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Will Xenon Be a Stranger or a Friend?
The Cost, Benefit, and Future of Xenon Anesthesia

Xenon is both an old and a new anesthetic. Although its
anesthetic properties have been known for more than
50 yr, it was largely forgotten until 1990,1 mainly because
of its high cost. Aside from this problem, xenon possesses
many of the characteristics of an ideal anesthetic. For ex-
ample, its blood–gas partition coefficient is extremely small
(0.115),2 yielding rapid emergence from anesthesia3

regardless of the duration of anesthesia.4 It lacks teratoge-
nicity,5 and it produces analgesia,6 thereby suppressing
hemodynamic and catecholamine responses to surgical
stimulation.7,8 It is also a potent hypnotic.9,10 Unlike many
conventional anesthetics, xenon does not produce hemo-
dynamic depression in healthy humans11 and in dogs with
normal hearts and with cardiomyopathy,12 at least in part
because it has no actions on some important cardiac ion
channels.13,14 The characteristics of xenon have been re-
viewed more extensively elsewhere.15,16

Essentially all previous studies of xenon, even in humans,
have been relatively small. This issue of ANESTHESIOLOGY con-
tains the first large-scale clinical evaluation of xenon anes-
thesia.17 The study, conducted by Roissant et al.,17 demon-
strates that xenon and nitrous oxide–isoflurane are at least
equivalent in efficacy and safety. This study is undoubtedly
a necessary step toward wide application of xenon. How-
ever, the real question is whether there is a true future for
xenon. In light of the work by Roissant et al.,17 it is reasonable
to ask this question now. During the last decade, we have
accumulated considerable knowledge about the actions of
xenon. However, the answer to this question is not obvious.

The Cost

Xenon currently costs approximately US $10.00 per
liter. If one uses a closed breathing circuit, xenon anes-
thesia is not as expensive as one might expect from the
price of the gas, because the amount of xenon absorbed
by the tissues is small as a result of its extremely low

solubility. In our simulation, based on Japanese prices,18

anesthetizing a 70-kg adult with 1 minimum alveolar
concentration of xenon (71%) for 240 min using a closed
circuit requires approximately 16 l of xenon and costs US
$167.00 (including the costs for oxygen, muscle relaxants,
and the soda lime). This may actually be an underestimate,
since the closed-circuit technique requires that the breath-
ing system occasionally be flushed and refilled to wash out
nitrogen released from the patients’ body tissues. In con-
trast, the costs of nitrous oxide and isoflurane are US
$30.00 and $74.00, respectively, if a closed-circuit tech-
nique or a total fresh gas flow rate of 3 l/min (i.e., nitrous
oxide, 2 l/min, and oxygen, 1 l/min) are used.

Obviously, this cost analysis depends on the price of
xenon, which has fluctuated a great deal over the last
20 yr due to the changing balance between supply and
demand within a dynamic market. The price was US
$4.00 in the late 1980s, increased to US $18.00 in 1998,
and then decreased to the current value of approxi-
mately US $10.00. It is difficult to predict the future cost.
However, even if the price of xenon is prohibitively high
at this time, technologic innovations in xenon produc-
tion (and a growing market) may lead to lower costs. For
example, xenon does not have to be produced de novo
but can be retrieved from the waste anesthetic gas (i.e.,
recycling). Because the waste gas contains much higher
concentrations of xenon (e.g., 50 to approximately 60%)
than does the air (0.087 ppm), its retrieval should be
much less costly. The profit incentive may also promote
international trade of xenon. Russia, for example, is a
promising supplier, because the price of xenon is cur-
rently US $5.00 or less in that country.

Can’t the Cost of Xenon Be Justified?

Xenon enthusiasts argue that the gas has two advan-
tages: environmental and medical. The environmental
advantage is that xenon is not a greenhouse gas and,
hence, does not lead to global warming. It is also unre-
active and, thus, should not affect the ozone layer, as do
nitrous oxide and volatile anesthetics. However, the is-
sue is not this simple. First, simply adopting a low-flow
or closed-circuit technique can considerably reduce the
negative impacts of conventional anesthetics. Second,
xenon is not perfectly environmentally friendly. Produc-
ing 1 l of xenon gas requires 220 watt-hours of energy, a
million times more than that for nitrous oxide, because
xenon is purified by fractional distillation of the liquefied
air, which involves multiple heating, cooling, and pres-
surization processes.19 This large energy consumption,
and the resultant emission of carbon dioxide, certainly
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diminishes the environmental advantage of xenon. Even
if xenon has measurable environmental advantages, it is
very difficult to incorporate these in a cost-benefit anal-
ysis because the value of the environment differs con-
siderably among different countries and societies. Fur-
thermore, environmental protection is considered a
“public good” in an economic sense and, thus, cannot be
assigned to any individual economic entity.20

Does xenon have medical advantages that justify the
cost? The investigations over the past decade have revealed
many of its advantageous characteristics, but none of these
appears sufficient to justify the cost by itself. Xenon pro-
vides faster emergence, but the difference is only a matter
of minutes, and the time to ward readiness is not affected.17

A lack of cardiac depression is certainly useful, but whether
this represents a real clinical benefit is unclear, particularly
since we are already doing a pretty good job anesthetizing
millions of patients with fragile hearts. What we really need
is evidence that xenon improves outcome (i.e., results in
less morbidity and mortality). Such evidence is scarce, even
for conventional anesthetics or anesthetic techniques, but
xenon needs to be tested against this idealistic criterion
because its cost is so high. Because the current anesthetics
are so safe, it is unrealistic to expect that xenon will pro-
duce measurable improvements in the outcomes of ordi-
nary patients. Therefore, the target population will be high-
risk patients. In fact, the kinds of patients excluded from
the multicenter trial conducted by Rossaint et al.17 are
exactly the ones who might benefit from xenon. For ex-
ample, pregnant or breast-feeding patients may benefit be-
cause xenon is low in teratogenicity and toxicity and be-
cause xenon quickly leaves the body after anesthesia.
Patients with disturbed liver function and/or renal function
may also benefit because of low toxicity and a lack of he-
modynamic depression leading to preserved organ perfu-
sion.21 Those with congestive heart failure may also fare bet-
ter because of xenon’s lack of cardiac depression. However,
these patients represent only a small fraction of the total
number of people requiring general anesthesia, and the re-
duced numbers may also have an impact on economics.

Conclusions

The investigations over the past decade and the cur-
rent multicenter trial by Rossaint et al.17 have set the
stage for us to embark on the crucial step of testing
whether xenon improves outcomes in high-risk patients.
Several hypotheses appear worthy of investigation. For
example, does xenon better preserve the function of
vital organs such as the liver and kidneys in patients who
have preexisting dysfunction in these organs? Does xe-
non facilitate recovery of trauma patients in the shock

state by its lack of hemodynamic depression, leading to
better perfusion of vital organs? Does xenon improve
outcome in patients undergoing major surgery by pro-
viding more optimal hemodynamics?§ Before answering
these questions, we cannot make a convincing conclu-
sion as to whether xenon is a stranger (after which the
gas is named) or a friend to anesthesiologists.
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The Alveolar Epithelium

Suspect or Innocent Bystander?

THE alveolar epithelium is often viewed as a passive
bystander in respiratory function, functioning primarily
as a barrier. Through the work of Pan et al.1 and oth-
ers,2–4 we have learned that it plays an active role in
maintaining homeostasis in the alveolar space through
production of key proteins, such as surfactants, surfac-
tant apoproteins, and cytokines, and through the clear-
ance of excess alveolar liquid via the activity of basolat-
eral sodium–potassium ATPases. These synthetic and
homeostatic functions become particularly important in
the setting of acute lung injury, in which failure of the
alveolar epithelium is associated with increased
mortality.5,6

Studying the alveolar epithelium is complex; in vivo
studies are complicated by the participation of a number
of active cell types, including alveolar type I and type II
cells and alveolar macrophages. To determine the con-
tributions of each cell type is impossible. Alternatively,
in vitro studies are complicated by the fact that, thus far,
it has proved impossible to culture pure alveolar type I
cells, the cell type that provides the majority of cells
forming the alveolar barrier. Nevertheless, in vitro stud-
ies have provided crucial information about the meta-
bolic and synthetic activity of the alveolar epithelial
barrier.

In this issue of ANESTHESIOLOGY, Giraud et al.7 report an
elegant series of experiments describing the effects of
inhaled anesthetics on the ability of alveolar type II cells
to produce inflammatory cytokines. Using recombinant
murine interleukin (IL) 1�–primed alveolar type II cells,
Giraud et al.7 showed reversible inhibition of IL-6, mac-
rophage inflammatory protein 2, and monocyte che-
moattractant protein 1 secretion using clinically relevant
concentrations of inhaled anesthetics. The reduced se-
cretion was not a result of toxicity, as the investigators
controlled for cell viability by measuring lactate dehy-
drogenase release, which was not increased. It is inter-
esting to note that the inhibitory effect was identical in
all three anesthetics tested, suggesting a common mech-
anism. The effect of the anesthetics appeared to be at the

transcriptional level, as macrophage inflammatory pro-
tein 2 mRNA concentrations were decreased in a similar
manner to the protein. It is intriguing to speculate what
might have happened to the mRNA concentrations of a
“housekeeping” gene such as B-actin, which might have
suggested an effect of differential gene expression, per-
haps mediated by the transcription factor nuclear factor
��, as opposed to global suppression of transcriptional
activity caused by the anesthetics.

What are the implications of the findings of Giraud et
al.7? First, there is increasing evidence that anesthetics
affect alveolar type II cellular function in vitro8,9 and in
animals,10,11 so they likely have similar effects in hu-
mans. The complex interactions between the cellular
components of the alveolar space likely are responsible
for the diversity of responses seen with common injuries
such as pneumonia or aspiration of gastric contents.
Could inhaled anesthetics be used as a therapy in most
patients with acute lung injury? This seems unlikely, as
the same authors have shown that prolonged exposure
to anesthetics may induce cytotoxicity. In addition, Mol-
liex et al.8 demonstrated halothane-induced inhibition of
sodium–potassium ATPase activity in alveolar type II
cells, which would be expected to worsen or inhibit
alveolar liquid clearance in the setting of acute lung
injury. Caution should be exercised in assuming that less
inflammation in the lung is good: inflammation may be
beneficial, as it plays a key role in bacterial killing.
Perhaps more interesting is to speculate what effects
inhaled anesthetics may have in a patient who suffers an
intraoperative infectious insult to the lung, either
through the bloodstream (bacteremia) or airspaces (gas-
tric aspiration). Should these patients be transitioned to
an intravenous anesthetic in an effort to spare the alve-
olar epithelium any adverse effects? The answer to this
question will require careful in vivo analysis, but we
now have the ability to measure the response of a num-
ber of systems simultaneously using modern molecular
genetic techniques such as gene chip analysis. Until
then, a change in clinical practice is not justified; how-
ever, the innovative studies of Giraud et al.7 suggest that
manipulation of the alveolar epithelium may be a strat-
egy that we eventually can employ to decrease the ef-
fects of acute lung injury.
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