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Artifact Robustness, Inter- and Intraindividual Baseline
Stability, and Rational EEG Parameter Selection
Jörgen Bruhn, M.D.,* Thomas W. Bouillon, M.D.,* Andreas Hoeft, M.D.,† Steven L. Shafer, M.D.‡

Background: Artifact robustness (i.e., size of deviation of an
electroencephalographic parameter value from baseline caused
by artifacts) and baseline stability (i.e., consistency of median
baseline values) of electroencephalographic parameters pro-
foundly influence electroencephalography-based pharmacody-
namic parameter estimation and the usefulness of the pro-
cessed electroencephalogram as measure of the arousal state of
the central nervous system (depth of anesthesia). In this study,
the authors compared the artifact robustness and the interindi-
vidual and intraindividual baseline stability of several univari-
ate descriptors of the electroencephalogram (Shannon entropy,
approximate entropy, spectral edge frequency 95, delta ratio,
and canonical univariate parameter).

Methods: Electroencephalographic data of 16 healthy volun-
teers before and after administration of an intravenous bolus of
propofol (2 mg/kg body weight) were analyzed. Each volunteer
was studied twice. The baseline electroencephalogram was re-
corded for a median of 18 min before drug administration. For
each electroencephalographic descriptor, the authors calcu-
lated the following: (1) baseline variability (� (median baseline
� median effect) [i.e., signal]/SD baseline [i.e., noise]) without
artifact rejection; (2) baseline variability with artifact rejection;
and (3) baseline stability within and between individuals
(� (median baseline � median effect) averaged over all volun-
teers/SD of all median baselines).

Results: Without artifact rejection, Shannon entropy and ca-
nonical univariate parameter displayed the highest signal-to-
noise ratio. After artifact rejection, approximate entropy, Shan-
non entropy, and the canonical univariate parameter displayed
the highest signal-to-noise ratio. Baseline stability within and
between individuals was highest for approximate entropy.

Conclusions: With regard to robustness against artifacts, the
electroencephalographic entropy parameters and the canonical
univariate parameter were superior to spectral edge frequency
95 and delta ratio. Electroencephalographic approximate en-
tropy displayed the best interindividual and intraindividual
baseline stability.

UNIVARIATE descriptors of the electroencephalogram
have been applied as surrogate endpoints for quantifica-
tion of anesthetic drug effect (e.g., determining relative
potencies)1 and for quantification of depth of sedation or

anesthesia.2 For both applications, high artifact robust-
ness and interindividual and intraindividual baseline sta-
bility (minimal variability in the absence of drug be-
tween and within individuals) are essential.

Two of the four parameters of a sigmoid Emax model
usually describing the concentration–effect relation of
central nervous system (CNS) active drugs3 are influ-
enced by data recorded in the absence of drug. Baseline
(E0) is estimated directly from those data. The estimated
concentration corresponding to the half maximal effect
(EC50) is influenced by the baseline value. Therefore,
baseline variations may lead to erroneous estimates of
these parameters.

The usefulness of an univariate electroencephalo-
graphic parameter for quantification of anesthetic depth
is also determined by baseline variation. For a univariate
parameter, if the CNS arousal state corresponds more
closely to a particular percentage decrease from baseline
rather than to a particular absolute value, high interindi-
vidual variability of the baseline value will broaden the
range of measured values corresponding to a certain
CNS arousal state, decreasing the predictive ability of the
electroencephalogram. Therefore, parameter values cor-
responding to a certain level of sedation or anesthesia
will vary between individuals.

For those reasons, baseline stability is more than a
“nice-to-have” feature of a univariate descriptor of the
electroencephalogram. It can profoundly affect both
electroencephalography-based pharmacodynamic pa-
rameter estimation and the usefulness of the processed
electroencephalogram as measure of the arousal state of
the CNS (depth of anesthesia).

In this study, we compared the artifact robustness and
the interindividual and intraindividual baseline stability
of the following univariate descriptors of the electroen-
cephalogram: Shannon entropy,4 approximate entropy,5

spectral edge frequency 95 (SEF95),6 delta ratio7 and
canonical univariate parameter (CUP).8–10 Bispectral in-
dex was not calculated because the electroencephalo-
graphic data in the study had already been filtered and
digitized, rendering bispectral analysis impossible.

Methods

Clinical Protocol
We reanalyzed electroencephalographic data recorded

before, during, and after administration of propofol to
volunteers.11 After approval by the Stanford University
Institutional Review Board (Stanford, CA) and written
informed consent were obtained, 16 volunteers aged
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between 25 and 65 yr, receiving a 2-mg/kg propofol
bolus dose, were studied. Only the electroencephalo-
grams recorded during the baseline and during the
propofol bolus were analyzed.

The volunteers were asked to lie quietly with closed
eyes for baseline recording over a median time of 18 min
(range, 9.1–40.9 min). After baseline recording, all sub-
jects received a 2-mg/kg bolus dose of propofol over a
median time of 18 s (range, 13-24 s). Each volunteer was
studied twice. Both electroencephalographic sets were
included in the analysis, allowing calculation of the in-
terindividual and intraindividual variability.

Electroencephalographic Analysis
The electroencephalogram was recorded continuously

with a frontal montage (Fp3–Cz) (international 10-20
system). After gently rubbing the scalp with an abrasive
gel (Omniprep; D.O. Weaver Co., Aurora, CO), the elec-
trodes were fixed to the skin with a sticky electrode
cream (Grass EC2; AstroMed Inc., West Warwick, RI).
The electrodes were manipulated until the impedance
was less than 1,500 �. The electroencephalogram was
digitized at 128 Hz, 12-bit resolution, and stored on a
computer hard disk for subsequent processing.

The following electroencephalographic parameters
were calculated from 210 data points (� 8-s epochs):

1. SEF95: 95th percentile of the power distribution.
2. Delta ratio: The percent of total power in the delta

band (0.5–4 Hz).
3. CUP: The electroencephalographic power spectrum

from 0 to 30 Hz was divided into 10 frequency bins of
3 Hz each. The power in each bin was converted into
a natural log (log), and each of the 10 bins was
multiplied by a weighting factor. The 10 weighting
factors for propofol were previously estimated con-
currently with the other pharmacodynamic parame-
ters for the used data set.11 The sum of the 10
weighted bins is the CUP.8

4. Shannon entropy: The Shannon entropy was calcu-
lated according to the following algorithm12:

H � � �
i

pi log pi

where i extends over all observed amplitude values of
the data time series, and pi is the probability that the
amplitude value vi occurs anywhere in the data time
series. Thus, pi is the ratio of the number of data
points with the amplitude value vi to the total number
of data points in the data time series.

5. Approximate entropy: The approximate entropy
quantifies the predictability of subsequent amplitude
values of the electroencephalogram, based on the
knowledge of the previous amplitude values. The
absolute value of the approximate entropy is influ-
enced by three parameters: the length of the epoch

(N), the number of previous values used for the pre-
diction of the subsequent value (m), and a filtering
level (r). In this study, N was fixed at 1,024; thus, one
value of approximate entropy could be calculated for
each 8-s electroencephalographic epoch. The noise
filter r was defined as relative fraction of the SD of the
1,024 amplitude values. We used the parameter set
m � 2 and r � 0.2 � SD, which was found to exert
the best performance for electroencephalographic
approximate entropy in a preliminary study.5

A step-by-step procedure with an example,5 a VBasic
program,5 and a FORTRAN program13 to calculate ap-
proximate entropy have been published.

Statistical Analysis
The following distinct periods were defined for com-

parison: baseline (from start measurement to start bolus)
and maximum drug effect, i.e., the time when the max-
imum electroencephalographic effect was observed
(from 1 to 3 min after bolus).

Three ratios were defined:

1. Baseline variability without artifact rejection was cal-
culated as difference between the median baseline
value and the median maximum effect (signal) di-
vided by the SD of the baseline values (noise).

2. Baseline variability with artifact rejection was calcu-
lated as difference between the median baseline
value and the median maximum effect (signal) di-
vided by the SD of the baseline values after discarding
the upper and lower 10% of the baseline values for
each electroencephalographic parameter (noise). We
discarded all electroencephalographic parameter val-
ues calculated from 8-s epochs above the 90th per-
centile and below the 10th percentile of the electro-
encephalographic parameter values calculated from
8-s epochs during baseline. For example, if baseline
consists of 100 calculated 8-s-epoch SEF95 values, we
discarded the highest 10 SEF95 values and the lowest
10 SEF95 values, and we discarded the highest 10
approximate entropy values and the lowest 10 ap-
proximate entropy values, and so forth. This should
eliminate most of the artifacts occurring during base-
line. Therefore, this ratio is meant to be the signal-to-
noise ratio for the electroencephalographic values
after excluding most of the artifacts.

Both signal-to-noise ratios were calculated for both study
sessions of each volunteer and each electroencephalo-
graphic parameter and in a separate second step only for
the first study sessions of each volunteer to correct for
intraindividual variations.

3. Baseline stability within and between individuals was
calculated as the difference between median individ-
ual baseline value and median individual maximum
effect averaged over all volunteers divided by the SD
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of all individual median baseline values. This ratio
measures the consistency of the absolute baseline
values between different study days and different
individuals.

This signal-to-noise ratio was calculated, including the
data of both study sessions of each volunteer and each
electroencephalographic parameter, and in a separate
second step, only including the data of the first study
sessions of each volunteer to correct for intraindividual
variations.

We compared the values of the two baseline variability
ratios for SEF95, delta ratio, CUP, Shannon entropy, and
approximate entropy using the Wilcoxon rank test. Sta-
tistical significance was assumed at probability levels of
P � 0.05.

Results

Baseline Variability without Artifact Rejection
Without artifact rejection, electroencephalographic

Shannon entropy and the CUP displayed the best signal-
to-noise ratios (average baseline � average effect)/SD
baseline). Shannon entropy displayed significantly better
signal-to-noise ratios (3.08 � 0.39; mean of the ratios in
the study population � SEM) than approximate entropy
(2.48 � 0.44), delta ratio (2.09 � 0.23) (P � 0.05),
and SEF95 (1.69 � 0.32) (P � 0.01), but not than CUP
(2.61 � 0.21). In addition, the signal-to-noise ratios for
CUP, approximate entropy, and delta ratio were sig-
nificantly better than for SEF95 (P � 0.05).

Correcting for intraindividual variations by only con-
sidering the first study session of each volunteer did not
yield relevant differences of the calculated signal-to-
noise ratios (Shannon entropy, 3.31 � 0.49; approxi-
mate entropy, 2.56 � 0.55; delta ratio, 2.39 � 0.35;
SEF95, 1.67 � 0.37; CUP, 2.62 � 0.29).

Baseline Variability with Artifact Rejection
Electroencephalographic approximate entropy bene-

fitted most from rejection of the baseline values below
the 10th percentile and above the 90th percentile. The
signal-to-noise ratios with artifact rejection were 2.79 times
the signal-to-noise ratios without artifact rejection for ap-
proximate entropy, compared with 1.92 times (Shannon
entropy), 1.91 times (CUP), 1.87 times (SEF 95), and 1.55
times (delta ratio) for the other electroencephalographic
parameters. The signal-to-noise ratios with artifact rejec-
tion for approximate entropy (6.92 � 1.27) (mean of the
ratios in the study population � SEM), Shannon entropy
(5.91 � 0.61), and CUP (4.97 � 0.37) were signifi-
cantly better than for delta ratio (3.24 � 0.39) and
SEF95 (3.17 � 0.62) (P � 0.05).

Correcting for intraindividual variations by only con-
sidering the first study session of each volunteer did not
yield relevant differences of the calculated signal-to-

noise ratios (approximate entropy, 6.85 � 1.40; Shan-
non entropy, 6.16 � 0.74; CUP, 4.82 � 0.50; delta ratio,
3.61 � 0.60; SEF95, 3.18 � 0.77).

Baseline Stability within and between Individuals
The interindividual and intraindividual median base-

line values for approximate entropy vary less than those
for the other electroencephalographic parameters (fig.
1). Although the median baseline values for the 16 vol-
unteers on the two study days (i.e., a total of 32 median
baseline values) are in a narrow range for approximate
entropy, differences between two median baseline val-
ues for the other electroencephalographic parameters
may be even bigger than the difference between median
baseline value and mean maximum electroencephalo-
graphic effect after the 2-mg/kg propofol bolus dose.

Approximate entropy displayed an average maximal
electroencephalographic effect exceeding interindividual
and intraindividual baseline variability by a factor of 5.19.
The average maximal electroencephalographic effect for
the other investigated parameters was 2.89 (CUP), 2.60
(delta ratio), 2.37 (Shannon entropy), and 2.22 (SEF95)
times the interindividual and intraindividual baseline
variability throughout all volunteers and study days.

Correcting for intraindividual variations by only con-
sidering the first study session of each volunteer did not
yield relevant differences of the calculated signal-to-
noise ratios (approximate entropy, 7.47; Shannon en-
tropy, 2.98; CUP, 3.66; delta ratio, 3.31; SEF95, 2.71).

Discussion

In this study, we compared the baseline variability
without artifact rejection, the baseline variability after
artifact rejection, and the baseline stability within and
between individuals for five univariate electroencepha-

Fig. 1. The intraindividual and interindividual variability of the
median baseline value of the five electroencephalographic pa-
rameters are shown. Each black dot represents the median
baseline value of one volunteer on one of the two study days.
The variability was normalized so that the distance (y-scale)
between the mean of all median electroencephalographic base-
line values and the mean maximum effect was the same for each
of the five electroencephalographic parameters.
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lographic parameters. Even if we investigated only the
pharmacodynamic effect on the electroencephalogram
and not hypnosis or anesthetic depth, the results have
impact for both, using electroencephalographic param-
eters for pharmacologic research and assessing hypnosis
and anesthetic depth.

Baseline Stability without Artifact Rejection
Shannon entropy and CUP had the best signal-to-noise

ratio without artifact rejection. This can be explained by
the influence of total power on the value of the respec-
tive parameters, which directly translates into resistance
against typical electroencephalographic artifacts in the
awake state, as will be shown herein. The calculation of
delta ratio, SEF95, and approximate entropy take total
power into account, which is not the case for Shannon
entropy and CUP. The delta ratio is a percentage of the
total power. SEF95 is a percentile of the total power. The
filter level r, a substantial part of the approximate en-
tropy algorithm, is calculated as a percentage of the SD
of the amplitude values.13,14 The main source of artifacts
during the awake state are eye and lid movements. The
amplitude of these artifacts are much larger than the
small average amplitude observed during awake state.
Therefore, these artifacts contribute significantly to total
power and consequently influence the absolute values of
delta ratio, SEF95, and approximate entropy.

In contrast, Shannon entropy and CUP are not nor-
malized to total power and are therefore less influ-
enced by artifacts substantially altering total power.
Furthermore, the Shannon entropy algorithm weights
infrequently occurring amplitude values very slightly.
Therefore, outliers do not greatly contribute to the
Shannon entropy value even when substantially alter-
ing total power. The robustness of the CUP against
artifacts is due to splitting the power spectrum into
frequency bins before determining the parameter val-
ues.8 A slow-frequency artifact, such as eye move-
ment, will change the value in the bin corresponding
to this frequency, leaving the other frequency bins
untouched. Based on this assessment alone, Shannon
entropy and CUP seem to be the preferable univariate
descriptors of the electroencephalogram.

Baseline Variability after Artifact Rejection
Approximate entropy, Shannon entropy, and CUP had

the best signal-to-noise ratio after artifact rejection. Our
approach to the problem might be questioned because
of apparent arbitrariness and not adhering to standard
procedures. There are three different approaches to ar-
tifact detection and rejection in electroencephalo-
graphic signals:

1. The raw electroencephalographic data is visually in-
spected by a blinded, experienced neurophysiologist
before the analysis process.

2. The algorithms include simple threshold values of
atypical parameters (e.g., amplitude artifacts, slope
detection, testing for normal distribution).

3. The algorithms rely on a comparison with the elec-
troencephalographic parameter values of surround-
ing epochs.

The first approach might not solve the problem in a
reliable and reproducible manner. Van de Velde et al.15

found only a 76% mean consensus between human ob-
servers marking electroencephalographic artifacts, with
a consensus down to less than 60% in some patients. The
second approach is based only on the properties of a
single electroencephalographic epoch and is only suc-
cessful for few, mostly very clear artifacts. No artifact
rejection algorithm detecting all artifacts in an electro-
encephalographic signal has been published.16 In addi-
tion, some artifacts, such as slow body movements, can
mimic low-frequency–dominated electroencephalogra-
phy as it occurs in the presence of anesthetic drug effect.
Consecutively, these artifacts cannot be detected by
common artifact detection algorithms, such as testing for
normal distribution.16 Therefore, the third approach is
increasingly used during electroencephalographic
monitoring.17

Although using the second approach on-line is mathe-
matically more sophisticated (knowing only the param-
eter values of the previous epochs and not of the subse-
quent epochs necessitates a smoothing and a time-
dependent adaption), using the second approach off-line
(knowing the parameter values of the previous and of
the subsequent epochs) is quite simple and is exactly
what we all intuitively do while screening data series
visually for outliers.

We admit that choosing to discard the upper and
lower 10% of the parameter value may seem somewhat
arbitrary, but choosing a fixed percentage guaranteed
that for each different electroencephalographic parame-
ter, the same number of epochs in one patient were
discarded. The overall 20% discarded epochs during
baseline are in good accordance with the published
average range of 7–30% of electroencephalographic ep-
ochs contaminated with artifacts.15,17

Surprisingly, SEF95 and delta ratio continued to have a
significantly worse signal-to-noise ratio than Shannon
entropy and CUP. In contrast, approximate entropy ben-
efitted most and now had the best signal-to-noise ratio.
As shown in figure 2, the baseline of the approximate
entropy parameter is disturbed by infrequent but pro-
nounced outliers, which can easily be eliminated by an
artifact rejection algorithm. Based on this assessment
alone, approximate entropy, Shannon entropy, and CUP
seem to be the preferable univariate descriptors of the
electroencephalogram.
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Baseline Stability within and between Individuals
Minimal interindividual and intraindividual variation of

the mean baseline value of an electroencephalographic
parameter is essential for a clinically applicable parame-
ter of CNS suppression. Otherwise, any prediction of the
state of arousal based on a “standard” value (e.g., a
Bispectral Index between 40 and 60, an SEF95 between
8 and 12 Hz, as suggested for clinically adequate anes-
thesia) independent of the observed individual is of
questionable value.

The values of Shannon entropy and CUP are not nor-
malized to total power, which changes with skin imped-
ance while frequency distribution remains unchanged.
Therefore, interindividual differences or intraindividual
changes of skin impedance might influence Shannon
entropy and CUP, while approximate entropy, SEF95,
and delta ratio remain unchanged. From this, it immedi-

ately follows that Shannon entropy and CUP must dis-
play low interindividual and intraindividual baseline con-
sistency, as displayed in figure 1. Although SEF95 and
delta ratio are normalized with regard to power, their
interindividual and intraindividual baseline consistency
was similarly low. From the parameters investigated,
approximate entropy displayed the highest baseline sta-
bility and therefore seems to be the clinically most useful
indicator of anesthetic depth. However, the filter level r
of the approximate entropy algorithm has to be set as a
percentage of the SD of the amplitude values, as recom-
mended previously.13,14 Fixing the filter level r, as Sleigh
and Donovan18 did, inherently leads to higher interindi-
vidual baseline variation and therefore to a weaker pre-
diction power awake versus asleep.

For technical reasons, we did not assess the Bispectral
Index in this study. Despite the widespread adoption of
the Bispectral Index for clinical determination of anes-
thetic adequacy, it has been shown that other electro-
encephalographic parameters can be more sensitive as
measures of drug effect for pharmacodynamic model-
ing.7 We cannot guess a priori how stable the Bispectral
Index is by our measures.

Two possible limitations must be considered:

1. Our calculations have been normalized to the maximal
electroencephalographic effect after a bolus dose of 2
mg/kg propofol. If a given parameter is more sensitive
to propofol effect, normalizing to this effect will make
the parameter seem better in relation to others. This
may not be true for other drugs or other dosage levels,
but our approach is near to clinical practice: propofol
is one of the most commonly used drugs for induction
and maintenance of anesthesia, and 2 mg/kg propofol
is a clinical standard bolus dose for induction of
anesthesia.

2. Intraindividual baseline variability over time may be a
biologic phenomenon, depending on vigilance, habit-
uation, distraction, and so forth. We experienced that
phenomenon in other settings, especially with con-
stant low doses of hypnotic drugs. However, the vari-
ability (e.g., caused by changing vigilance) was a
slower fluctuant change, consistently seen at all differ-
ent electroencephalographic parameters, and was not
like the seemingly arbitrary jumps between 8-s epochs
with big differences, induced by artifacts, between the
different electroencephalographic parameters as ob-
served in the current investigation.

The electroencephalographic parameter most suitable
for a certain application depends on the requirements at
hand. If intraindividual and interindividual baseline sta-
bility is not required as in the experimental setting and
artifact rejection not available, Shannon entropy and
CUP are most appropriate. An example for this applica-
tion is the determination of the potency of CNS active
drugs, in which the baseline measurement in each pa-

Fig. 2. The comparison between the five electroencephalo-
graphic parameters before (baseline) and after propofol bolus
is shown for patient 1. Each black dot represents the electroen-
cephalographic parameter value for one 8-s epoch. The y-scale
was normalized so that the distance between median baseline
value and median maximum effect was the same for each of the
five electroencephalographic parameters. The y-scale was in-
verted for Shannon entropy, canonical univariate parameter,
and delta ratio for easier comparison.
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tient serves as a control and change from baseline is
more important than the absolute value. If artifact rejec-
tion can be introduced before further processing of the
electroencephalographic signal, approximate entropy
becomes equally suitable. Approximate entropy showed
the most stable interindividual and intraindividual base-
line value, making this parameter ideal for clinical appli-
cations where therapeutic decisions (dosing of anes-
thetic drugs) are based rather on absolute values than on
change from baseline.
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