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Background: Middle latency auditory evoked responses
(MLAER) as a measure of depth of sedation are critically depen-
dent on data quality and the analysis technique used. Manual
peak labeling is subject to observer bias. This study investigated
whether a user-independent index based on wavelet transform
can be derived to discriminate between awake and unrespon-
sive states during propofol sedation.

Methods: After obtaining ethics committee approval and writ-
ten informed consent, 13 volunteers and 40 patients were stud-
ied. In all subjects, propofol was titrated to loss of response to
verbal command. The volunteers were allowed to recover, then
propofol was titrated again to the same end point, and subjects
were finally allowed to recover. From three MLAER waveforms
at each stage, latencies and amplitudes of peaks Pa and Nb were
measured manually. In addition, wavelet transform for analysis
of MLAER was applied. Wavelet transform gives both frequency
and time information by calculation of coefficients related to
different frequency contents of the signal. Three coefficients of
the so-called wavelet detail level 4 were transformed into a
single index (Db3d4) using logistic regression analysis, which
was also used for calculation of indices for Pa, Nb, and Pa/Nb
latencies. Prediction probabilities for discrimination between
awake and unresponsive states were calculated for all MLAER
indices.

Results: During propofol infusion, subjects were unrespon-
sive, and MLAER components were significantly depressed
when compared with the awake states (P < 0.001). The wavelet
index Db3d4 was positive for awake and negative for unrespon-
sive subjects with a prediction probability of 0.92.

Conclusion: These data show that automated wavelet analysis
may be used to differentiate between awake and unresponsive
states. The threshold value for the wavelet index allows easy
recognition of awake versus unresponsive subjects. In addition,

it is independent of subjective peak identification and offers the
advantage of easy implementation into monitoring devices.

MIDDLE latency auditory evoked responses (MLAER) are
depressed by most anesthetics in a dose-dependent fash-
ion.1 During anesthesia, persistent MLAER may indicate
insufficient blockade of auditory information processing
with the risk of intraoperative awareness.2,3 Thus, re-
cording of MLAER has been proposed for assessment of
depth of anesthesia. However, assessment of MLAER
amplitudes and latencies critically depends on visual
inspection of the waveform and manual labeling of peaks
Pa and Nb. Recent work indicates that detection of
MLAER peaks by visual inspection is strongly influenced
by subjective experience, resulting in a large interob-
server variability.4

An automated classification procedure that eliminates
observer bias can be used as an approach toward online
MLAER monitoring. Several methods have been pro-
posed for online extraction of MLAER measures that can
be used for monitoring purposes. Based on the MLAER
waveform, a quantitative measure of anesthetics-induced
changes in MLAER has been developed.5,6 A different
approach using autoregressive modeling of MLAER for
extracting an MLAER index has shown that the time lag
between MLAER recording and calculation of an index
can be minimized to approximately 2 s.7 Fourier trans-
form has been used for characterization of the frequency
contents of MLAER by decomposing the signal into dif-
ferent sine waves of infinite length. However, Fourier
transform eliminates the time information, and the fre-
quency resolution of transient signals may be deterio-
rated by application of time windows. Recently, wavelet
analysis has been suggested as a new tool for analyzing
event-related potentials (ERP).8 The wavelet transform is
analogous to Fourier transform, but instead of sine waves
the fundamental waveform for the decomposition is a
signal of finite length called mother wavelet. This
mother wavelet can be chosen from a variety of different
predefined wavelets to meet the specific characteristics
of transient signals such as MLAER.

Unlike Fourier transform, wavelet analysis allows a
representation of MLAER in the time and frequency
domain. Thus, specific characteristics (i.e., time course,
wave shape, fine structural details, frequency contents
related to time) can be evaluated, resulting in a set of
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coefficients that determine the best approximation of
the underlying signal by the specific wavelet chosen.
Once the optimized wavelet for a given set of biosignals
such as MLAER has been defined, it may be integrated
into an automatic online monitoring system. It does not
require in-depth experience of neurophysiologic signals
and is not subject to observer bias. As such, it can be
used in research for assessment of adequacy of anesthe-
sia or as a guide for titration of anesthetics by the anes-
thesiologist. The purpose of this study was to investigate
the feasibility of wavelet analysis for characterization of
MLAER and discrimination between awake and unre-
sponsive states during varying propofol infusions.

Methods

After obtaining approval of the Institutional Ethics
committee of the Northwick Park Hospital (Harrow,
United Kingdom), written informed consent was ob-
tained from 13 male volunteers (mean age, 30 yr; SD, 3
yr) and 40 surgical patients (19 women, 21 men; mean
age, 38 yr; SD, 10 yr).

Groups 1 and 2
Seven volunteers in group 1 and six in group 2 were

studied. Propofol in volunteers of both groups were
titrated with repeated bolus doses of propofol (30 mg) to
loss of response to verbal command. Group 1 was used
for selection of optimal wavelet coefficients (see Logistic
Regression) for best differentiation between awake and
unresponsive states. Volunteers in group 2 were studied
several months later than those in group 1. Every 30 s,
subjects were asked to press the hand of the investiga-
tor. At the loss of a definite response to the command,
subjects were classified as unresponsive. Thereafter they
were allowed to awaken, propofol was titrated again to
the same end point, and then they were finally allowed
to recover fully. In each subject, three MLAERs (380
sweeps) were recorded per state (three awake, two
unresponsive periods), each corresponding to a 1-min
period.

Groups 3 and 4
In patients scheduled for elective surgery and who

were not premedicated, propofol was titrated to loss of
response to verbal command using a target controlled
infusion of propofol (Diprifusor, Master-TCI; Becton
Dickinson, Brezins, France). Three minutes before
propofol infusion was started, all patients received either
an intravenous injection of 0.1 mg/kg midazolam (group
3; n 5 20) or an equivalent volume of saline (group 4;
n 5 20). Propofol target was set to 8 mg/ml. Three
MLAER waveforms (380 sweeps) were obtained at two
time points: (1) before starting the midazolam–saline
injection; and (2) after loss of response to verbal com-

mand. All recordings were performed before the start of
surgery.

Pooled Data
To derive an indicator that was independent of the

study protocols used in this investigation, all data from
group 1 to group 4 were combined for analysis (n 5 53).

Middle Latency Auditory Evoked Response
Single-channel electroencephalograph was recorded

from electrodes placed at the vertex and one mastoid
using a specially designed amplifier described previous-
ly.5 The ground electrode was placed at the contralateral
mastoid. Electrode impedance was checked automati-
cally and maintained below 5 kV. Binaural auditory stim-
ulation (6.38 Hz) was performed with rarefaction clicks
(70 dB above hearing level) using insert earphones (Oti-
con AW180, Oticon, Strandvejen, Denmark). No auto-
matic artifact rejection was used. The raw electroen-
cephalograph was sampled at a rate of 1 kHz and stored
on a personal computer for offline analysis. The exact
position of each click was marked in the raw data file,
allowing offline MLAER averaging. To allow estimation
of signal quality during the study period, the raw elec-
troencephalograph and a moving MLAER average were
continuously displayed on the monitor screen. An inves-
tigator blinded to treatment labeled the extremes of the
MLAER peaks Pa and Nb manually after visual inspection
of the MLAER and measured the corresponding ampli-
tudes and latencies. In addition, averaged MLAER signals
were processed using discrete wavelet decomposition
up to detail level 6 with the Daubechies wavelet of order
3 (MATLAB® Wavelet-Toolbox; The MathWorks Inc.,
Natick, MA).

Middle Latency Auditory Evoked Response
Parameters
To reduce the variability caused by artifact contamina-

tion or observer bias, MLAER parameters within states
(awake, unresponsive) were averaged to obtain one
value for each parameter and state, respectively. In
groups 1 and 2, there were three different awake periods
and two unresponsive periods. Because there were no
differences either within the three periods of the awake
state or within the two periods of the unresponsive
state, all data of each state were pooled. Similarly, for
each subject in groups 3 and 4, two sets of separately
pooled MLAER parameters (awake, unresponsive) were
used for statistical analysis. Standard anesthesia monitor-
ing was conducted in all subjects (electrocardiogram,
blood pressure, arterial oxygen saturation, end-tidal car-
bon dioxide tension, body temperature).

Wavelet Transform
A short review on wavelet-based signal analysis is pre-

sented in Appendix 1. The approach used here employs
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a previously described application of wavelet analysis for
ERPs.8–11

The familiar Fourier transform decomposes a wave-
form into a sine wave and a family of harmonics. The
wavelet transform is analogous to the Fourier transform,
but in place of simple sine waves of infinite duration, the
fundamental unit of decomposition is a specific transient
signal from a set of different functions called wavelets or,
more specifically, mother wavelets. For analysis of a
given class of signals, a specific mother wavelet has to be
chosen for the best approximation of the signal charac-
teristics (i.e., peaks and troughs, frequencies). The fre-
quency components of the signal can be calculated by
transforming the signal into the time-frequency domain
using different (dilated and shifted) versions of the same
wavelet as “filters” (similar to Fourier transform). Unlike
Fourier transform, which may not be applied to transient
signals (i.e., MLAER) and may lose information on the
specific frequency contents of each component, the
wavelet transform is an adequate tool for extraction of
this type of information. For analysis of different frequen-
cies of each signal, the wavelet has to be modified for
each analysis step. In brief, a given signal is analyzed
using a set of test functions that are derived by modifying
the mother wavelet. These modifications include dila-
tion of the mother wavelet (broadening or narrowing of
the wavelet along the time axis) to extract the informa-
tion about the underlying frequencies and shifting the
mother wavelet along the x-axis to extract information
about time with respect to the different peaks and

troughs of each MLAER. The wavelet transform results in
several coefficients representing different signal compo-
nents related to the different applied versions of the
mother wavelet. The special wavelet decomposition al-
gorithm used for this analysis allows an extraction (in
consecutive steps or levels, beginning with level 1) of
the so-called “details” from the original signal (see Ap-
pendix 1: multiresolution analysis). These details repre-
sent different frequency components of the signal. Co-
efficients of one detail level are related to one dilated
version of the mother wavelet and the corresponding
shifted versions. The number of coefficients depends on
the detail level. The lower the detail level, the higher the
number of coefficients and the time resolution, and vice
versa. Retransformation of the coefficients for different
detail levels results in waveforms that reflect the tempo-
ral characteristics of the different frequency components
(fig. 1).

Logistic Regression Analysis
For group 1 data, all coefficients of detail levels 1–5

were univariately tested for differences between the
awake and unresponsive subjects (Mann–Whitney U
test). As a result, three successive wavelet coefficients of
detail level 4 were found to be highly significant (P ,
0.001) for discrimination between these two states.
These coefficients (d4_3, d4_4, d4_5) are located in the
midlatency range of 20–60 ms and represent the oscil-
lating waveform component in the detail level 4 plot of
the reconstructed signals in figure 1.

Fig. 1. Wavelet decomposition: original middle latency auditory evoked response (MLAER) signal (top left) and reconstructed signals
using wavelet coefficients of the particular detail level. Grand average of signals of awake (dotted line) and unresponsive subjects
(solid line) (number of epochs 5 380).
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For all groups, logistic regression was used to combine
the three wavelet coefficients into a single index
(Db3d4 5 Daubechies wavelet 3, detail level 4) using a
linear combination of a set of parameters given in equa-
tion 1. By this procedure, an index optimized for the
reclassification of the awake and unresponsive groups
was defined. Amplitudes were not used in this
calculation.

Db3d4: 5 yDb3d4 5 constDb3d4 1 k1Db3d4
d4_3 1 k2Db3d4

d4_4

1 k3Db3d4
d4_5 (1)

For the other MLAER parameters (Pa, Nb, Pa/Nb laten-
cy), indices were calculated in an analogous form:

Pa: 5 yPa 5 constPa 1 k1Pa
Pa latency

Nb: 5 yNb 5 constNb 1 k1Nb
Nb latency

Pa/Nb: 5 yPa/Nb 5 constPa/Nb 1 k1Pa/Nb
Pa latency

1 k2Pa/Nb
Nb latency

The linear coefficients k1i
, k2i

, k3i
i{ {Db3d4, Pa, Nb,

Pa/Nb} represent the contribution (weight and sign) of
the respective wavelet coefficients, and the constant
values were calculated by finding a best fit of the logit
function given in equation 2

p 5
1

1 1 e2yi
(2)

using a maximum likelihood method, where p is the
probability of observing the state “awake” for a given
value of yi, i{{Db3d4, Pa, Nb, Pa/Nb}.

Prediction Probability
A nonparametric measure for prediction probability,

Pk, introduced by Smith et al.,12 was calculated. Simpli-
fied, the Pk counts the probability pc for two randomly
chosen data points to indicate the level of anesthesia. If
the indicator value of data point 1 is lower than the
indicator value of data point 2, the observed levels of
anesthesia for both cases are rank ordered in the same
direction. This is called the concordance (pc) case. Op-
posed to this case, there is the possibility that the two
data points are rank ordered in the opposite direction
(discordance [pd]) or that data points from different
observed anesthetic levels have the same indicator value
(ptx)

Pk 5
pc 1 1/2ptx

pc 1 pd 1 ptx
(3)

From the definition of Pk in equation 3, it becomes clear
that if the probabilities of discordance (pd) and indicator
indifference (ptx) are both zero, Pk equals 1. If the
probability of discordance equals that of concordance or
if there is a high probability for ptx, Pk equals 0.5. A value

of Pk less than 0.5 means that the indicator and anes-
thetic depth behave inversely.

Statistical Evaluation
To detect differences between groups, parametric and

nonparametric tests were used (SPSS 8.0.0; SPSS Inc.
Chicago, IL). For demographic and hemodynamic data,
the Student t test was used. MLAER indices (Pa, Nb,
Pa/Nb) and Db3d4 index were compared using nonpara-
metric Wilcoxon statistics. Paired sample tests were
used for differences between awake and unresponsive
states. Differences between different studies were tested
for statistical significance using the Mann–Whitney U
test. The null hypothesis was rejected at P , 0.05.

Results

Demographic Data and Hemodynamics
No differences were found with respect to demo-

graphic, hemodynamic, and ventilatory data between
groups.

Pa and Nb Amplitudes and Latencies
Latencies and amplitudes for MLAER components Pa

and Nb determined by visual inspection are given in
table 1. All values were significantly different between
awake and unresponsive states (P , 0.001). Administra-
tion of midazolam did not modify the differences in
MLAER measures.

Linear coefficients for optimal classification of awake
and unresponsive subjects were calculated using logistic
regression for the individual Pa and Nb latencies and the
combination of Pa and Nb latencies. Only small differ-
ences could be identified between the results of the
logistic regression of the different groups for all MLAER
indices (table 2). Therefore, coefficients of the pooled
data set were used for comparison of the four different
indices. Based on the linear coefficients of this pooled
group, the index Db3d4 was calculated according to
equation 1. Unresponsive subjects could clearly be dis-
criminated from awake subjects. In addition, the wavelet
index was the only measure that was able to discriminate
between bolus injection of propofol and target con-
trolled infusion. Because of the algorithm used for logis-
tic regression, the threshold for differentiation between
awake and unresponsive states could be set to zero.
Thus, Db3d4 was negative for unresponsive states,
whereas in awake subjects the index was positive (fig.
2). Coefficients of pooled data from all groups were used
for comparison of the four different indices (Pa, Nb,
Pa/Nb, Db3d4).

Pk Values
The probability of each index predicting the correct

state is given in table 3. The lowest performance for
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discrimination between awake and unresponsive states
showed the index Pa when compared with the other
indices Nb, Pa/Nb, and Db3d4, respectively.

With respect to Pk for the correct clinical state, the
user-independent indicator (index Db3d4) was at least as
good in predicting the correct clinical state as the index
Nb based on Nb latency (table 3).

Using the coefficients for the four MLAER indices de-
rived from the pooled data, subjects belonging to groups
1–4 were reseparated and tested for differences be-
tween groups for both the awake and unresponsive
state, respectively (table 4). Db3d4 was the only index
that showed significant differences between the two
volunteer groups and groups 3 and 4 (patients) in the
unresponsive state. For the awake state, it is the only
index showing no significant differences.

Discussion

The current study shows that wavelet transform of
MLAER may be successfully used for classification of
awake versus unresponsive states during propofol seda-
tion. It was shown that the relevant information may be
condensed into an index, called Db3d4. This index rep-
resents the respective time and frequency contents of
the MLAER relevant to these clinical states. Similar to
reports13 on the manually determined latency of peak
Nb, the index Db3d4 is able to discriminate between
awake versus unresponsive states. An advantage of
wavelet analysis for classification of MLAER changes is
that it does not require visual inspection and manual
peak labeling. It is thus free of observer bias and pre-
serves the main characteristics of the signal in the time

Table 2. Linear Coefficients of Indices Calculated by Logistic Regression Analysis

Coefficient
(See Equation 1)

Pooled Data
(All Groups)

Group 1 Group 2 Group 3 Group 4

Volunteers
Propofol
(Bolus)

Volunteers
Propofol
(Bolus)

Patients
Midazolam 1
Propofol (TCI)

Patients
Saline 1 Propofol

(TCI)

k1Db3d4
1.3754 1.3261 1.8862 2.0915 1.3937

k2Db3d4
2.4295 1.4267 3.1189 6.4433 2.6352

k3Db3d4
21.1766 20.8645 20.9281 20.3956 23.0203

constDb3d4 21.6187 21.2997 22.5971 22.221 21.7291
k1Pa

20.3424 20.3866 20.4804 20.2912 20.3508
constPa 11.7728 13.0885 16.1136 10.0195 12.4481
k1Nb

20.3424 20.3527 20.7619 20.2917 20.2818
constNb 16.4813 17.1153 35.9433 13.9285 14.0017
k1Pa/Nb

20.0206 20.0491 0.0092 0.1657 20.1612
k2Pa/Nb

20.3298 20.3346 20.7665 20.4024 20.1936
constPa/Nb 16.6547 17.8721 35.8586 13.5721 15.288

The linear coefficients contain an offset “constant,” which describes the transform toward the threshold value between prediction values “0 5 awake” and “1 5
unresponsive.” The other linear coefficients describe the relative amount of contribution of the parameters to the discrimination between 0 and 1.

TCI 5 target controlled infusion.

Table 1. MLAER Parameters in Awake and Unresponsive Subjects

Drug Parameter

Awake Unresponsive

Median
Percentiles
(25–75%) Median

Percentiles
(25–75%)

Group 1 (n 5 7)
propofol (bolus)

Pa latency (ms) 30.8 29.2–33.8 39.9* 34.4–44.0
Nb latency (ms) 42.8 41.2–44.5 55.2* 49.8–62.1
Pa amplitude (mV) 0.78 0.59–1.08 0.39* 0.23–0.41
Nb amplitude (mV) 0.76 0.57–1.05 0.33* 0.26–0.48

Group 2 (n 5 6)
propofol (bolus)

Pa latency (ms) 30.6 29.5–34.3 40.1* 34.6–44.5
Nb latency (ms) 42.5 40.9–45.3 55.9* 50.2–63.4
Pa amplitude (mV) 0.75 0.58–1.07 0.36* 0.26–0.42
Nb amplitude (mV) 0.77 0.56–1.04 0.37* 0.22–0.53

Group 3 (n 5 20)
midazolam 1 propofol
(TCI)

Pa latency (ms) 31.7 29.7–34.0 40.8* 38.8–43.7
Nb latency (ms) 43.3 41.5–47.2 59.3* 55.5–62.9
Pa amplitude (mV) 0.75 0.69–0.89 0.37* 0.21–0.51
Nb amplitude (mV) 0.60 0.51–0.93 0.30* 0.18–0.52

Group 4 (n 5 20) saline
1 propofol (TCI)

Pa latency (ms) 31.1 29.4–32.7 39.8* 34.7–43.8
Nb latency (ms) 43.3 41.3–44.3 56.5* 50.0–61.6
Pa amplitude (mV) 0.82 0.61–1.06 0.34* 0.24–0.39
Nb amplitude (mV) 0.78 0.56–1.01 0.35* 0.27–0.47

All parameters were significantly different between awake and unresponsive states.

* P , 0.001.

TCI 5 target controlled infusion.
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domain. Because it is free of interobserver variability, it
may be used as an objective measure of depth of hyp-
nosis with the potential for implementation into future
monitoring devices.

The midlatency components of auditory evoked re-
sponses have been extensively studied as a measure of
depth of anesthesia.2,14,15 MLAER-derived parameters
have been shown to reliably indicate loss of conscious-
ness.6,16 In agreement with those studies, our data show
that depression of MLAER during propofol infusion oc-
curs when patients are unresponsive to verbal com-
mand.1,14,16–18 After stopping the administration of
propofol, subjects had regained responsiveness when
Nb latency had decreased to less than 45 ms. These
findings are in agreement with previous studies demon-
strating that a decrease of Nb latency to less than 45 ms
is related to an increased probability of intraoperative
conscious awareness.2,18

It has become obvious that hemodynamic parameters
are not sensitive enough to detect all instances of inad-
equate anesthesia. Therefore, many studies have tried to
relate neurophysiologic measures to anesthetic drug ef-
fects. Most recently, an index calculated for the 40-Hz
MLAER activity has been proposed for prediction of
wakeful responsiveness.19 Interestingly, in our study, the
index Db3d4 reflecting wavelets of level 4 were able to
discriminate between awake and unconscious states.
The index most probably reflects 40-Hz activity.

In most clinical studies, the assessment of MLAER re-

quired visual inspection of the waveform by an experi-
enced observer. In a previous study, we showed that
agreement between experts on acceptable data quality
of 180 evaluated MLAER was very poor, with an inter-
observer variability of 32%.4 This suggests that results
from different studies may not always be comparable. In
addition, poor quality of intraoperatively recorded
MLAER and interpretation by visual inspection may not
be good enough for prospective guidance of titration of
drugs. It is difficult to analyze MLAER in real time and to
quantify changes in the clinical situation.16 An alterna-
tive would be calculation of an automatically derived
parameter that can be displayed online, similar to the
median frequency,20 spectral edge frequency21 or
Bispectral Index for electroencephalograph monitor-
ing.22 With the exception of some components of the
composite Bispectral Index,,23 until now spectral analy-
sis of biosignals in anesthesia has been almost exclu-
sively based on Fourier analysis. However, the required
assumption that the signal is periodic is often not met.
Fourier-based signal analysis of transient signals such
as MLAER24 may lose information about the frequency
resolution of the signal with the risk of erroneous
interpretations.

The technique of wavelet transform has been widely
used in communication, geophysics, and ultrasonics.
More recently, it was proposed for the analysis of bio-
logic signals. The advantages of wavelet analysis for
characterization of ERPs have been reviewed previous-
ly.8 Wavelets may be used to represent the temporal
characteristics of a signal by calculation of its spectral
components in the time-frequency domain. For this pur-
pose, different versions (dilated in time) of a specific test
function of finite length (wavelet) are moved across the
signal (shifting). By this procedure, the frequency con-
tents of each part of the signal are calculated. The char-
acteristic features of wavelets, which may be any zero
mean function of finite energy, allow a translation of a
signal in the time domain into a representation that is
localized not only in frequency but also in time.27 Unlike
short-time Fourier transform, wavelet transform has the
advantage of application of analysis windows of different
lengths (representing the duration of different parts of
signal) to the same signal. The corresponding window
lengths are short at high frequencies and long at low
frequencies. Thus, in contrast to short-time Fourier trans-
form, which uses a fixed window in the time domain,
wavelet analysis may be looked on as a scaling procedure
to focus on different particular frequency contents of the
signal by adequately modifying the length of the analysis
window. The wavelet approach gives both good time
resolution at high frequencies and good frequency reso-
lution at low frequencies. Compared with Fourier trans-
form, it results in improved evaluation of transient sig-
nals with varying frequency components that cannot
fully be described in either time or frequency alone.

Table 3. Pk Values for Prediction of Awake Versus
Unresponsive States

Pa Index Nb Index Pa/Nb Index
Db3d4
Index

Mean Pk for
reclassification

0.85 0.92 0.92 0.92

Pa, Nb, and Pa/Nb indices are based on the respective latencies. The index
Db3d4 is calculated from special wavelet coefficients.

Fig. 2. Graphic representation of the results of the middle la-
tency auditory evoked response wavelet-derived index Db3d4
(median and 25th, 75th percentiles). Evoked potentials from
unresponsive subjects show an Db3d4 value less than zero.
Waveforms from awake subjects result in an Db3d4 value
greater than zero (P < 0.05). The index is calculated from
equation 1 using linear coefficients from table 2 (pooled data).
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Bertrand et al.25 demonstrated that, by means of an
invertible wavelet transform, adaptive optimal filtering
of auditory evoked responses that preserves the main
characteristics of the signal can be achieved. Trejo and
Shensa26 compared wavelet transform with other feature
or parameter extraction techniques, such as principal
component analysis, to predict “human signal detection
performance” by means of ERPs. When used in combi-
nation with linear regression and neural networks, rep-
resentation of the ERP in the wavelet domain was ade-
quate. In addition, the wavelet model required the
smallest number of parameters when compared with
principal component analysis and the raw data. Accord-
ing to Trejo and Shensa,26 further advantages of the use
of wavelet transform for parameter extraction are re-
duced computing time and increased efficiency. Further-
more, determination of ERP amplitudes and latencies by
a human expert is more complex, subject to bias, re-
quires more time, and cannot easily be applied online.

Our study demonstrates that wavelet-derived MLAER
indices may be used for classification of awake versus
unresponsive states during propofol administration. The
Pk value calculated here suggests that results with re-
spect to discrimination between awake and unrespon-
sive states were as good as the more time-consuming
visual-based analysis and manual identification of MLAER
peaks. Moreover, it was the only index for differentiation
between bolus administration and target controlled in-
fusion of propofol. It can only be speculated if the
performance of the wavelet index in this respect is
related to an increased sensitivity for tracing the propo-
fol effect site concentration. As the target concentration
of propofol was not primarily titrated to unresponsive-
ness, a possible deeper level of sedation in the target
controlled infusion group may be reflected by these
differences. This interpretation may be supported by the

slightly increased Nb latencies in the target controlled
infusion groups.

This additional information can be attributed to the
analysis of the frequency contents of the waveforms by
wavelet analysis. In addition, our results indicate that
MLAER analysis by wavelet transform is not biased by
individual experience. Similar to a recently introduced
auditory evoked response index6 based on MLAER mor-
phology, the wavelet-based index is easy to extract,
reliable, not computationally intensive, and can be up-
dated in short, clinically useful intervals.

One major advantage of our approach as compared
with the method described by Mantzaridis and Kenny6

seems to be that wavelet transform not only provides a
feasible index with respect to discrimination between
awake and unresponsive states, but also a representation
of the underlying signal that preserves the temporal
characteristics of different frequency components, al-
lowing quality control of the MLAER acquisition process
by the user (fig. 1). This kind of representation can be
easily interpreted and integrated into monitor devices.
This technique may therefore be a step forward toward
a user-independent monitor of intraoperative auditory
evoked responses. We believe that our approach holds
promise for adequate representation of MLAER changes
related to varying depths of anesthesia. However, we
only investigated the end points (awake, unresponsive),
and further studies must show if transitions from awake
to unresponsive states and vice versa can also be traced
adequately.

In conclusion, this study shows that wavelet transform
can be used for characterization of MLAER. Our auto-
mated parameter extraction method is able to discrimi-
nate between awake and unresponsive states during
propofol infusion. Wavelet-derived parameters were at
least as good as the traditional procedure of peak label-

Table 4. Differences between Indices Derived from the Parameters Pa, Nb, and Pa/Nb Latencies and Special Wavelet Coefficients
in Discriminating between Awake and Unresponsive States

Awake Unresponsive

Group 2 Group 3 Group 4 Group 2 Group 3 Group 4

Pa
Group 1 * — — — † †
Group 2 — * * — * †
Group 3 — — — — — —

Nb
Group 1 † — — — * †
Group 2 — * ‡ — — —
Group 3 — — — — — —

Pa/Nb
Group 1 † — — — * *
Group 2 — * ‡ — — —
Group 3 — — — — — —

Db3d4
Group 1 — — — — ‡ ‡
Group 2 — — — — ‡ ‡
Group 3 — — — — — —

* P , 0.05, † P , 0.001, ‡ P , 0.0005.
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ing by visual inspection, and the analysis algorithm can
be easily implemented for online analysis.

The authors thank D. Droese, Technician, and G. Schäpers, M.S.c., Staff
Member, Department of Anesthesiology, Technische Universität, Munich, Ger-
many; and T. Marcu, Ph.D., Assistant Professor, Department of Technical Com-
putation, Gerhard-Mercator Universität, Duisburg, Germany.

Appendix: Wavelet Transform
Mathematical methods that decompose waveforms can be used to

characterize complex biosignals such as arterial blood pressure or the
electroencephalograph. A widely used method for electroencephalo-
graph analysis is the Fourier transform. It decomposes a signal into a
series or family of sine waves.27 Each of these waves (called test
functions) is defined by frequency, phase, and amplitude. The decom-
position by Fourier transform leads to coefficients quantifying the
fractional amount of each test function that describes a specific fre-
quency component of the signal.

As an example, the decomposition of a signal composed of three
different frequencies (10, 30, and 60 Hz, unitary amplitude and no
phase) is shown in figure 3. The sine wave (test function) of 10 Hz
extracts only the 10-Hz component from the signal. The other consid-
ered frequencies are treated similarly. The main disadvantage of the
Fourier transform is the lack of time information. For instance, if the
signal in figure 3A is reversed in time (fig. 3B), then an identical result
of transformation is obtained that does not discriminate between the
two signals.

From a mathematical point of view, auditory evoked responses13

belong to a different class of signals when compared with electroen-
cephalograph signals. First, the auditory evoked response is a deter-
ministic signal of finite length (i.e., MLAER: 100 ms). In contrast, the
electroencephalograph is a stochastic signal of “infinite” length (sev-
eral seconds to minutes). Second, the frequency contents of the audi-
tory evoked response change abruptly with time. Sharp peaks with
short interpeak latencies are followed by broader peaks with longer
interpeak latencies. It is therefore necessary to use an analysis method
that provides both frequency and time information, such as wavelet
transform.

The Fourier transform and wavelet transform both analyze a signal
by means of basis functions or test functions. The Fourier transform
uses only the family of sine waves. These can be seen as compressed

and expanded versions (called “dialted versions”) in time of a partic-
ular sine wave with specific frequencies (i.e., test functions 1 and 2; fig.
3). The family of test functions used by the wavelet transform to
characterize specific signals27 is constructed by a more complex pro-
cedure. First, a specific test function (mother wavelet) has to be
chosen. It can be any zero mean function of finite energy. Second, the
family of functions can be built by a continuous dilation of the mother
wavelet. This procedure enables the extraction of the frequency con-
tents of the signal in the following analysis. Simultaneously, the test
function is shifted along the time axis to analyze the respective con-
tribution of each fraction of the underlying signal (fig. 4).

Figure 4 shows the decomposition of the signals presented in figure
3 by means of the wavelet transform. In this example, a wavelet called
“Mexican hat”28 is used. Different frequency components of the signal
are extracted by dilated versions of the mother wavelet. Unlike the
Fourier transform, the time information is now preserved by shifting
the wavelet in time. Time reversal of the signal in figure 4A leads to a
corresponding change in the computed coefficients of the wavelet

Fig. 3. Decomposition of a signal containing three distinct fre-
quencies using the Fourier transform. (A) Original signal, (B)
signal reversed in time.

Fig. 4. Decomposition of the signal (fig. 3) using the wavelet
transform. In contrast to Fourier transform, time information is
preserved by wavelet transform.

Fig. 5. Example of decomposition of the signal (fig. 3) using
continuous wavelet transform. (A) Original signal, (B) signal
reversed in time.
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transform, which, in turn, now reflect changes over time (fig. 4B). This
information is lost using the Fourier transform (fig. 3).

Figure 5 illustrates the complete time-frequency representation. Us-
ing the continuous wavelet transform, all dilated and shifted versions
of the mother wavelet are represented. Frequency components are
decomposed into different scales that are related to the diation factor
of the underlying mother wavelet, i.e., a high scale is associated with
a low frequency and vice versa. The frequency information belonging
to a certain time point is spread over several scales because of the
resolution of the wavelet transform. In contrast, the frequency resolu-
tion given by the Fourier transform is sharp.

Similar to the Fourier transform, the biosignal may be analyzed
continuously over time or in discrete steps (e.g., every 1 ms). Because
the modality of computation uses a family of linearly dependent test
functions, the continuous wavelet transform contains redundant infor-
mation. In contrast, the discrete version of the wavelet transform
reduces the redundancy by using special discrete values for scales and
positions in time.

The core for producing a fast algorithm for a discrete decomposition
is represented by the multiresolution analysis.28 This extracts the
information based on independent (orthogonal) test functions29 deter-
mined by a given number of scales and time positions (fig. 6). These
numbers are dependent on the nature of the analyzed signal. The
decomposition is performed using a bank of filters. Each pair of filters

from that bank corresponds to a (mother) wavelet function. At each
level of analysis (representing the logarithm to the base 2 of the scale),
the signal is high-pass and low-pass filtered (fig. 7). In addition, the
number of points for which the time-frequency information is ex-
tracted is reduced by a factor of 2 to remove redundant information. At
each stage, the low-pass–filtered signal is used for further processing.

At each stage of the multiresolution analysis (level), the high-pass–
filtered signal is referred to as a detail and the low-pass–filtered signal
as an approximation of that level. A specific number is used to
indicate the corresponding level of analysis. For instance (fig. 7), A3
means approximation at level 3 and D3 stands for detail at the same
level.
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