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RELEASE of Ca*" from intracellular stores is a widespread
component in several signaling pathways.'™* It is well
known that inositol-1,4,5-tris:phosphate (IP5) triggers Ca”>"
release from intracellular stores'; however, cells possess
other intracellular Ca** releasing systems,' ™ including the
so-called Ca*"-induced Ca®" release system, mediated by
the ryanodine receptor- channel (RyR).' ™ Recently it was
found that the endogenous nucleotide cADP-ribose
(CADPR) is a potent activator of the RyR,' ™ and this nucle-
otide has been proposed to be a second messenger in
several intracellular signaling pathways." Biosynthesis of
cADPR from 3-NAD is catalyzed by adenosine diphosphate
(ADP)-ribosyl cyclase, and cADPR is hydrolysis is mediated
by the cADPR hydrolase to ADP-ribose (ADPR)."

Volatile anesthetics have multiple actions on intracel-
lular Ca*?* homeostasis,* ™ including activation of the
RyR and sensitization of this channel to pharmacologic
agonists such as caffeine and ryanodine.*~ Recently, we
reported that halothane can sensitize the RyR to cADPR
in sea urchin egg homogenates.” It has been previously
shown that the cADPR system is functional in porcine
smooth muscle cells.'® In fact, in porcine airway smooth
muscle cells cADPR has been shown to be a second
messenger responsible for intracellular Ca®" increase
induced by acetylcholine.'® In the current study, we
found that halothane potentiates the cADPR-induced
Ca*®" release through the RyR in porcine airway smooth
muscle cells. We propose that modulation of the cCADPR
signaling system by halothane may be an important com-
ponent of the complex effect of this volatile anesthetic
on intracellular Ca** homeostasis.

Materials and Methods

Microsomal Preparation Porcine Tracheal Smooth

Muscle

Porcine tracheal smooth muscle was quickly dissected,
chilled, and minced in ice-cold solution containing
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0.25 M sucrose, 20 mm Tris-HCI (pH 7.2), and 20 pg/ml
leupeptin. Microsomes were prepared by differential
centrifugation as described before.® Ca*" uptake and
release were measured in a medium containing 250 mm
N-methyl glucamine, 250 mm potassium gluconate,
20 mm HEPES buffer (pH 7.2), 1 mm MgCl,, 2 U/ml
creatine kinase, 4 mm phosphocreatine, 1 mm adenosine
triphosphate (ATP), 4 mm Pi, 25 ug/ml leupeptin,
20 pg/ml aprotinin, and 100 ug/ml soybean trypsin
inhibitor and 3 um fluo-3 was added. Fluo-3 fluorescence
was monitored at 490 nm excitation and 535 nm emis-
sion in a 250-ul cuvette at 37°C with a circulation water
bath and continuously mixed with a magnetic stirring
bar, using a Hitachi spectrofluorometer (F-2000) (San
Jose, CA). The addition of stock solutions of various
substances did not exceed 2% of the homogenate vol-
ume in the cuvette. Changes in fluorescence were cali-
brated to known Ca*" additions using separate samples
of the same microsomal preparation.

Materials

Fluo-3 was purchased from Molecular Probes (Eugene,
OR); IP;, oligomycin, and antimycin were from Calbio-
chem (San Diego, CA). All other reagents, of the highest
purity grade available, were supplied from Sigma Chem-
ical (St. Louis, MO).

The reported experiments were repeated at least three
to six times. When appropriate, data are expressed as
mean * SD. The unpaired ¢ test was used to evaluate
statistical significance; P values < 0.05 were considered
significant.

Results and Discussion

Activation of RyR by cADPR in Tracheal Smooth

Muscle Microsomes

It has been previously shown that the RyR-cADPR
system is present and functional in smooth muscle
cells.'®~'? Furthermore, cADPR is able to activate the
RyR in tracheal smooth muscle cells.'® Tracheal smooth
muscle cell microsomes supplemented with an ATP-
regenerative system sequester added Ca*" into vesicular
stores in an ATP-dependent manner and release Ca*" in
response to um concentrations of cADPR (fig. 1). The
cADPR-induced Ca®" release was inhibited by several
inhibitors of the RyR such as spermine, ruthenium red,
and the specific CADPR inhibitor 8Br-cADPR (fig. 1)."?
However, Ca*" release induced by cADPR was not in-
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Fig. 1. Effect of inhibitors on Ca** release induced by cADPR.
Experiments were carried as described in Materials and Meth-
ods. Values are mean * SD. The Ca*" release induced by 10 um
cADPR was tested in microsomes pretreated with either no
addition (control), 30 um ruthenium red (RR), 1 mg/ml heparin
(Heparin), or 10 um 8-Br-cADPR (a specific cADPR antagonist).

hibited by 1 mg/ml heparin, a specific antagonist of the
1P channel.'®> These observations confirmed the evi-
dence that cADPR activates Ca>" release through the
RyR in tracheal smooth muscle.

Effect of Halothane on cADPR-Induced Ca”"*

Release

We investigated the effect of 350 um halothane on the
CcADPR induced Ca ™ release. Figure 2 demonstrates the
effect of halothane on cADPR-induced Ca?" release, ad-
dition of 350 um halothane did not produce any signifi-
cant Ca’" release by itself; however, it sensitized the
Ca*" release system to cADPR (fig. 2). The half-maximal
concentration of cCADPR was decreased more than four-
fold by pretreatment of the microsomes with 350 um
halothane (fig. 2B), although the maximum Ca*" release
response to cADPR was not enhanced by halothane.
Thus halothane increased the apparent affinity of the
Ca’"-induced Ca®" release to stimulation by cADPR. We
also observed that 350 um halothane had no effect
steady-state Ca®" levels in the microsomal preparations.
The effect of halothane on the cADPR-induced Ca*"
release was abolished by the cADPR antagonist 8-Br-
CADPR (fig. 3). Furthermore, the endoplasmic reticulum
Ca*"-ATPase inhibitor thapsigargin was not able to po-
tentiate Ca®" induced by agonists of the RyR (data not
shown). These observations further support the hypoth-
esis that halothane at the concentration tested sensitizes
the RyR.

In conclusion, we present evidence that halothane can
interact with the new second messenger system modu-
lated by cADPR in tracheal smooth muscle cells. It is
possible that the effect of halothane on cADPR may play
an important role in the complex effect of volatile anes-
thetics on intracellular Ca** homeostasis in these cells.
Halothane can promote depletion of the intracellular
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Fig. 2. Effect of halothane on cADPR-induced Ca** release in
tracheal smooth muscle microsomes. In (4) Ca?* uptake was ini-
tiated by the addition of 1 mm ATP in the presence or not of 0.35
mmM halothane after the uptake reached steady state CADPR was
added and Ca** release was monitored with fluo-3 (as described in
Materials and Methods). I (B) dose dependence for cADPR is
shown. Ca** release was induced by different concentrations of
cADPR in the absence, or in the presence of 0.35 mm halothane.

Ca®" stores by a mechanism that appears to involve
leakage of Ca®" through both the IP; and RyR.(’ Our
current results indicate that halothane-induced Ca**
leakage may involve sensitization of the RyR to endoge-
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Fig. 3. Effect of 8-Br-cADPR on halothane induced sensitization
of the cADPR-induced Ca** release. Experiments were carried
out as described in Materials and Methods. Values are mean *
SD. The Ca®** release induced by 1 um cADPR was tested in
microsomes pretreated with no addition (control), 350 um halo-
thane (halothane), or 350 um halothane and 10 um 8-Br-cADPR
(halothane +8-Br-cADPR).
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nous levels of intracellular cADPR. Increased sensitivity
of the RyR to endogenous cADPR induced by halothane
may lead to depletion of sarcoplasmic reticulum intrave-
sicular Ca®” levels. This decrease in SR Ca*" will decrease
the amount of Ca®" available for SR Ca®" release during
agonist stimulation leading to decreased contraction.

References

1. Dousa, TP, Chini EN, Beers KW: Adenine nucleotide dinucleotide diphos-
phate: Emerging second messengers acting via intracellular Ca®* release. Am J
Physiol Cell Physiol 1996; 271:C1007-24

2. Coronado, R, Morrissette J, Sukhareva M, Vaughan DM: Structure and
function of ryanodine receptor. Am J Physiol Cell Physiol 1994; 266:C1485-504

3. Chini, EN, Beers KW, Dousa TP: Nicotinic acid adenine dinucleotide phos-
phate (NAADP) triggers a specific calcium release system in sea urchin eggs.
J Biol Chem 1995; 270:3216-23

4. Beltran, M, Bull R, Donoso P, Hidalgo C: Ca®"- and pH-dependent halo-
thane stimulation of Ca”" release in sarcoplasmic reticulum from frog muscle.
Am J Physiol Cell Physiol 1996; 271:C540-6

5. Blanck TJ, Peterson CV, Baroody B, Tegazzin V, Lou J: Halothane, enflurane,

Anesthesiology, V 97, No 4, Oct 2002

and isoflurane stimulate calcium leakage from rabbit sarcoplasmic reticulum.
ANESTHESIOLOGY 1992; 76:813-21

6. Pabelick, CM, Prakash YS, Kannan MS, Warner DO, Sieck GC: Effects of
halothane on sarcoplasmic reticulum calcium release channels in porcine airway
smooth muscle cells. ANgsTHEsIOLOGY 2001; 95:207-15

7. Chini EN: Effect of volatile anesthetics on cADP-ribose-induced Ca®* release
system. J Appl Physiol 2001; 91:516-21

8. Chini EN, Walker H: FK506 (tacrolimus) increases halothane-induced Ca?*
release from skeletal muscle sarcoplasmic reticulum. ANESTHESIOLOGY 2000; 92:
1361-5

9. Connelly TJ, Coronado R: Activation of the Ca?" release channel of cardiac
sarcoplasmic reticulum by volatile anesthetics. ANESTHESIOLOGY 1994; 81:459 - 69

10. Prakash YS, Kannan MS, Walseth TF, Sieck GC: Role of cyclic ADP-ribose
in the regulation of [Ca®"]; in porcine tracheal smooth muscle. Am J Physiol
1998; 274:C1653-60

11. White TA, Johnson S, Walseth TF, Lee HC, Graeff RM, Munshi CB, Prakash
YS, Sieck GC, Kannan MS: Subcellular localization of cyclic ADP-ribosyl cyclase
and cyclic ADP-ribose hydrolase activities in porcine airway smooth muscle.
Biochim Biophys Acta 2000; 1498(1):64-71

12. De Toledo FGS, Cheng J, Liang M, Chini EN, Dousa TP: ADP-ribosyl cyclase
in rat vascular smooth muscle cells properties and regulation. Circ Res 2000;
86:1153-9

13. Chini EN, Beers KW, Chini CS, Dousa TP: Specific modulation of cyclic
ADP-ribose induced Ca®* release by polyamines. Am J Physiol 1995; 269:
C1042-7

20z Iudy 01 uo 3sanb Aq 4pd-€000-000012002-2¥S0000/80090+/220 1/v/L6/4Pd-8loilE/ABOj0ISBYISBUE/W0D JIELDIBA|IS ZESE//:d)Y WOl papeojumo]



