
� EDITORIAL VIEWS

Anesthesiology 2002; 96:259–61 © 2002 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.

Multilead Precordial ST-segment Monitoring

“The Next Generation?”

A QUARTER century has passed since the first reports
describing use of precordial lead V5 to monitor for intra-
operative ischemia were published, and over a decade
has passed since we documented its sensitivity (75%)
using continuous 12-lead monitoring in 100 patients.1,2

Since then, V5 has become “a clinical routine.” In this
issue, Landesberg et al. present “the next generation,”
monitoring a larger cohort (185 patients) undergoing
higher-risk surgery (all vascular surgery), for a longer
period of time (48–72 h).3 Their results extend our
knowledge and add controversy, given their finding that
leads V3 (75%) and V4 (83%) are either equal or more
sensitive than V5 (75%). They recommend use of V4 over
V5 since its ST-segment is most commonly isoelectric on
the baseline electrocardiogram, extrapolating that this
makes it more likely to reflect ischemic changes. They
also recommend the use of two precordial leads to
approach 95% sensitivity to detect ischemia or
infarction.

Should this study alter our current clinical practice?
Should we “move to the right” in favor of V3 or V4 and
abandon V5? Should we encourage bipartisanship by
monitoring two precordial leads (requiring equipment
modification)? Or should we take the Libertarian ap-
proach by encouraging simplicity in monitoring? I would
argue that with the clinical data accumulated over the
past 10–15 yr. documenting associations of periopera-
tive tachycardia and ST-segment depression to adverse
outcome and beneficial effects of �-blockade, that so-
phisticated monitoring is considerably less important
than adequate prophylaxis and therapy.4,5 However,
since it is known that �-blockade cannot ensure suppres-
sion of ischemia nor prevention of infarction in all pa-
tients, evaluation of the current status of multi-lead mon-
itoring remains worthy of serious consideration.6

Reference cardiology texts state that subendocardial
ischemia induced by demand-related stress is manifested
by ST-segment depression in lead V5 and does not local-
ize the anatomic site of coronary obstruction.7 Yet even
Mason and Likar, the first to use the now universal

torso-mounted axial leads during exercise treadmill test-
ing (ETT), reported that V6, not V5, was the most sensi-
tive lead!8 Subsequent investigators have reported vary-
ing sensitivity, particularly between V4, V5, and V6

9–13

(table 1).
How can we reconcile these differences? Examination

of these studies reveals differences in ST-segment crite-
ria, (including magnitude and timing after the J-point,
varying even with the number of leads involved); the
time period considered (during exercise, during recov-
ery, perioperatively, etc.); temporal duration (with Landes-
berg et al. requiring prolonged duration � 10 min.)3;
mode of analysis (visual vs. computerized); incorpora-
tion of other physiologic parameters; and less frequently,
but of considerable theoretical interest, normalization
based on the height of accompanying R-wave.14 With all
of these factors, any simple explanation is likely impos-
sible. Given the common adage that the ST-segment
vector during subendocardial ischemia is directed to-
wards the apex of the ventricle (which V5 is said to be
closest to), it is possible that anthropomorphic factors
influencing the position of the heart in the chest such
as gender, body habitus, and chest diameter may be
important. However, this has not been studied. Com-
plex physiologic approaches using noninvasive body
surface mapping have been used, and more recently
invasive endo- and epicardial potentials with three-
dimensional computer modeling has provided an al-
ternative approach.15

Why is there not greater interest in the cardiology
community to nail down the precise sensitivities? Possi-
ble explanations include (1) nearly all stress tests in this
country use computerized 12-lead systems, (2) there is
strong evidence that a positive response in multiple
leads (along with greater magnitude of depression and
presence of a downsloping ST-segment) is related to a
larger area of myocardium at risk16,17 and (3) despite
calls for cost containment, thallium imaging, even after a
positive endotracheal tube is very common (as is cardiac
catheterization). In clinical practice, the whole of the
12-lead electrocardiogram is clearly greater than the sum
of its parts.

Another factor is the growing interest in continuous
12-lead monitoring for patients with acute coronary syn-
dromes (ACS). With transmural ischemia, lead sensitivity
is closely associated with the site of coronary occlusion
(whether transient or permanent) with leads V2 and V3

most sensitive for left anterior descending occlusion,
and lead III most sensitive for the right coronary artery.
In this setting, ST-segment elevation is a nearly universal
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finding. Circumflex occlusion results in a variable re-
sponse with primary elevation in posterior precordial
leads (i.e., V7, V8, etc.) or reciprocal ST-depression in
other precordial or axial leads.1 A recent multidisci-
plinary working group recommends leads III, V3, and V5

as the most sensitive combination for patients with
ACS.18

Krucoff et al. were the first to make a serious argument
for the value of continuous 12-lead electrocardiogram
monitoring in ACS patients with the concept of the
“12-lead fingerprint,” a unique pattern of leads and ST
segment magnitude sensitive to detecting reocclusion
after percutaneous transluminal coronary angioplasty
(PTCA).19 This approach has been used in major studies
of thrombolysis. Many intensive care unit bedside mon-
itors (and telemetry monitors) are now “12-lead ECG
capable” with a precordial lead cable and continuous ST
segment trending of all 12 leads. Recent American and
European ACS Guidelines now acknowledge the utility
of this approach but make no firm recommendations for
it.20,21 However, this approach includes a high rate of
false-positive responses (40%) because of changes in
QRS amplitude or vector with positional changes, ar-
rhythmia/pacing artifact and heart-rate–related changes
in ST-segment contour.22 In the perioperative setting,
the array of catheters, monitors, and drains and the need
to mobilize patients quickly are major logistical obsta-
cles. Artifact issues and the economically unfavorable
task of investigating episodes are formidable factors.

Aside from the monitoring issues raised by this study,
there is important information on perioperative ische-
mia. As noted in the parent publication, duration of
ischemia is a significant predictor of peak cTn-I level,
ischemic events associated with infarction are preceded
by increased heart rate (32 beats/min). People with
diabetes and patients with left ventricular hypertrophy
(LVH) are at highest risk.23 Diabetics are already known
to be at high risk for adverse outcome.24 Less is known
about LVH since many studies excluded these patients
because of concerns that the increased QRS voltage may
exaggerate the ST-segment response.14 We previously
noted that LVH was the strongest preoperative factor

multivariately associated with postoperative ischemia.25

Left ventricular hypertrophy is associated with acceler-
ated atherosclerosis, subendocardial ischemia, and ad-
verse long-term outcome.26 But its association with
plaque disruption, likely the necessary ingredient for
overt morbidity, is suggested by a recent study compar-
ing angiographic results over a 6 months interval.27 The
strongest adverse multivariate associations were LV mass
and elevated heart rate (� 80 bpm), while the strongest
protective association was with chronic �-blocker use.

Integrating the monitoring and clinical data, it seems
reasonable that sophisticated monitoring may be of
value to people with diabetes and those with LVH. A
targeted study in these cohorts of the value of therapeu-
tic intervention guided by multi-lead monitoring (in the
setting of concurrent �-blockade) would be most help-
ful. My clinical observations are that precordial lead
placements by physicians and nurses at all levels of
training remain imprecise (and are unavoidably affected
by surgical factors). Thus, I recommend that clinicians
use a “true” V4 or V5 along with an inferior axial lead,
control heart rate and pain, and use �-blockers as toler-
ated for all patients at risk.

Martin J. London, M.D. Professor of Clinical Anesthesia, Depart-
ment of Anesthesia and Perioperative Care, San Francisco Veterans
Affairs Medical Center/University of California, San Francisco, San
Francisco, California. londonm@anesthesia.ucsf.edu
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Genetics Infuses New Life into Human Physiology

Implications of the Human Genome Project for Anesthesiology and
Perioperative Medicine

GENETICS has revolutionized medicine. The human ge-
nome project has succeeded in sequencing almost all 3
billion nucleotides present in the human genome, an ac-
complishment that has been hailed as one of the greatest
achievements of our time. Although more than 99% of
human DNA is identical between individuals, residual vari-

ability not only makes each person unique but also, in the
context of medicine, may contribute to disease onset or
disease progression. As a result, the next step in the human
genome project is designed to investigate DNA variability
between species as well as between humans. Harnessing
genetic information from clinical studies to examine the
impact of genetic variability on disease characterization and
outcome is called functional genomics. In this issue of
ANESTHESIOLOGY, the study by Lasocki et al.1 provides an
example of how genetic variation in a common gene (the
angiotensin converting enzyme [ACE] gene) alters pressure
and flow relations during cardiopulmonary bypass. In this
study, the authors use the unique environment of the
operating room to answer a potentially important and clin-
ically relevant physiologic question and, in the process,
give new meaning to the operating room as the “last hu-
man physiology laboratory in medicine.”

This Editorial View accompanies the following article: Lasocki
S, Iglarz M, Seince P-F, Vuillaumier-Barrot S, Vicaut E, Henrion
D, Levy B, Desmonts J-M, Philip I, Bénessiano J: Involvement
of renin–angiotensin system in pressure–flow relationship:
Role of ACE gene polymorphism. ANESTHESIOLOGY 2002;
96:271–5.
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Anesthesiologists have long recognized that response
to drug administration or stress depends on the individ-
ual. In fact, a bell-shaped curve of responses to various
environmental perturbations (drug administration, he-
modynamic challenge, inflammatory response to stress
of surgery, and others) shows that although most pa-
tients respond in predictable patterns, others respond
either more or less vigorously. In fact, much of the art of
anesthesiology is the astute clinician being prepared to
deal with outliers. Increasingly clinicians are appreciat-
ing that an individual patient’s response to stress may
alter perioperative outcomes such as incidence of
respiratory distress syndrome, perioperative myocar-
dial infarction, survival, and response to pain manage-
ment— but what are the mechanisms underlying phar-
macodynamic and physiologic variability to stress?
The answer to this complex question includes under-
standing how the unique genetic background an indi-
vidual brings to the operating room affects his or her
perioperative outcome.

To understand genetic variability in patients, it is im-
portant to briefly review some basics of genetics. The
human genome consists of the aggregate of DNA present
in 23 chromosomes (22 chromosome pairs plus sex
chromosomes X/Y). DNA consists of a collection of
nucleotides (A, C, G, or T) that form a code used to
produce proteins. The expression of genetic information
in the cell is generally a one-way system. In simple terms,
the sequence of nucleotides in DNA determines the
sequence of RNA via transcription, and then a sequence
of three nucleotides of RNA encodes one amino acid
(out of 20 possible amino acids) via translation; these
amino acids are the building blocks for proteins, which
perform virtually all chemical reactions and functions in
the body. Only a small proportion of the entire DNA in
a cell actually codes for RNA and proteins. Some of the
nontranscribed DNA has controlling functions over tran-
scription; thus, certain DNA nucleotide sequences may
silence or enhance transcription. The word polymor-
phism refers to an altered DNA sequence compared with
the most common, or wild-type, DNA. Polymorphisms
can either be small or large insertions or deletions of
nucleotides, repetitive sequences (often repeated pairs
of DNA called microsatellites), or a change in a single
nucleotide (single-nucleotide polymorphism). Some ge-
netic variation provides us with unique (but nonmedi-
cally important) aspects of our bodies, such as facial
expression, hair color, and body stature, but other vari-
ations have been shown to be important in determining
onset and severity of disease, as well as response to drug
therapy. Polymorphisms may directly alter the amino
acid sequence of a protein and therefore potentially alter
protein function, but other variants may alter regulatory
sequences in DNA, thereby altering concentrations of
otherwise normal proteins. Distinguishing background
genetic variation that make us unique and provides a

genetic fingerprint, from clinically important polymor-
phisms that lead to disease is one of the most important
tasks for clinical researchers today. Classically, pharma-
cologists have concentrated on genetic variability that
alters drug metabolizing enzymes to explain variation in
pharmacokinetic responses to drug therapy; however, it
is now apparent that the genetic variability can alter
many other proteins important to pharmacodynamic re-
sponses. In the operating room, clinical research needs
to go one step further and examine how genetic vari-
ability affects responses to acute stress as well.

Historically, human genetic studies have focused on
relatively rare Mendelian-inherited, single-gene diseases.
Diseases such as sickle cell anemia are the result of a
single-nucleotide polymorphism in the DNA sequence
encoding the � chain of adult human hemoglobin; the
disease is entirely the result of this single-nucleotide
polymorphism and thus is relatively easy to investigate.
In less-well-characterized inherited diseases, genetic
studies often focus on linkage of a genetic locus (region
of DNA within a chromosome) with patterns of inheri-
tance within families. In contrast to single-gene disor-
ders, most common diseases prevalent today involve a
complex interaction between a number of disease-en-
hancing or -altering genes, environmental stimuli, and
variable (and sometimes age-dependent) penetration of
those genes.2 Diseases such as hypertension, coronary
artery disease, and some forms of cancer are examples of
complex common diseases. Association studies analyze
the incidence of a disease trait (or phenotype) and its
association with a particular DNA polymorphism. Spe-
cifically, association studies test whether a genetic
marker (or polymorphism) occurs more frequently in
cases than in controls. The study by Lasocki et al.1 in this
issue of ANESTHESIOLOGY is an association study focusing
on a candidate gene (the ACE gene) in which a well-
described biologic effect occurs as a result of an inser-
tion/deletion (I/D) polymorphism; this polymorphism
impacts serum and renal concentrations of ACE. The
authors are to be commended on using cardiopulmonary
bypass as a unique and reproducible physiologic envi-
ronment where blood flow can be altered and resulting
arterial pressure (and systemic vascular resistance) can
be documented, giving a measure of pressure–flow rela-
tions. Genetic association studies are only as good as the
clinical characterization of end points (or phenotyping).
The authors are therefore careful to include many factors
that might affect systemic vascular resistance on cardio-
pulmonary bypass (e.g., age, sex, hypertension history,
medications, type of surgery) to ensure their results
occur because of the ACE polymorphism and not some
other clinical variable; however, other clinical covariates
may also be important, such as body mass index, race,
and central venous filling (which could be controlled by
ensuring similar central venous pressure before begin-
ning the study in all patients). Despite these limitations,
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the authors seem to demonstrate in a new setting that
the specific ACE polymorphism tested is associated with
permutations in pressure–flow relations in humans un-
dergoing surgery.

Because association studies are difficult to perform
well, especially in patient populations where genetic
admixture is an issue (patients originating from many
distinct genetic backgrounds), it is important to take this
opportunity to stress some ideal standards for future
genetic association studies.3 First, it is important to study
a large sample population when testing for association
with a genetic marker or polymorphism and disease.4

Citizens from Western countries originate from all over
the world, bringing unique and varied genetic back-
grounds that may have nothing to do with disease. In
simplistic terms, this introduces genetic “wobble” that
can only be overcome by either properly powering a
study for a primary main end point with thousands of
patients, or by carefully screening the populations to be
as homogeneous as possible. Second, genetic association
studies are only as good as the clinical phenotyping.
Clinical end points must be quantifiable and reproduc-
ible. Clinical covariates that might explain different out-
comes must be taken into account (e.g., the effect of
body mass index in a study designed to examine blood
pressure may be far more important than variation in
DNA sequence of a candidate gene). Third, use of sur-
rogate markers or intermediate end points often aug-
ment a genetic association study. In the study in this
issue of ANESTHESIOLOGY, measurement of serum ACE con-
centrations might have validated the authors’ final con-
clusions. Fourth, rigorous quality control must be in
place to define the presence of a genetic polymorphism.
There are currently many laboratory methods available
for polymorphism detection. On careful examination, a
single-nucleotide polymorphism that occurs in 2 patients
out of 100 might be missed or overcounted if the
method of detection is only 92–96% accurate. Fifth,
smart genetics must be used; a genetics collaborator can
often be enlisted for this aspect of the trial. The use of
appropriate and accurate genetic language is important
so that concepts and results are universally recognizable.
For example, it is more informative to list allele (or
marker) frequencies (range, 0–0.50) rather than geno-
type frequencies (often listed as 0–100%) when describ-
ing variants. Race has been shown to be an important
determinant of allele frequency in many studies, so allele

frequencies for the overall group and then for each racial
subgroup should be examined. If not appropriately
taken into account, varying allele frequencies in sub-
groups might significantly influence final results of an
association test. It is also important to test genetic mark-
ers to see if they are in Hardy-Weinberg equilibrium so
that statistical genetics tools that require this condition
are appropriately applied. Sixth, appropriate statistical
analysis must be applied. Seventh and last, genotypes
exist either as homozygous or heterozygous. Heterozy-
gous genotypes may present as intermediate phenotype
and therefore cannot necessarily be grouped together
with homozygous genotype for the purpose of statistical
analysis. A common mistake in association studies is to
perform repeated comparisons without altering the final
P value required for significance. As a general approach,
overall significance should be sought, followed by anal-
ysis of covariants, determination of specific P values, and
possible interaction between genes or polymorphisms.
Appropriately performed analysis for association studies
may be complicated, so statistical genetics expertise
should be sought.

In summary, the study by Lasocki et al.1 provides a first
step in demonstrating the usefulness of association stud-
ies in the anesthesiology literature. Association studies
can be useful in determining the pathogenesis of disease,
variability in physiologic end points, or response to treat-
ment. If one is visionary, such studies may hold the key
to unlock the secret of predicting perioperative out-
comes based on individual preoperative genetic informa-
tion. As such, they have the potential to revolutionize
clinical research.
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