duration of the disease process.190 The v-wave
magnitude of the LA pressure waveform has been shown to
be inversely related to LA compliance, and increases in the
amplitude of the v wave indicate increasing severity of
acute mitral regurgitation and decreased LA compliance
during incremental balloon commissurotomy.191

Regurgitant blood flow during LV systole attenuates,
abolishes, or reverses early LA expansion and forward
flow from the pulmonary veins dependent upon the
degree of the regurgitation.25 This process contributes
to the development of pulmonary hypertension and
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right ventricular dysfunction. The pulmonary venous
blood flow velocity pattern assessed with Doppler echo-
cardiography has been shown to be a very sensitive
index of the severity of mitral regurgitation that is highly
correlated with angiographic grade of valve disease.54,55

Acute mitral regurgitation of increasing severity is ini-
tially associated with augmented LA emptying fraction as
a result of LA dilatation. However, the LA contribution to
LV filling rapidly declines as the regurgitant fraction
increases because LA volume overload occurs. Treat-
ment with sodium nitroprusside improves LA emptying
fraction during severe acute mitral regurgitation by de-
creasing excessive LA stretch, restoring LA geometry,
and reestablishing more optimal Frank-Starling rela-
tions.192 Enhanced LA emptying fraction occurring as a
consequence of vasoactive drugs in acute mitral regur-
gitation most likely results from reductions in LV after-
load, decreases in LV volume overload, and improve-
ments in mitral valve geometry and competence.193

Heart Failure. Left atrial pressure–volume analysis of
LA adaptation to evolving LV failure produced by rapid
ventricular pacing has been examined in a canine model
of dilated cardiomyopathy.47 The development of heart
failure over 3 weeks of pacing was associated with pro-
gressive increases in LA volume, stroke volume, and
A-loop area (LA stroke work). Myocardial contractility

evaluated with end-systolic pressure–volume relations
was unchanged, but LA mean circumferential fiber short-
ening was reduced in a time-dependent manner. An
up-regulation of the � myosin heavy chain was also
observed concomitant with decreased velocity of LA
contraction and increased mechanical work.47 These
latter findings indicate that compensatory increases in
LA emptying fraction initially occur during developing
LV failure. Temporal improvements in LV systolic func-
tion were observed after cessation of rapid ventricular
pacing in this canine model, but LA systolic ejection rate
was persistently depressed as a result of continued LV
diastolic dysfunction, LA hypertrophy, and alterations in
myosin heavy chain isoforms.194 Intrinsic LA dysfunction
quantified using a variety of invasive and noninvasive
techniques eventually occurs in heart failure because
persistent increases in LA afterload and energy expendi-
ture resulting from reduced LV compliance and elevated
LV diastolic wall stress are present.41,86,183,195–197 Inter-
estingly, contractile function of the LA appendage may
be an accurate predictor of LV end-diastolic pressure in
patients with heart failure.198 Left atrial emptying frac-
tion is inversely and LA maximal volume is directly re-
lated to plasma renin activity, aldosterone concentration,
and atrial natriuretic peptide concentration in patients
with heart failure resulting from idiopathic dilated car-

Fig. 9. Representative left atrial (LA) pressure–area diagrams from a normal subject (top left), a patient with atrial fibrillation (bottom
left), and two patients, one with sinus rhythm (top right) and the other with atrial fibrillation (bottom right), with mitral stenosis
before and after balloon mitral valvuloplasty. RNBMV � retrograde nontransseptal balloon mitral valvuloplasty. Reprinted with
permission.188
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diomyopathy,199 suggesting that hormonal compensa-
tory responses are correlated closely with LA function
under these conditions. Primary LA systolic failure may
be observed even during normal sinus rhythm in the
presence of severe, long-standing LV dysfunction be-
cause of complete exhaustion of contractile reserve.200

Nevertheless, treatment of heart failure may be associ-
ated with improvements in LA emptying fraction as LV
stiffness declines, LA afterload mismatch is reduced, and
LA–LV coupling is normalized.41,86 For example, after-
load reduction acutely enhances LA emptying fraction in
the failing heart.86 This finding supports the hypothesis
that declines in LA performance occur principally as a
result of LA afterload mismatch during LV failure and not
as a consequence of primary LA pathology.

Profound alterations in the passive mechanical prop-
erties of the LA are also observed during the develop-
ment of heart failure. Left atrial reservoir function was
augmented and conduit function was reduced in pa-
tients with a minor derangement in LV diastolic function
as indicated by an impaired relaxation transmitral blood
flow velocity pattern.69 In contrast, patients with a re-
strictive LV filling pattern indicative of severe LV dia-
stolic dysfunction and elevated LV diastolic pressure
demonstrated a predominance of LA conduit function
and a marked reduction in reservoir function concomi-
tant with contractile dysfunction (fig. 8).69 These find-
ings indicate that evolving heart failure is associated with
the progressive conversion of the LA from a storage and
contractile chamber to a simple conduit. This concept
was dramatically emphasized by the report of a patient
with amyloidosis and end-stage heart failure in whom
complete LA akinesis was observed throughout the car-
diac cycle despite the continued presence of an electro-
cardiographically demonstrable normal sinus rhythm.92

The ratio of conduit to active LA emptying volume has
also been shown to be greater in patients with normal as
compared to pseudonormal transmitral LV filling pat-
terns.201 These data suggest that analysis of active and
passive LA function provides an alternative means of
distinguishing between normal and pseudonormal filling
patterns that may be used instead of standard analysis of
pulmonary venous blood flow.53

Left atrial pressure–area relations also demonstrate that
LA compliance is reduced in patients with congestive
heart failure and normal sinus rhythm or atrial fibrilla-
tion.18,41,202 Improvements in LA distensibility have
been observed with the administration of positive ino-
tropic drugs18 or arterial vasodilators203 in congestive
heart failure and, conversely, abnormal LA compliance is
further exacerbated by �-adrenoceptor antagonists or
additional LA preload in this setting.202 Effects of dobut-
amine and sodium nitroprusside on LA function were
examined in patients with severe congestive heart fail-
ure using Doppler echocardiographic evaluation of
transmitral and pulmonary venous blood flow veloci-

ty.204 Dobutamine increased LA reservoir and conduit
volumes but did not substantially affect pump function,
alter pulmonary arterial pressures, or influence the re-
strictive pattern of LV filling that was observed under
baseline conditions in these patients. In contrast, sodium
nitroprusside did not alter reservoir or conduit volume
but did enhance LA contractile performance and im-
prove the pattern of LV filling from a restrictive to a
normal morphology. These findings suggest that an arte-
rial vasodilator may acutely provide more consistent
improvements in LA and LV function than a �1-adreno-
ceptor agonist by reducing LV afterload, improving LV
compliance, decreasing ventricular interaction,205 re-
storing LA preload reserve, and enhancing LA emptying
fraction.204

Anesthetics and Left Atrial Function
The negative inotropic effects of halothane and me-

thoxyflurane were initially described by Paradise et
al.206–208 in rat atrial myocardium in vitro. Volatile an-
esthetics also depress the contractile function of atrial
myocardium obtained from guinea pigs,209 rabbits,210

and humans.211–213 These actions have been attributed
to reductions in transsarcolemmal calcium (Ca2�) influx
through voltage-dependent Ca2� channels and decreases
in Ca2� availability from the sarcoplasmic reticulum,210

mechanisms that are very similar to those responsible for
anesthetic-induced depression of LV myocardium.214

The negative inotropic effects of volatile agents in the
intact LA were recently quantified using pressure–vol-
ume analysis.33 Desflurane, sevoflurane, and isoflurane
reduced LA contractility (i.e., Ees) by approximately 50%
at an end-tidal concentration of 1.2 minimum alveolar
concentration (MAC; fig. 4). The magnitude of this effect
in LA myocardium was similar to the degree of LV con-
tractile depression produced by these agents as quanti-
fied with LV end-systolic pressure–volume relations.215

Desflurane, sevoflurane, and isoflurane also impaired LA
and LV relaxation to similar degrees. These data indicate
that volatile anesthetics produce equivalent alterations
in contractility and relaxation in LA compared to LV
myocardium.33 The magnitude of reductions in LA ino-
tropic and lusitropic state produced by the volatile an-
esthetics was also similar in the intact LA, supporting the
results obtained in isolated human atrial myocardium.213

Desflurane, sevoflurane, and isoflurane altered LA pas-
sive mechanical behavior.33 Left atrial reservoir function
(V-loop area and reservoir volume) was maintained dur-
ing the administration of anesthetic concentrations of
less than 1.0 MAC (fig. 10). This preservation of reservoir
function contributed to the relative maintenance of LV
stroke volume215 by compensating for decreases in LV
filling associated with a reduced contribution of LA con-
traction. The volatile anesthetics also reduced dynamic
LA chamber stiffness, an action that most likely contrib-
uted to the preservation of reservoir function because
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the delays in LA relaxation and declines in LV systolic
function that also occurred would be expected to de-
crease reservoir function.20 However, LA reservoir func-
tion was reduced during administration of higher con-
centrations of the volatile anesthetics because further
impairment of LA relaxation and LV contractility oc-
curred. Decreases in the ratio of LA stroke work to total
pressure–volume diagram area and the increases in the
ratio of LA conduit to total reservoir volume (fig. 11)
were also produced by desflurane, sevoflurane, and
isoflurane. These data indicated that the LA contribution
to LV filling becomes less active and more passive during
the administration of the volatile agents.

Desflurane, sevoflurane, and isoflurane decreased the
ratio of LA to LV elastance (Ees/ELV), consistent with
impaired mechanical matching between these cham-
bers. Volatile anesthetics have been shown to produce
LV diastolic dysfunction by delaying LV isovolumic re-
laxation and impairing early LV filling in association with
direct negative inotropic effects.216 Thus, the attenua-
tion of transfer of kinetic energy from the LA to the LV
probably resulted from the combination of LA contrac-
tile depression and LV systolic and diastolic dysfunction.
Volatile anesthetic-induced abnormalities in LA–LV
matching were greater than analogous impairment of
LV–arterial coupling evaluated using a similar series of
elastic chamber models in a previous investigation215

because these agents produced beneficial alterations in
the determinants of LV afterload217,218 that partially com-
pensate for simultaneous depression of LV myocardial
contractility.

Propofol depresses the contractile function of isolated
atrial myocardium obtained from guinea pigs219 and hu-
mans220 at concentrations higher than those typically

achieved during intravenous infusions in a clinical set-
ting. These findings are similar to those observed in
normal ventricular myocardium in vitro,221,222 in si-
tu,223 and in vivo.224,225 The negative inotropic actions
of propofol in ventricular myocardium have been attrib-
uted to inhibition of transsarcolemmal calcium (Ca2�)
current226,227 and L-type Ca2� channel function,228 and
it is likely that similar mechanisms are responsible for
depression of contractility in atrial myocardium. The
effects of propofol on LA myocardial contractility in vivo
were recently quantified using pressure–volume analy-
sis.52 The magnitude of the negative inotropic effect of
several doses of propofol in LA myocardium was nearly
identical to the degree of LV contractile depression.225

Dose-related declines in Ees/ELV were observed during
administration of propofol consistent with impaired me-
chanical matching between these elastic chambers. In
contrast to the findings with volatile anesthetics, previ-
ous investigations229,230 have demonstrated that propo-
fol does not affect LV relaxation and compliance. Thus,
the impairment of LA–LV coupling observed during the
administration of propofol most likely resulted from the
depression of LA contractile function and not because of
LV diastolic dysfunction.

Propofol also affected LA passive filling and emptying
properties.52 Increases in V-loop area occurred during
administration of larger doses of propofol, and total LA
reservoir volume was unchanged. These findings sug-
gested that LA reservoir function is maintained during
propofol anesthesia. This preservation of reservoir func-
tion may partially compensate for reductions in the ac-
tive contribution of LA contraction to LV filling and
serves to maintain stroke volume.225 Left atrial chamber
stiffness decreased during administration of propofol

Fig. 10. Steady state left atrial (LA) pres-
sure–volume diagrams obtained during
control conditions (top left) and during
the administration of 0.6, 0.9, and 1.2
MAC desflurane (top right, bottom left,
and bottom right) in a typical experi-
ment. A decrease in LA stroke work (A-
loop area) and compensatory increases
in LA reservoir volume and V-loop area
occur during 0.6 and 0.9 MAC desflurane
anesthesia. However, V-loop area de-
creases at 1.2 MAC consistent with a sub-
sequent impairment of the passive com-
ponent of the LA contribution to left
ventricular (LV) filling. Reprinted with
permission.33
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despite modest increases in LA pressure, suggesting that
LA compliance is improved by this intravenous agent.
The preservation of reservoir function that occurred
during administration of propofol was probably related
to these decreases in LA chamber stiffness, because de-
creases in LV systolic function were observed that would
be expected to reduce reservoir function.20 A delay in
LA relaxation has also been shown to contribute to a
reduction in reservoir function,20 but an LA relaxation
constant was unchanged during administration of propo-
fol. These latter data support previous observations in-
dicating that this drug does not alter LV relaxation.229,230

Summary

Insights obtained from the analysis of LA pressure–
volume relations and Doppler echocardiography have

substantially advanced our understanding of LA function
in the normal and diseased heart. The active and passive
mechanical actions of the LA play critical roles in deter-
mining overall cardiovascular performance by unloading
the pulmonary venous circulation and by facilitating LV
filling. Compensatory LA enlargement and enhanced LA
emptying fraction produce an increase in the active LA
contribution to LV filling in a variety of pathologic con-
ditions that serve to maintain stroke volume and cardiac
output. However, LA dilatation may eventually adversely
affect LA emptying fraction if optimal Frank-Starling re-
lations are exceeded or atrial tachyarrhythmias occur. In
addition, declines in LA compliance adversely affect LA
reservoir function, impede pulmonary venous blood
flow into the LA, and impair LV filling. Left atrial failure
may occur as a consequence of primary atrial disease or
chronic elevations in LA afterload and contribute to the
development of clinical signs and symptoms of conges-
tive heart failure. Pharmacological management of heart
failure not only enhances LV function, but also improves
the interaction between the LA and LV. Volatile and
intravenous anesthetics have recently been shown to
profoundly affect LA function in the normal heart. How
these agents influence LA mechanical behavior in the
presence of LV dysfunction remains an important goal of
future research.

The authors thank David A. Schwabe, B.S.E.E. (Senior Research Scientist,
Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wis-
consin), for his assistance.
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