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Background: Variability inherent in the duration of surgical
procedures complicates surgical scheduling. Modeling the du-
ration and variability of surgeries might improve time esti-
mates. Accurate time estimates are important operationally to
improve utilization, reduce costs, and identify surgeries that
might be considered outliers. Surgeries with multiple proce-
dures are difficult to model because they are difficult to segment
into homogenous groups and because they are performed less
frequently than single-procedure surgeries.

Methods: The authors studied, retrospectively, 10,740 surger-
ies each with exactly two CPTs and 46,322 surgical cases with
only one CPT from a large teaching hospital to determine if the
distribution of dual-procedure surgery times fit more closely a
lognormal or a normal model. The authors tested model goodness
of fit to their data using Shapiro-Wilk tests, studied factors affecting
the variability of time estimates, and examined the impact of coding
permutations (ordered combinations) on modeling.

Results: The Shapiro-Wilk tests indicated that the lognormal
model is statistically superior to the normal model for modeling
dual-procedure surgeries. Permutations of component codes
did not appear to differ significantly with respect to total pro-
cedure time and surgical time. To improve individual models
for infrequent dual-procedure surgeries, permutations may be
reduced and estimates may be based on the longest component
procedure and type of anesthesia.

Conclusions: The authors recommend use of the lognormal
model for estimating surgical times for surgeries with two com-
ponent procedures. Their results help legitimize the use of log
transforms to normalize surgical procedure times prior to hy-
pothesis testing using linear statistical models. Multiple-proce-
dure surgeries may be modeled using the longest (statistically
most important) component procedure and type of anesthesia.

SURGICAL scheduling is complicated by variability in-
herent in the duration of surgical procedures. Modeling
that variability, in turn, provides a mechanism to gener-
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ate time estimates that are important operationally to
improve operating room utilization and decrease surgi-
cal costs." Time estimates are important for building
simulation models of surgical environments® and for
decision analysis based on such simulations.

We studied individual and aggregate models in this
article for surgeries that have two Current Procedural
Terminology (CPT) codes associated with them. Individ-
ual models fit a mathematical distribution to surgeries
segmented by dual procedure code, surgeon, or type of
anesthesia. Modeling in this manner permitted each dual
procedure to have its own unique probability distribu-
tion and is most useful if there is reason to believe that
different dual procedures should have different models.
When fitting individual models to subsets of the data, it
is important to reduce coding permutations (whenever
possible) to avoid unnecessary segmentation and thus
excessively small samples with reduced estimation
precision.

We also studied aggregate models that use the records
from all dual-procedure surgeries to derive expected
time estimates. Aggregate models make implicit assump-
tions that the variability in each of the data subsets is
similar. Using aggregate models, all dual-procedure sur-
geries are modeled simultaneously to provide time esti-
mates that best describe all the surgeries.

Modeling of surgeries involving only one CPT was
investigated previously.>* Times for these surgeries
were well modeled by the lognormal distribution. We
wanted to test the hypothesis that the lognormal distri-
bution is also the best model for estimating times for two
procedures performed in the same surgical session.

Dual-procedure surgeries are difficult to model individ-
ually because they are performed infrequently. It is log-
ical to assume that time estimates for multiple-procedure
surgeries might be constructed using the component
procedures. It is unlikely that these estimates would
reflect only the simple arithmetic sum of the component
estimates.

Coding permutations (order-dependent combinations
of the same codes) are observed for multiple proce-
dures. Additional research is needed to determine if
coding permutations represent statistically different sur-
geries with respect to duration estimates. We investi-
gated dual-procedure surgeries to determine if the log-
normal distribution® was superior to the normal
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distribution for modeling surgical and total times. Fi-
nally, we also investigated several factors (CPT1, CPT2,
surgical subspecialty, type of anesthesia, age, and emer-
gency status) associated with variability in time estimates
for dual-procedure surgeries.

Methods

We reviewed all recorded surgical cases from a large
academic health sciences center performed over a 7-yr
period from 1989 to 1995. Use of anonymous patient
records was approved by the human subjects review
committee of the institution that collected the data. Data
were collected using a previously described computer-
ized system.® Variables included in the initial data in-
cluded total procedure time (TT), defined as the time
from entry into the operating suite until emergence from
anesthesia, surgical procedure time (ST), defined as the
time from incision to closure of the surgical wound, age,
American Society of Anesthesiologists physical status
classification, type of anesthesia, CPT codes, emergency
status (Emerg), and surgical specialty category (CAT) as
defined using main headers from the CPT classification.”

Detailed Description of the Data

Of 60,643 total case records in the initial database, 779
were omitted from analysis due to incomplete data,
leaving 59,864 surgeries that included between one and
three component CPTs. There were 46,322 surgeries
with only one CPT code, 10,740 with exactly two dif-
ferent CPT codes, and 2,802 patients with three CPT
codes. To reduce confounding factors, we confined our
analyses of multiple procedures to those described by
exactly two CPT codes. Dual-procedure surgeries in our
database were named (jointly) for both provider-ordered
procedures, one code designated first (CPT1) and the
other code second (CPT2). For example, when modeling
initially, CPT1 = 52000, CPT2 = 53899 and CPT1 =
53899, CPT2 = 52000 were considered different dual-
procedure surgeries. TT for the former was 69 = 48 min,
n = 138 surgeries, and TT for the latter was 96 * 63 min,
n = 21 surgeries (mean £ SD). CPT 52000 was cystos-
copy and CPT 53899 was urological surgery. Basic sta-
tistics were summarized for dual-procedure surgeries
(designated CPT1-2) for TT and ST.

Individual Probability Models

CPT1-2 values for TT and ST were investigated for
lognormality using log transformations and normal prob-
ability plots. Preliminary analyses® indicated that to ob-
tain a better individual model fit, data should be subdi-
vided into (more) homogeneous subgroups by CPT and
type of anesthesia (general, local, regional, monitored)
prior to being fit to a distribution. To determine the best
model for estimating procedure times, samples were

Anesthesiology, V 98, No 1, Jan 2003

segmented by dual-procedure surgery (CPT1-2) and the
normal and lognormal models fit to each. Permutations
of the component codes were assumed (initially) to
represent different surgeries, and each was fit separately.
Samples were not segmented initially by type of anesthe-
sia to avoid reducing excessively the sparse number of
surgeries to be fit. Other issues related to general log-
normal modeling of surgical times have been discussed
elsewhere.>%*

We performed Shapiro-Wilk (SW) goodness-of-fit
tests'*!"! to determine whether a data sample was con-
sistent with a normal distribution. The SW test for nor-
mality was applied to the logs of the data values, thereby
creating a test for lognormality. When using the SW test,
one assumes that the null hypothesis is that the model
describes the data. Hence, a large P value indicates that
it is not reasonable to reject the null hypothesis, ie., the
data fit the model well. We tested TT and ST for all
dual-procedure surgeries with case frequencies of five or
more.

We cross-tabulated the SW test results for all CPT1-2
combinations by P value of the SW tests to compare
goodness-of-fit tests for the normal and lognormal mod-
els. To detect the influence of sample size on the SW
tests, we divided the sample arbitrarily into small (n =
30)- and medium (n > 30)-sized samples. Because com-
monly used levels of significance for hypothesis testing
are between 1% and 10% for a test like SW, a frequently
used rule of thumb is to regard a P value of at least 0.10
as leading to retention of the null hypothesis (the model
fits well) and a P value less than 0.01 as always leading to
its rejection (the model fits poorly). We interpreted
values between 0.01 and 0.1 as a mediocre fit for the
model.

We compared the overall performance of the individ-
ual lognormal and normal models using qualitative (tab-
ular) comparisons. To determine if one distributional
model performed better on particular CPT1-2 combina-
tions, we compared the performance of the two models
on the same data sets. We used the more graphically
oriented normal probability plots to examine those
CPT1-2 combinations for which the formal SW tests
indicated that both models were inadequate. We also
compared the goodness-of-fit of the lognormal and the
normal models using the Sign and Friedman tests for TT
and ST.

Component Procedure Estimates

It is logical to assume that duration estimates for dual-
procedure surgeries might be constructed using esti-
mates derived from their component CPTs. To generate
estimates for these component procedures, 46,322 sin-
gle-CPT surgeries were summarized to provide median
time estimates (MTE) for the component CPTs. MTEs
were used because the median is an appropriate mea-
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sure of central tendency given previous indications of
lognormality4 for single-CPT surgeries. Specific MTEs
were matched to component CPTs for dual-procedure
surgeries using lookup tables.

We explored the hypothesis that CPT1 (provider des-
ignated) in a dual-procedure surgery is typically a longer
individual surgery than CPT2. Basic statistics were com-
piled for MTE1 and MTE2 for component procedures for
TT and ST. To estimate how frequently MTEs for CPT1
exceeded those for CPT2, MTEs for the two component
procedures were subtracted (MTE1 — MTE2), and the
differences were plotted as a frequency histogram.

To investigate specialty origins of dual-procedure sur-
geries, component procedures (both CPT1 and CPT2)
were categorized into one of 20 surgical specialty cate-
gories based on primary headers of the CPT classification
and cross-tabulated by surgical specialty (CAT1 and
CAT?2, respectively).

Coding Permutations

Dual-procedure surgeries in our database were pro-
vider designated by combinations of two procedures
(CPT1-2), but permutations (order-dependent combina-
tions) were observed in which the order of the same two
component CPT codes was reversed (Z.e., CPT1-2 coex-
isted with similar surgeries CPT2-1).

To detect systematic differences in InTT and InST nat-
ural logs of TT and ST, respectively, among permuta-
tions, we performed individual two-sample ¢ tests on
each dual CPT. For each dual CPT tested, one subset was
coded CPT1-2, and the other was coded CPT2-1. The
results of the individual # tests (using pooled variances)
were tabulated. If all the null hypotheses were true, Z.e.,
no differences in surgical times existed among permuta-
tions, then the P values should behave together like a
sample from a uniform (0,1) distribution. We used uni-
form probability plots and Kolmogorov-Smirnov tests to
explore how well the P values were described by a
uniform (0,1) distribution.

Aggregate Models

To further explore differences in surgery times among
permutations, we reordered provider-assigned codes
(CPT1-2) arbitrarily to eliminate permutations. The new
order of CPTs (CPTA-B) was determined by ordering the
CPT with the greater numerical value of the code as
CPTA and that with the lesser numerical value as CPTB.
Because the numeric values for CPT codes are assigned
on anatomic and pathologic grounds, we considered the
values of the codes arbitrary with respect to the duration
of the surgical procedures. Permutations were identified
by paired comparisons of the provider-designated and
numeric value-ordered codes. To investigate systematic
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differences among permutations with respect to their
durations (InTT and InST), we fit an aggregate linear
model of the form:

In Time = CPTA-B + Anes + Perm + Perm * Anes
+ Perm * CPTAB + error (1)

where Perm = O if CPTA = CPT1 and Perm = 1 if
CPTA > CPT1 numerically. Anes was a categorical vari-
able for type of anesthesia; InTime was InTT or InST; and
an asterisk in an expression denoted an interaction term.
Anesthesia was included as a factor in this model be-
cause it was found previously to be associated with the
variability in surgical duration.*'? If any of the terms
Perm, Perm * Anes, or Perm * CPTA-B were significant,
then coding permutations have statistical impact on the
true mean InTime, by itself or in conjunction with the
type of anesthesia or a particular combination of CPTs.

Primary Component Procedure

To achieve our goal of understanding the various fac-
tors that explain variability in InTT and InST for provider-
ordered (CPT1-2) combinations, we used MTEs from
component CPTs to fit an aggregate linear model with
no interaction terms of the form:

InTime = MTEl + MTE2 + Anes + CAT1 + CAT2
+ Emerg + Age + error (2)

where MTE1 = median time estimate for CPT1, MTE2 =
median time estimate for CPT2, Anes = type of anesthe-
sia, CAT1 = surgical specialty category of CPT1, CAT2 =
surgical specialty of CPT2, Emerg = emergency status
(yes or no), and Age was expressed in years. CATI,
CAT2, Anes, and Emerg were categorical variables. Due
to the exploratory nature of our analyses and the rela-
tively large number of independent variables, it was not
feasible to examine interaction effects.

Model 2 allowed for different permutations of CPT12,
e.g., for MTE1-2 versus MTE2-1. We did this to compare
a model with provider-designated codes with another
model that ordered CPTs on another criterion, such as
the duration of MTEs (Z.e., model 3).

Longest Component Procedure

Longer procedures (CPTL) are more variable than
shorter procedures (CPTS) and have a proportionately
greater effect on scheduling.'? To study the effect of
modeling based on MTEs, we looked up MTEs for CPT 1
and CPT2 and designated the component CPT with the
longest MTE as CPTL. This effectively identified the long-
est component procedure and simultaneously elimi-
nated coding permutations. To test the ability of this
duration dependent model to detect variability in InTT
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Table 1. Comparisons of Sample Size and Shapiro-Wilk Goodness-of-fit P Values for Log-normal Distribution
Category P < 0.01 001 =P =01 P =01 Row Totals
Surgical time, InST
Not fit, n = 4 NF NF NF 6052 (100)
Small, 4 <n =30 13 (5.33) 19 (7.79) 212 (86.9) 244 (100)
Medium, n > 30 3(18.7) 3(18.7) 10 (62.5) 16 (100)
Column totals 16 (6.15) 22 (8.46) 222 (85.4) 260 (100)
Total time, InTT
Not fit, n < 4 NF NF NF 6052 (100)
Small, 4 <n =30 8 (3.28) 31(12.7) 205 (84.0) 244 (100)
Medium, n > 30 2(12.5) 6 (37.5) 8 (50.0) 16 (100)
Column totals 10 (3.85) 37 (14.2) 213 (81.9) 260 (100)

Tabular comparisons of sample size and Shapiro-Wilk goodness-of-fit P values for the log-normal distribution for TT and ST. 6,052 CPT1-2 combinations were
not fit due to insufficient sample size (n = 4). Values shown are number of surgeries, and the percent of the total row appears in parentheses; n = 3,266 surgeries,

260 fit CPT1-2 combinations.

CPT = Common Procedural Terminology code; In = the natural logarithm; NF = not fitted; ST = surgical time; TT = total time.

and InST, we fit an additional seven-factor main effects
linear model of the general form:

In Time = MTEL + MTES + Anes + CATL + CATS
+ Emerg + Age + error (3)

where MTEL = median time estimate for CPTL, MTES =
median time estimate for CPTS, Anes = type of anesthe-
sia, CATL = surgical specialty category of the longest
procedure, CATS = specialty category of the shortest
procedure, Emerg = emergency status, and Age was
expressed in years. CATL, CATS, Anes, and Emerg were
categorical variables. Factors were added stepwise to the
model. It was not feasible to examine interaction effects
due to the exploratory nature of our analyses and the
relatively large number of independent variables.

Simplified Models

We examined r? for all the submodels to arrive at a
parsimonious model (a reasonably predictive model with
as few meaningful terms as required) for predicting InTT
and InST for models 2 and 3. In particular, we studied
models that retained factors as ordered by the original
MSEs in the full seven-factor model. In doing so, we
computed r* for all the factor submodels. For reasons of

brevity, we reported only those submodels with one,
two, three, or seven main effect terms.

Results

Detailed Description of the Data

The database contained 10,740 cases (dual-procedure
surgeries), each comprised of exactly two component
procedures. Three cases were eliminated from analysis,
two because they contained rare pain procedures, and
one because it was the only case comprised of a pathol-
ogy procedure as CPT1. The remaining 10,737 surgeries
were performed by 205 different surgeons and 136 dif-
ferent anesthesiologists. Of 10,737 surgeries, 5,269 cases
(49%) were female and 943 cases (9%) were emergen-
cies. General anesthesia was used in 7,653 cases (71%);
2,221 cases (21%) involved regional anesthesia; 461
cases (4%) had monitored sedation; and 402 cases (4%)
involved only local anesthesia. The average age of pa-
tients was 48.9 * 18.1 yr (mean * SD).

Model Probability Distributions
Tables 1 and 2 display the results of fitting the lognor-
mal and normal distributions, respectively, to 260 CPT1-2

Table 2. Comparisons of Sample Size and Shapiro-Wilk Goodness-of-fit P Values for Normal Distribution

Category P < 0.01 001 =P =01 P =01 Totals

Surgical time

Not fit, n = 4 NF NF NF 6052 (100)

Small, 4 <n =30 15 (6.15) 24 (9.84) 205 (84.0) 244 (100)

Medium, n > 30 5(31.2) 4 (25.0) 7 (43.7) 16 (100)

Column totals 20 (7.69) 28 (10.8) 212 (81.5) 260 (100)
Total time

Not fit, n = 4 NF NF NF 6052 (100)

Small, 4 <n =30 11 (4.51) 28 (11.5) 205 (84.0) 244 (100)

Medium, n > 30 7 (43.7) 2 (12.5) 7 (43.7) 16 (100)

Column totals 18 (6.92) 30 (11.5) 212 (81.5) 260 (100)

Tabular comparisons of sample size and Shapiro-Wilk goodness-of-fit P values for the normal distribution for TT and ST. 6,052 CPT1-2 combinations were not
fit due to insufficient sample size (n = 4). Values shown are number of surgeries, and the percent of the total row appears in parentheses; n = 3,266 surgeries,

260 fit CPT1-2 combinations.
CPT = Common Procedural Terminology code; NF = not fitted.
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Table 3. Summary Statistics for Dual Procedure Surgeries
TT, min ST, min
CPT1-2 MTE1 MTE2 CPT1-2 MTE1 MTE2

n 10,737 10,335 10,243 10,737 10,335 10,243
Minimum 15 20 30 2 5.0 2.0
Maximum 1,160 905 905 1,080 835 835
Mean 259 206 170 191 139 109
SD 162 123 111 145 104 91
SE 1.56 1.2 1.1 1.40 1.0 0.9
Median 220 178 137 155 113 79
CV, % 62 60 65 76 75 83
Summation 2,791,360 2,132,424 1,741,162 2,053,770 1,437,670 1,118,195

Summary statistics for 10,737 dual (CPT1-2) procedure surgeries for TT and ST and MTEs for their component procedures. The MTEs were not available for all

surgeries.

CPT = Common Procedural Terminology code; CV = coefficient of variation; MTE = median time estimate; ST = surgical time; TT = total time.

combinations (3,266 surgeries) for TT and ST. Small sam-
ples (n = 30) were fit better than moderate-sized samples
for TT and ST. The decision to fit only surgeries with
sample sizes n = 5 reduced substantially the number of
dual-procedure surgeries fit. In doing so, 6,052 infrequent
CPT1-2 combinations were omitted from analysis.

A paired comparison of the lognormal and normal
models was made using Friedman and Sign tests applied
to the SW goodness-of-fit P value results for TT and ST in
tables 1 and 2. Tests on 260 CPT1-2 combinations (3,266
surgeries) revealed that TT fit the lognormal and normal
models no better (and no worse) than ST. The lognormal
models fit TT and ST better than the corresponding
normal model (Friedman tests, P = 0.05). The SW tests
rejected the lognormal model for only 4-6% of dual
CPTs tested.

Component Procedure Estimates

A cumulative frequency histogram indicated that CPT1
was not always the longest component procedure. MTE2
equaled or exceeded MTEI1 for 3,538 surgeries or 35.8%
of total CPT1-2 surgeries.

Table 3 summarizes basic statistics for dual-procedure
surgeries for TT and ST and for the median time esti-
mates (MTE1 and MTE2) for their corresponding com-
ponent procedure times. MTEs were available for only
10,243 (95.3%) of CPT1s and 10,335 (96.2%) of CPT2s.
There were 9,876 dual-procedure surgeries (92%) with
MTEs available for both component codes (Z.e., MTE1
and MTE2 available simultaneously).

MTE1 and MTE2 estimates for component procedures
CPT1 and CPT2 were examined using normal probability
plots for ST and TT, and these values were lognormally
distributed.

Table 4 cross-tabulates the component CPTs for dual-
procedure surgeries by surgical specialty category. One
thousand nine hundred sixty-nine different component
CPT1s with case frequencies 344 to 1 (5 = 15; mean *
SD) and 1,924 CPT2s with case frequencies 301 to 1
(6 * 16; mean * SD) were categorized. The diagonal of
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table 4 reveals that 7,489 cases (70%) of dual-procedure
surgeries were comprised of component procedures
both from the same surgical specialty.

Coding Permutations

Dual-procedure surgeries were examined for the pres-
ence of coding permutations. There were 5,978 different
CPT1-2 combinations comprised of 10,737 surgical
cases. Four thousand seven hundred twenty-seven cases
(and an equal number of CPT1-2 combinations) were
eliminated because they were singletons with sample
size n = 1. There remained 1,249 different CPT1-2 com-
binations comprised of 6,010 surgeries, each with two
or more cases (range, 2-196 cases per combination). Of
1,249 dual-procedure surgeries, each with two or more
cases, 913 combinations had no permutations, and only
336 CPT1-2 combinations had two permutations.

There existed only 60 CPT1-2 combinations (1,862
surgeries) with two permutations and no fewer than 10
surgeries in each subset (10 patients in each subset was
found by us as being minimal for statistical testing).
Individual £ tests grouped by permutation (pooled vari-
ance estimates) could be completed for only 52 of 60
dual procedures for InTT and InST because of insuffi-
cient numbers for some permutations. Only 5 of 52 dual
procedures (9.6%) and 2 of 52 dual procedures (3.8%)
differed significantly for the two permutations, with re-
spect to InST and InTT, respectively. To put these results
in perspective, if the null hypotheses were true and
there were no differences among permutations, then 5%
of t tests were expected to be positive by chance alone.
Probability plots and Kolmogorov-Smirnov tests indicated
that the uniform distribution fits the observed P values for
both LnTT and LnST (Kolmogorov-Smirnov P values > 0.15
for both).

Aggregate Models

Table 5 displays analysis of variance (ANOVA) results
(model 1) for the same 60 CPT1-2 combinations (1,862
surgeries), each with two permutations (and no fewer
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Table 4. Frequency and Distribution of Component Common Procedural Terminology Codes for Dual Procedure Surgeries Cross-
tabulated by Surgical Specialty Categories

Category Descriptor CAT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Integument 1 576 76 2 14 15 0 6 3 1 0 0 8 0 1 5 3 2 1 2 1
Musculoskeletal 2 116 1670 22 12 10 0 62 4 1 0 0 2 0 O 74 6 3 13 3 0
Respiratory 3 55 54 605 22 9 7 136 4 0 O 0 1 0 5 4 4 7 A1 00
Cardiovascular 4 22 35 16 1532 1 3 3 14 3 0 0 1 1 1 1 1 0 1 2 31
Hematology 5 91 23 5 30 26 0 29 5 1 0 2 8 0 O 2 0O 0 2 51
Mediastinum 6 0 1 48 o 1 2 3 0o 1 0 0 0 O 1 0 0O 0 0O 0O
Digestive 7 86 40 85 36 35 0 808 263 9 0 30 181 2 A1 8 0 3 14 3 2
Urinary 8 9 4 2 25 7 0 188 844 84 O 0 48 0 O 1 0O 0 5 10
Male genital 9 2 1 0 1 3 0 13 73 72 0 0 0 0 O 0 0O 0 0 10 O
Intersex 10 0 0 0 0 0O 0 0 0 O 0 0 0 O 0 0O 0 0O 0O
Laparoscopic 11 6 1 1 2 1 0 21 10 17 0 48 40 3 2 0 0O 0 0O 0O
Female genital 12 31 1 1 7 24 0 97 92 1 0 17 401 6 O 1 0o 0 1 10
Maternity care 13 0 0 0 0 2 0 7 0o 1 0 1 31 5 0 0 0o 0 1 00
Endocrine 14 6 1 9 0 2 0 4 3 0 O 1 2 0 7 0 1 0 0 0O
Nervous system 15 19 88 14 3 10 8 1 0 0 0 2 0 0 29 2 8 10 2 3
Eye and adnexa 16 38 4 7 1 0 0 0 0 0 O 0 1 0 1 2 545 0 1 0 45
Auditory 17 22 0 0 0 0 O 4 0 0 O 0 0 0 O 0 0 56 0 0O
Radiology 18 4 4 0 1 10 0 16 0 O 0 6 0 O 0 0O 0 0O 00O
Pathology 19 0 0 0 0 0 O 0 0 0 O 0 0 0 O 0 0O 0 0O 0O
Medicine 20 1 0 0 9 0 O 2 0 0 O 0 0 0 O 0 1 o 1 0 2

Frequency and distribution of component CPTs for dual procedure surgeries are cross-tabulated by surgical specialty categories (CPT1 in rows and CPT2 in
columns). The diagonal of the table demonstrates that component CPTs were derived from the same surgical specialty in 70% (7,489) of surgeries; n = 10,737
dual procedure surgeries, 205 surgeons, 136 anesthesiologists.

CAT = surgical specialty categories; CPT = Common Procedural Terminology code.

than 10 surgeries each), as above. Permutations of dual
CPTs did not differ (P < 0.05) with respect to LnTT and
LnST. CPTA-B and type of anesthesia were important
determinants (P < 0.05) of time estimates for LnTT. The
first-order interaction, CPTA-B * Anes, was not tested
because too many CPTA-B combinations were associated
with only a single type of anesthesia (general). All other
first-order interactions were not significant. Results for
InST were similar to those for InTT.

Primary Component Procedure

Table 6 displays details for an ANOVA of model 2
performed for dependent variable InTT. Note CPT1-2 is
the ordering given by the provider. All seven indepen-
dent factors were retained as significant (P < 0.05), and
together they explained 68.7% of the variability in InTT.
The independent factors in decreasing order of impor-
tance by F ratios were MTE1, MTE2, Anes, Emerg, Age,

CAT1, and CAT?2. The order for the independent factors
was the same for a similar analysis of InST, which is not
reported in detail herein. Type III sums of squares were
used in the ANOVA.

Longest Component Procedure

Table 7 displays details for an ANOVA of model 3
performed for dependent variable InTT (n = 9,833
CPTL-S combinations). Note that CPTL-S are dual CPT
codes ordered by decreasing MTE. All seven indepen-
dent factors were retained as significant (P < 0.05), and
together they explained 70.5% of the variability in InTT.
The independent factors in decreasing order of impor-
tance by F ratios were MTEL, Anes, MTES, Emerg, Age,
CATL, and CATS. Type III sums of squares were used in
the ANOVA, and a similar ordering of main effects was
obtained for an ANOVA of InST.

Table 5. Analysis of Variance Results for Model 1 on Dependent Variable InTT

Independent Factor SSE df MSE F Ratio P
CPT A-B 443.671 59 7.520 112.242 0.0000
Anes 17.657 3 5.882 87.798 0.0000
Permutations 0.036 1 0.036 0.537 0.4637
Permutations * Anes 0.073 3 0.024 0.362 0.7806
Permutations * CPTA-B 3.670 59 0.062 0.929 0.6304
Error 116.307 1736 0.067 — —

Results of a three-factor main-effects analysis of variance on dependent variable InTT (> = 89.3%; df = 1,736; n = 1,862 surgeries). The interaction term CPT
A-B * Anes could not be tested because a large number of CPT A-B surgeries were associated with only a single type of anesthesia (usually general).

Anes = type of anesthesia; CPT = Common Procedural Terminology code; InTT = natural logarithm of total time; MSE = mean square error; SSE = sum squared

errors.
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Table 6. Main-effects Analysis of Variance on Model 2 for Dependent Variable InTT

Independent Factor SSE daf MSE F Ratio P
MTE1 780.899 1 780.899 6064.183 0.0000
MTE2 110.599 1 110.599 858.876 0.0000
Anes 61.423 3 20.475 158.998 0.0000
Emergency status 2.341 1 2.341 18.177 0.0000
Age 1.475 1 1.475 11.457 0.0007
CAT1 15.357 17 0.903 7.015 0.0000
CAT2 11.543 18 0.641 4.980 0.0000
Error 1266.219 9833 0.129 — —

Results of a seven-factor main-effects analysis of variance on dependent variable InTT for CPT1-2 (2 = 68.7%; df = 9,833; n = 9,876 dual procedure surgeries).

Anes= type of anesthesia; CAT = surgical subspecialty category for CPT1 or 2 as defined in Table 2; CPT = Common Procedural Terminology code; MSE =
mean squared error; MTE = median time estimate for CPT 1 or 2; SSE = squared sum of errors.

In comparing the results of tables 7 and 8, we noted
that the overall explanatory power of model 3 as mea-
sured by r” is slightly better than that of model 2. Fur-
thermore, the relative importance of factors anesthesia
and MTE2 were reversed between table 6 and table 7.

Simplified Models

Model 3 had greater explanatory power for InTT and
InST regardless of the number of model factors included
(table 8). The explanatory power of model 2 degraded
noticeably when going from a three-factor to a two-
factor model. The explanatory power of model 3 de-
creased noticeably only when going from a two-factor to
a one-factor model. In fact, a one-factor model for InTT
using model 3 is superior to a three-factor model based
on model 2. These observations further support the
somewhat better explanatory power using ordered
MTEs rather than provider-designated codes to estimate
surgical times for dual-procedure surgeries.

Discussion

Choosing a highly appropriate probability model is an
important first step in forecasting surgical procedure
times with appropriately estimated probabilities. Our
results indicated that the lognormal model was signifi-
cantly better than the normal model for surgeries com-
posed of exactly two procedures. These findings com-

plement and affirm research conclusions based on
previous analyses of single-procedure surgeries.

Cost structures have been used to determine the per-
centile point of time models used to allocate surgical
specialty block times."® In an analogous procedure, min-
imal cost analyses may be used to allocate time to dual-
procedure surgeries. Different point estimates may be
chosen for varying cost structures, and fitting a statistical
model to surgical procedure times is a good way to
obtain these estimates.

Coding Permutations

We were unaware how permutations of component
CPTs were determined for the dual-procedure surgeries
in our data set. There were no known rules to determine
which permutations of multiple procedure codes were
“correct.” We could not be certain if procedures in our
database were ordered first done-first recorded, greatest
medical impact first, surgeon’s own specialty first, high-
est fee first, or simply arbitrarily. We were also unable to
determine (from a nonscheduling perspective) if permu-
tations represented different, similar, or identical surger-
ies. Coding permutations did not appear to matter from
the perspective of scheduling surgical procedure times.
However, it is possible that some functionally distinct
permutations exist that (for legitimate reasons) should
be modeled separately. This important question awaits
further research.

Table 7. Main-effects Analysis of Variance on Model 3 for Dependent Variable InTT

Independent Factor SSE daf MSE F Ratio P
MTEL 757.556 1 757.556 6249.135 0.0000
Anes 62.071 3 20.690 170.677 0.0000
MTES 10.2264 1 10.2264 84.359 0.0000
Emergency status 2.501 1 2.501 20.672 0.0000
Age 1.1534 1 1.154 9.518 0.0020
CATL 11.003 17 0.647 5.339 0.0000
CATS 7.548 18 0.419 3.459 0.0000
Error 1192.012 9833 0.121 —_ —_

Results of a seven-factor main-effects analysis of variance on dependent variable InTT for CPTL-S (2 = 70.5%; df = 9,833; n = 9,876 dual procedure surgeries).

Anes = type of anesthesia; CAT = surgical subspecialty category for CPTL or CPTS; CPT = Common Procedural Terminology code; MSE = mean squared error;
MTE = median time estimate for CPTL or CPTS; SSE = squared sum of errors.
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Table 8. Serial Main-effect Analysis of Variance with Independent Factors Subtracted from the Model

Main Effects MTE1-2 MTE1-2 MTEL-S MTEL-S
Dependent variable InST InTT LnST InTT
7-Factor r? 68.2% 68.7% 70.3% 70.5%
3-Factor r? 67.1% 67.6% 69.4% 69.7%
2-Factor r? 65.1% 66.3% 69.1% 69.5%
1-Factor r? 61.4% 63.4% 66.9% 68.2%

Results of serial main effect analysis of variance with independent factors subtracted from the model one after another in order of increasing factor F ratio as
determined from the initial seven-factor analysis of variance (tables 6, 7); n = 9,876 cases, df = 9,833.

InST = natural logarithm of surgery time; InTT = natural logarithm of total time; MTE = median time estimate; r? = % variation in the dependent variable explained

by the independent variables.

Individual dual-procedure surgeries are difficult to
model because they are performed infrequently. From
this perspective, it is important to reduce coding permu-
tations because (if modeled separately) these also reduce
the number of cases modeled in each group. Reducing
permutations is particularly important with multiple pro-
cedures, e.g., six different permutations are possible
from three component CPTs.

Based on our research, we propose that when model-
ing individual dual-procedure combinations, the surger-
ies be designated in order of decreasing MTEs for the
component procedures. This approach would identify
the longest of the two dual CPT surgeries and would
reduce permutations, increase sample sizes, reduce the
number of factors required for modeling, and encourage
segmentation by type of anesthesia (and where practical
by surgeon). This policy could be applied to surgeries
with two or three CPT codes designated.

We compared two aggregate models, a provider-or-
dered model (CPT1-2) against another model that ap-
plied a uniform ordering based on the relative MTEs
(CPTL-S). The r* measured for the model with ordered
MTEs was numerically greater than for the provider-
designated CPTs. Further research might indicate
whether there are meaningful subsets of the data for
which the model using the provider designation is supe-
rior or whether a mathematically more sophisticated
model might result in a different conclusion than the one
we found.

We recommend use of the lognormal model for esti-
mating surgical times for surgeries with two component
procedures. Our results help legitimize the use of log
transforms to normalize surgical procedure times prior
to hypothesis testing'* using linear statistical models.

Limitations

Goodness-of-fit tests may inappropriately reject pre-
ferred models under a variety of circumstances if they
are the only tools used for model selection. Causes of
poor fits to a correct model include rounding of shorter
procedure times, large sample sizes, untrimmed statisti-
cal outliers, and failure to properly segment sample mix-
tures. These and other causes of model rejection have
been discussed in a previous publication.* We elected
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not to trim outliers from our data because we had no
information to support doing so.

Uncertainty would arise with a modeling policy order-
ing the longest case first if the component CPTs pos-
sessed nearly equal time estimates. In that event, arrival
of a new surgeon or additional experience with compo-
nent CPTs could change the order of the component
CPTs by altering the procedure-designated CPTL. Uncer-
tainty about the longest procedure (thus the order of
multiple procedures) is a limitation if this method of
naming dual-procedure surgeries were to be adopted.

We showed previously'? that surgeons differ in vari-
ability in surgical times involving a single CPT. We did
not include the surgeon as a factor in building our
models for dual CPTs. Our data set, although it was a
complete census of all surgeries performed at a major
hospital over a 7-yr period, was not large enough to
permit a model to be estimated using the surgeon as a
factor. Other factors known in practice to affect variabil-
ity in surgical times were also omitted from our models.

In this manuscript, surgeon work rate effect was not
investigated for dual-procedure surgeries. Research on
single-CPT surgeries suggested that surgeon work rate
effect'? is an important factor whenever the lognormal is
superior to the normal distribution for modeling surger-
ies. We did not examine surgeon effect in this study
because too few samples of dual-procedure surgeries
each contained enough surgeons with case numbers
sufficient to support the analyses. Based on our previous
research, however, we believe that surgeon work rate is
second in importance after procedure code (and ahead
of type of anesthesia) in explaining variability in dual-
procedure surgeries.

Conclusions

We studied individual and aggregate models of dual-
procedure surgeries. Individual models fit a mathemati-
cal distribution to surgeries segmented by dual CPT, type
of anesthesia, or other factors in a subset of the data.
Aggregate models used all the records from all dual CPTs
to derive time estimates. Aggregate models make im-
plicit assumptions that the variability in each of the data
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subsets is similar. Dual CPT surgeries were better mod-
eled by the lognormal distribution than by the normal
distribution. Permutations of individual dual CPTs did
not appear to represent statistically distinct procedures
with respect to TT and ST. Our results suggested it might
be practical to improve time estimates for infrequent
dual CPT surgeries by simply considering the duration of
the longest procedure and type of anesthesia.

The authors thank Gerard Bashein, M.D. (Professor of Anesthesiology, Univer-
sity of Washington, Seattle, Washington), for his assistance.
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