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THE microsomal enzyme heme oxygenase (HO; EC
1.14.99.3) catalyzes the oxidation of heme to biliverdin-
IXa, iron, and carbon monoxide.1 So far, three isoforms
of this enzyme have been cloned. While HO-2 and HO-3
are constitutively expressed,2,3 HO-1 is highly inducible
in response to a variety of stimuli and has been identified
as the major 32-kd heat shock (stress) protein (HSP) 32.4

Heme oxygenase–1 is essential for the function of the
normal liver and plays a major protective role in the
stress-exposed liver.5 It exerts antioxidant properties by
cleavage of the prooxidant heme and by the production
of biliverdin, which is subsequently reduced to the an-
tioxidant bilirubin.6 Furthermore, its product carbon
monoxide serves to maintain liver perfusion5 and has
potent antiinflammatory effects.7

Many studies have shown differential effects of volatile
anesthetics on the perfusion, function, and integrity of
the liver. Moreover, preliminary evidence suggests that
volatile anesthetics may interfere with stress gene ex-
pression and function.8 We therefore aimed to deter-
mine whether volatile anesthetics affect hepatic HO-1
gene expression.

Materials and Methods

Animals
The experimental protocol was approved by the local

animal care and use committee, and all animals received
humane care according to the criteria outlined in the
Guide for the Care and Use of Laboratory Animals.9

Male Sprague-Dawley rats (Charles River, Sulzfeld, Ger-
many) weighing 299 � 16 g were subjected to arterial
blood pressure monitoring via the carotid artery, and a
tracheotomy was performed to maintain airway paten-
cy.10 The animals were randomized into one of the
following groups (n � 6 for each group): group 1 (con-
trol), anesthesia with 60 mg/kg pentobarbital sodium

intraperitoneally (Alvetra, Neumuenster, Germany) fol-
lowed by intravenous bolus injections of 6 mg/kg every
30 min; group 2, isoflurane (2.3 vol%; Baxter, Unter-
schleissheim, Germany); group 3, desflurane (12 vol%;
Baxter, Unterschleissheim, Germany); or group 4,
sevoflurane (4 vol%; Abbott, Wiesbaden, Germany).

These concentrations of volatile anesthetics corre-
spond to a minimum alveolar concentration in the rat of
1.6–1.8.11–13 Volatile anesthetics were delivered in an
atmosphere of 30% oxygen (Narcorex19; Draeger,
Luebeck, Germany), continuously monitored (PM8050;
Draeger, Luebeck, Germany), and spontaneously inhaled
by the animals through a tracheotomy tube for the ex-
periment’s duration of 6 h. Body temperature was main-
tained at 38 � 4°C. This regimen resulted in an arterial
oxygen tension of 60–100 mmHg and an arterial carbon
dioxide tension of 30–50 mmHg in all groups. Two
animals that served as positive controls for the detection
of HSP27 and HSP70 were subjected to 1 h of hemor-
rhagic shock and 5 h of resuscitation as previously
described.10 Additional experiments were performed
to mimic volatile anesthetic-induced hypotension in
rats anesthetized with pentobarbital using the vasodila-
tor dihydralazine (n � 4; Novartis, Nuernberg, Ger-
many). The dose of dihydralazine ranged from 4 to
8 mg · kg�1 · 6 h�1 and was adjusted to achieve a mean
arterial pressure (MAP) of 76 � 12 mmHg, which was
the mean MAP of all animals subjected to volatile
anesthetics.

RNA Extraction and Northern Blot Analysis
Total RNA was isolated from frozen liver tissue

(TRIZOL; Gibco, Grand Island, NY) as previously de-
scribed.10 Ten micrograms of RNA were loaded per lane,
size fractionated, and transferred to a nylon membrane.
Hybridization was performed with P32�-deoxycytosine
triphosphate–radiolabeled HO-1,14 HSP27, and HSP70
complementary DNA.10 All blots were reprobed with
18S ribosomal RNA complementary DNA to verify equal
loading. Autoradiographs were analyzed by laser scan-
ning densitometry (Personal Densitometer; Molecular
Dynamics, Krefeld, Germany).

Western Blot Analysis
Frozen liver tissue was homogenized and lysed in

TOTEX buffer (20 mM HEPES [pH 7.9], 0.35 M NaCl, 20%
glycerol, 1% Nonidet P-40, 1 mM MgCl2, 0.5 mM EDTA,
0.1 mM EGTA) as previously described.10 Each lane of a
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12% sodium dodecyl sulphate polyacrylamide gel con-
tained 100 �g of total protein. After protein separation
and electroblotting, HO-1 was detected by a rabbit poly-
clonal anti–HO-1 antibody (1:1,000 dilution, SPA-895;
StressGen Biotechnologies, Victoria, Canada) using the
Enhanced Chemiluminescence (ECL) detection kit (Am-
ersham Pharmacia, Freiburg, Germany) according to the
manufacturer’s instructions.

Data Analysis
Data are presented as median (box: 25th and 75th

percentiles; error bars: 10th and 90th percentiles). Sta-
tistical differences between experimental groups were
determined using a Kruskal–Wallis one-way analysis of

variance on ranks followed by a post hoc Student–
Newman–Keuls test. A P value � 0.05 was considered to
indicate a significant difference.

Results

Effect of Volatile Anesthetics on Heme Oxygenase–1
Gene Expression in the Liver
Hepatic HO-1 transcripts were barely detectable in the

animals anesthetized with pentobarbital. In contrast, 6 h
of anesthesia with isoflurane led to a substantial increase
in HO-1 messenger RNA (mRNA) and protein (fig. 1).
Densitometric analysis of all experiments revealed a
more than 2.3-fold induction of HO-1 mRNA by isoflu-
rane as compared to the pentobarbital control experi-
ments (fig. 1).

Anesthesia with sevoflurane led to a 3.3-fold increase
in HO-1 mRNA that tended to be even more pronounced
as compared to isoflurane (fig. 1). In sharp contrast to
the inducing effect of isoflurane and sevoflurane, desflu-
rane did not upregulate HO-1—i.e., the hepatic HO-1
mRNA content was comparable to that of pentobarbital
controls (fig. 1). Western blot analyses revealed a similar
pattern of HO-1 protein accumulation in response to the
different anesthetic agents (fig. 1).

Effect of Volatile Anesthetics on Heat Shock Protein
27 and Heat Shock Protein 70 Gene Expression in
the Liver
To test whether volatile anesthetics lead to a general

induction of stress-inducible HSPs, the same RNA sam-
ples as shown in figure 1 were hybridized with radiola-
beled HSP27 or HSP70 complementary DNA probes. No
signal was detectable under control, isoflurane, desflu-
rane, or sevoflurane anesthesia. To exclude the possibil-
ity that this was due to technical reasons, the RNA of two
animals that had been subjected to hemorrhagic shock

Fig. 1. Expression of heme oxygenase–1 (HO-1) messenger RNA
(mRNA) (A), 18S ribosomal RNA (B), or HO-1 protein (C) in the
livers of two representative animals subjected to 6 h of anes-
thesia with pentobarbital sodium (C), isoflurane (I; 2.3 vol%),
desflurane (D; 12 vol%), or sevoflurane (S; 4 vol%). (D) Relative
densitometric units of HO-1 mRNA concentrations. Data are
presented as median (box: 25th and 75th percentiles; error
bars: 10th and 90th percentiles) for n � 6 animals per group.
*P < 0.05 versus pentobarbital control (C). #P < 0.05 versus
desflurane (D).

Fig. 2. Expression of heat shock protein (HSP) 27 messenger
RNA (mRNA) (A), HSP70 mRNA (B), and 18S ribosomal RNA (C)
in the livers of two representative animals subjected to 6 h of
anesthesia with pentobarbital sodium (C), isoflurane (I; 2.3
vol%), desflurane (D; 12 vol%), or sevoflurane (S; 4 vol%). � �
positive control.
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and resuscitation10 were used as positive controls and
showed a strong signal (fig. 2).

Effect of Hypotension on Hepatic Heme Oxygenase–
1 Gene Expression
The MAP was approximately 35% lower in the isoflu-

rane, sevoflurane, and desflurane groups as compared to
the pentobarbital controls (fig. 3). To evaluate the role of
hypotension in hepatic HO-1 induction, additional pen-
tobarbital control experiments were performed using
the vasodilator dihydralazine to lower the MAP to the
same extent (76 � 12 mmHg) as observed in the animals
treated with isoflurane, desflurane, or sevoflurane (78 �
8 mmHg). However, none of these animals exhibited
HO-1 mRNA accumulation in the liver (fig. 3).

Discussion

Our aim in this study was to evaluate the effect of
volatile anesthetics on hepatic HO-1 expression. Our
results indicate that different volatile anesthetics differ-

entially regulate HO-1 expression in the normal liver.
Whereas isoflurane and sevoflurane induced HO-1
mRNA and protein, desflurane did not affect the expres-
sion of this gene.

It has been shown previously that halothane may cause
hepatic expression of HO-1 in rats pretreated with phe-
nobarbital if administered under hypoxic condi-
tions.15,16 In contrast, neither halothane nor isoflurane
induced HO-1 in the liver during hypoxia in the absence
of phenobarbital pretreatment in these studies.16 This
discrepancy between the historical data and the obser-
vations described here is most likely due to the fact that
the total amount of volatile anesthetics administered was
much lower in the former study. While Yamasaki et al.16

used a 0.3 minimum alveolar concentration of isoflurane,
our experimental protocol included the administration
of a 1.7 minimum alveolar concentration. Moreover, the
time of exposure to the volatile anesthetics was limited
to 2 h in the previous reports, while it was 6 h in the
present study. Therefore, the sum of these data would be
consistent with a dose and time dependency of the
inducing effect of volatile anesthetics on hepatic HO-1
expression.

The reason for the differential induction of HO-1 by
different volatile anesthetics is not known. However, it
could be related to differences in the degree of hepatic
cellular stress after exposure to these agents.17–19 Thus,
we determined the effect of the different volatile anes-
thetics on the expression of other stress-inducible heat
shock proteins, such as HSP27 and HSP70, under the
same experimental conditions.10,15 However, neither
HSP27 nor HSP70 mRNA could be detected after 6 h of
anesthesia with the various agents. This is in accordance
with previous reports that have demonstrated induction
of HSP70 by volatile anesthetics only in combination
with phenobarbital pretreatment and hypoxia but not by
volatile anesthetics alone.15,16,20,21 These findings sug-
gest that the signal transduction pathway responsible for
volatile anesthetic-mediated HO-1 expression is indepen-
dent of the one leading to the induction of the general
heat shock response.

To exclude the possibility that the reduction in arterial
blood pressure by volatile anesthetics might be involved
in HO-1 induction, we lowered the arterial blood pres-
sure in additional animals anesthetized with pentobarbi-
tal to a similar extent as in the volatile anesthetic groups.
However, no induction of HO-1 could be observed un-
der these conditions. Therefore, hypotension itself does
not seem to be responsible for HO-1 induction. More-
over, since isoflurane, sevoflurane, and desflurane de-
creased the MAP to the same degree, this cannot explain
their differential effects on HO-1 expression.

Taken together, our findings demonstrate that volatile
anesthetics differentially induce HO-1 mRNA in the liver,
and this effect does not extend to other HSPs. Therefore,
volatile anesthetics can be considered as specific gene

Fig. 3. (A) Mean arterial pressure of rats during anesthesia with
pentobarbital sodium (C), isoflurane (I; 2.3 vol%), desflurane
(D; 12 vol%), sevoflurane (S; 4 vol%), or pentobarbital � dihy-
dralazine (Dihyd). Expression of heme oxygenase–1 (HO-1)
messenger RNA (B) or 18S ribosomal RNA (C) in the livers of
representative animals.
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regulators of hepatic HO-1, an enzyme that may exert
potent organ protective functions.5

The authors are grateful to Shigeki Shibahara, M.D., Ph.D. (Chairman, Depart-
ment of Applied Physiology and Molecular Biology, Tohoku University School of
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