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Statistical Method for Predicting When Patients
Should Be Ready on the Day of Surgery

Franklin Dexter, M.D., Ph.D.,” Rodney D. Traub, Ph.D.t

Background: Previously, mathematical theory was developed
for determining when a patient should be ready for surgery on
the day of surgery. To apply this theory, a method is needed to
predict the earliest start time of the case.

Methods: The authors calculated a time estimate such that the
probability is 0.05 that the preceding case in the patient’s op-
erating room (OR) will be finished before the patient is ready
for surgery. This implies there will be a 5% risk of OR personnel
being idle and waiting for the patient. This 0.05 value was
chosen by considering the relative cost valuation of an average
patient’s time to that of an average surgical team based on
national salary data. Case duration data from a surgical services
information system were used to test different statistical meth-
ods to estimate earliest start times.

Results: Simulations found that 0.05 prediction bounds, cal-
culated assuming case durations followed log-normal distribu-
tions, achieved actual risks for the OR staff to wait for patients
of 0.050 to 0.053 (SEM = 0.001). Nonparametric prediction
bounds performed no better than the parametric method. Hav-
ing patients ready a fixed number of hours before the sched-
uled starts of their operations is not reliable. If the preceding
case in an OR had been underway for 0.5 to 1.5 h, the paramet-
ric 0.05 prediction bounds for the time remaining achieved
actual risks for OR staff waiting of 0.055 to 0.058 (SEM = 0.001).

Conclusion: The earliest start time of a case can be estimated
using the 0.05 prediction bound for the duration of the preced-
ing case. The authors show 0.05 prediction bounds can be
estimated accurately assuming that case durations follow log-
normal distributions. (Key words: Operating room manage-
ment; operating room scheduling; perioperative scheduling.)

WHAT should be a surgical suite’s policy for telling a
patient at what time the patient should arrive at the
surgical suite on the day of surgery? Although each
surgical case typically has a scheduled start time, it is not
clear if the patient should be told to arrive at the surgical
suite 2 h before this scheduled start time, or if some
longer or briefer length of time would be more appro-
priate. There are three facets to this question. First, will
the patient arrive punctually? Second, once the patient
has arrived at the surgical suite, how much time will be
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required for the patient to be prepared for surgery (e.g.,
to change into a hospital gown and receive medica-
tions)? Third, will the preceding case or cases in the
operating room (OR) in which the patient is to have
surgery finish early, on time, or late? Provided the patient
has already undergone preoperative evaluation,'? thg?
facet resulting in the greatest likelihood of a long patieng
waiting time on the day of surgery is the variability in thé
duration of the preceding case or cases.’

Ideally, a patient would arrive at the surgical suite, b&
prepared for surgery, and be ready for surgery just as th@
preceding case in his or her OR is completed.* Thg
patient would then have the short waiting time he or sh§
wants.'>”7 In addition, the OR staff would not incur idl%
time waiting for the patient. In this context, the “staff’%
include one or more surgeons, anesthesiologists, nursesi
and OR technicians. However, if the patient is readg
earlier than the time at which the preceding case in hig
or her OR finishes, then the patient will incur somé
waiting time while the preceding case is completed an<§
the room is cleaned. This patient will likely be les§
satisfied.> In contrast, if the patient arrives after the
completion of the preceding case in his or her OR, th&
staff working in the OR will have to wait for the patientg

Weiss showed that the determination of when to hav
patients arrive on the day of surgery is equivalent t(g
specifying quantitatively the relative cost of patientsﬁ
waiting time compared with the cost of the staff’s idlg
time.* The logic is, in effect, that if there is a high cost fog
some undesired activity, then the probability of thag
activity occurring should be made as low as possible. Fog
example, at some surgical suites the cost of the staff’%
idle time is considered to be large relative to the cost of
the patients’ waiting time. At such surgical suites, th%
probability of having the OR staff wait for the patienk
should be made low by having the patients arrive earlyg
The surgical suite could implement this policy by inS
structing all patients to stop eating and drinking at midg
night and arrive sufficiently early in the morning to be
ready for surgery at the start of the regularly scheduled
OR day.’ As a result of the policy, patients who are not
scheduled for the first case in each OR have a long
waiting time, are thirsty, and can be dissatisfied with
their care.">”” However, the policy ensures that staff
working in the surgical suite virtually never wait for
patients.

Weiss showed how, in theory, a surgical suite should
determine when a patient should be ready for surgery on
the day of surgery.? Based on the surgical suite’s relative
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valuation' of patients’ waiting time to staff’s idle time,
each patient should be ready for surgery some optimal
number of hours before the scheduled end of the pre-
ceding case in the patient’s OR. Weiss showed that these
values need to be estimated, but did not investigate how
to calculate them.* Our goal was to use actual data from
a surgical suite to test different statistical methods that
can be used to estimate the earliest start time of a case so
that Weiss’ theory can be implemented in surgical suites.

Methods

Review of the Previously Developed Theory for
Determining When a Patient Should Be Ready on
the Day of Surgery

Weiss® showed that there is an optimal method for
balancing the cost of a patient waiting for the preceding
case in his or her OR to be completed with the cost of
OR staff waiting for the patient. Let us suppose that the
cost of the patient waiting equals C,,, per hour. The cost
of the OR staff waiting for the patient, once the staff
have finished caring for the preceding patient in the OR,
equals C,y per hour. The expected total cost for patient
and staff waiting equals the number of hours the patient
waits multiplied by C,,, plus the number of hours the OR
staff wait multiplied by C,i. Weiss showed that to min-
imize this expected total cost, the time that the patient
should be available for surgery is the tth percentile of
the cumulative distribution function of the duration of
the preceding case in the patient’s OR, where 7 =
Co/(Cor + Cpt).4 To minimize the expected total cost
for patient and staff waiting, the risk that the OR staff
should accept in having to wait for the patient equals 7.*
For example, suppose that 7 = 0.05 and the preceding
case in the OR is a cholecystectomy. Then, the patient
would be asked to arrive sufficiently early so that he or
she can be ready for surgery at the time that corresponds
to the 0.05 percentile of the durations of cholecystecto-
mies performed at the surgical suite. There would be a
0.05 chance that the OR staff would finish the cholecys-
tectomy and have to wait for the next patient.

We give an example of how these principles* would
be applied to determine when a patient whose case is
preceded by a cholecystectomy should be ready for
surgery. Figure 1 shows a histogram of the durations of
the 552 cases scheduled to be a cholecystectomy in the
data set (described in Case Duration Data Used in this
Study). The data are plotted with a logarithmic axis. A
normal distribution curve, with its characteristic bell
shape, is superimposed. The 0.05 percentile of case
duration, which equals 1.7 h, is marked with an arrow.
When determining when to have the second patient in
the OR be ready for surgery, the duration of the chole-
cystectomy could be expected to be 1.7 h. By having the
second patient available for surgery 1.7 h after the start
of the cholecystectomy, the risk of the OR staff having to
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Fig. 1. Histogram of the durations of the 552 cases scheduled te.
be a cholecystectomy in the data set. The data are plotted w1t]!g
a logarithmic axis. A normal distribution curve is superlmg,
posed. The arrow marks the 0.05 percentile of case duration.
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wait for the second patient to be ready would be 0.052
Thus, when using the 0.05 percentile, the “earliest starg.
time” of the second case would be 1.7 h after the§
cholecystectomy was started.

When there are hundreds of previous cases of th
same scheduled procedure, an appropriate interpret
tion of the 0.05 percentile is that the risk is 0.05 of &
patient not being ready for surgery when the OR team i§
available having completed the preceding case in thé
OR. However, in many instances there are only a fews
(e.g., two) previous case durations of the same schedule@
procedure available to predict the duration of a futur¢§
case.®” When there are small numbers of previous Cases¢,
“prediction bounds,” not percentiles, are relevant.
prediction bound for a single future observation is @
value that will, with a specified degree of confidence, bé%
exceeded by the next randomly selected observatlolﬁ
from a population. The specified degree of confidence
then equals one minus the prediction bound. Thus, %
0.05 prediction bound provides a 0.05 risk of the OK
staff waiting for the patient. For small numbers of casesy
the value for the 0.05 prediction bound can differ subg
stantially from the value of the 0.05 percentile.

A prediction bound incorporates two sources of vari-
ability in an estimate for the duration of a case. First,
there is variability intrinsic to the scheduled procedure,
as shown in figure 1. This source of variability exists
whether there are two previous cases’ durations or hun-
dreds of previous cases’ durations. Second, there is vari-
ability in the estimates of the parameters. Because of the
small number of previous cases’ durations available to
estimate the parameters, the estimated values of the
parameters may differ from what they would have been
had there been hundreds of previous cases’ durations
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Fig. 2. Probability distributions for the duration of a future
cholecystectomy based on a priori data from two (dotted curve)
or 552 (solid curve) previous case durations. Both curves use
values for the sample mean and standard deviation of the log-
arithms of case duration obtained using the 552 previous cases.
The arrow marks the 0.05 prediction bound for case duration
based on there being data from two previous cases.

available. For example, the two curves in figure 2 show
the probability distributions for the duration of a future
cholecystectomy based on a priori data from two or 552
previous case durations. Both curves use values for the
sample mean and standard deviation of the logarithms of
case duration that were obtained using the 552 previous
cases. Both curves were drawn assuming that the loga-
rithms of case durations follow a normal distribution.
The solid curve for 552 previous cases is the same as the
one shown in figure 1. The dotted curve, in contrast,
gives the probability distribution obtained assuming that
the mean and standard deviations were obtained from
only two previous cases’ durations. The use of only two
previous cases’ durations resulted in greater uncertainty
in the accuracy of the duration of the future case. Con-
sequently, the dotted curve in figure 2 is wider than the
solid curve. Whereas the 0.05 prediction bound using 552
cases equals the 0.05 percentile or 1.7 h (fig. 1), the 0.05
prediction bound using two cases equals 0.3 h (fig. 2).

The focus of this paper was to test different statistical
methods to calculate 0.05 prediction bounds for case
duration.

Rationale for Choosing T = 0.05

We used a value of 7 = 0.05 in our study based, in part,
on the salaries of patients and OR staff. Using recent
median annual salaries in the United States, the valuef of
Cor = $549,780 for a surgical team with an anesthesiol-
ogist, a general surgeon, two OR nurses, and a full-time
equivalent housekeeper (representing the work of, for
example, unit assistants and central sterilization personnel
in caring for the patient). As recommended by the Panel on
Cost-effectiveness in Health and Medicine,'® to value pa-

i Sites accessed June 12, 1999: http://www.pohly.com/salary_anes.shtml,
http://www.aana.com/library/costeffect.asp, http://www.pohly.com/salary_gene.
shtml, http://www.nurseweek.com/features/97-12/earnsrvy.html, ftp://ftp.bls.gov/
pub/special.requests/If/aat39.txt, and ftp://ftp.bls.gov/pub/special.requests/
1f/aat39.txt
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tients’ time we used the average wage rate of people older
than 16 years in the United States: C,, = $27,196.F Then,
T = $27,196/($549,780 + $27,196) = 0.05.

Higher or lower values of T may be appropriate be-
cause the valuation of patients’ versus OR staff’s time
varies among hospitals and countries, among other situ-
ations. However, based on the salary argument, we think
that setting the risk that the OR suite staff will wait for
the patient at 7 = 0.05 is a reasonable compromise
between the value of patients’ and OR staff’s time.

Case Duration Data Used in this Study o

We tested statistical methods to calculate 0.05 predic%
tion bounds using case duration data from the Universitg
of Iowa. The cases were performed between July 1%
1994, and July 1, 1997, at the tertiary surgical suite og
ambulatory surgery center. “Case duration” was define&
as the time from when the patient entered the OR iri
which he or she had surgery to the time he or she left th%
OR. Entrance and exit times from the OR were recorded
by OR nurses when the patients entered and exited frong
the OR using clocks that were synchronized throughouf;
all ORs in these two surgical suites. Two checks weré
applied to the times by the OR information system whet$
a dedicated data entry clerk entered the data later thasg
day. First, the entrance and exit times had to concug
temporally with other recorded times for that case (e',g,g?'_T
the time of induction of anesthesia). Second, the Calcté
lated case durations were compared automatically to th&
durations of previously performed cases of the sam&
procedure. Discrepancies were addressed the nex§
working day with the OR nurse or nurses who recorded
the times.

The cases were classified based on their 8,808 differeng
scheduled procedures. If a procedure was scheduleéE
with more than one Current Procedural Terminologg
(CPT) code, that combination of scheduled codes waf§
considered to characterize a unique scheduled proce,‘;»?
dure. The observed number of different scheduled proz
cedures was reasonable compared with other surgica@
suites in the United States.” We classified each case by itg
scheduled (vs. actual) procedure code because (1) for @
future case for which a prediction bound is being calcug
lated, only the scheduled procedure would be knownZ
and (2) for some surgeons and scheduled procedures§
the actual procedures occasionally differed from the
scheduled procedures."!

Among the 48,257 cases, 37,699 of the procedures
were elective. There were 18,409 series of consecutive
elective surgeries in the same OR on the same day with
no turnover times exceeding 1 h. We used these series of
consecutive elective cases in part to study the expected
number of cases preceding a case in an OR on the day of
surgery.

We also used the data to calculate the percentages of
cases whose earliest start times can be estimated using

5000



1110

F. DEXTER AND R. D. TRAUB

2.5 yr of historical case duration data. This was necessary
to determine whether each of the statistical methods to
calculate 0.05 prediction bounds would be useful if the
method were accurate. We compared the scheduled
procedures of the first 2.5 yr of cases to the scheduled
procedures for the last 0.5 yr of cases. During the first
2.5 yr, there were 40,112 cases. Of the 8,145 operations
performed in the last 0.5 yr, 3,717 were elective cases
preceded by another elective case in the same OR on the
same day with the turnover time not exceeding 1 h. The cases
performed in these 3,717 patients were compared with the
procedures of the 40,112 patients from the first 2.5 yr.

Testing Prediction Bounds Assuming that the

Logarithms of Case Durations Follow a Normal

Distribution (“Parametric Method”)

When the natural logarithms of case durations follow a
normal distribution, the 0.05 prediction bound
equals®'?

exp(T+s- 1+ 1/N-T'[N—1,0.05]) (D

where T = the mean of the natural logarithms of the N
previous case durations, s = the standard deviation of
the natural logarithms of the N previous case durations,
and T"'[N —1,7] = the tth percentile of the Student ¢
cumulative distribution function with (N — 1) degrees of
freedom. To calculate this parametric prediction bound,
case durations must be available from at least two pre-
vious cases of the same scheduled procedure because
N = 2 is needed to calculate the standard deviation.

For example, we used this equation to calculate the
location of the arrows in figures 1 and 2. The value of = T~ *
[552 — 1,0.05] = —1.648. For N = 552, T = 0.967, and
s = 0.266, the 0.05 prediction bound equaled
exp(0.967 + 0.266 - V'1 + 1/552 - [—1.648]) = 1.7 h.
When the 552 case durations were sorted and the 0.05
percentile was found empirically, the value also equaled
1.7 h. The value of T '[2 — 1,0.05] = —6.314. For N = 2,
the 0.05 prediction bound equaled exp(0.967 +
0.266 - V1 + 1/2 - [—6.314] = 0.3 h.

This parametric equation for the 0.05 prediction
bound assumes that the logarithms of previous cases’
durations follow a normal distribution. This assumption
may not hold sufficiently well for the 0.05 prediction
bounds to be accurate. To determine the accuracy of
0.05 parametric prediction bounds, we analyzed the data
set in the manner we previously reported.®'?

Testing 0.05 Prediction Bounds Calculated Using

the Nonparametric Method

We repeated the analysis that we performed for para-
metric 0.05 prediction bounds using nonparametric 0.05
prediction bounds. The nonparametric method has the
advantage of not assuming that logarithms of case dura-
tions are normally distributed. These nonparametric
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bounds were calculated using the approach described by
Beran et al.'* Provided N = 19, the 0.05 nonparametric
prediction bound equals the (0.05(N + 1) — 1)/(N — 1)
percentile of the N numbers.'*

Testing 0.05 Prediction Bounds Calculated by
Having Each Patient Ready for Surgery at a Fixed
Number of Hours before the Scheduled End of the
Preceding Case in the Operating Room

An economically rational strategy for scheduling elec-
tive cases is to use the mean of the durations of previous
cases of the same scheduled procedure to predict th§
duration of a future case.'®> A corresponding strategy fog
the problem considered in this study is to subtract &
specified number of hours from the mean of previ0u§
cases’ durations. We studied this strategy because it is %
method currently used by surgical suites.

We considered the rule whereby patients are asked t
arrive sufficiently early to be ready for surgery 1.5 Ig
before the scheduled end of the preceding case in the:.
OR. If the mean of previous cases of the same schedule%
procedure type was briefer than 1.5 h, then the patien§
would be asked to arrive sufficiently early to be ready*.z'r
when the preceding case in the OR starts. We used 1.5 2
because we found by trial and error that it gave a risk o%
the OR staff waiting for the patient of 0.050 = 0.00E
when applied to all cases in the data set.

1$%esey/:

A|

Testing the Parametric Method When Applied to
More than One Preceding Case in the Same
Operating Room

A case may be preceded in its OR by two cases and thg
turnover time between the two cases. In the data selﬁ
there were 11,444 pairs of consecutive elective cases 118
the same OR on the same day with no turnover tune§
exceeding 1 h and with at least two previous cases of thdg
same scheduled procedure for each of the two cases 11&’
the series. We evaluated two strategies for predicting thé
time to complete the pairs of cases.

The actual time to complete a pair of cases and thé¢
turnover time between the pair of cases was compared
with the sum of the 0.05 prediction bounds for each of
the two cases and the turnover time, using the methO(i
of analysis that we reported previously.>'®> The 0.0
prediction bound for the turnover time equaled 10 min
by both parametric and nonparametric methods. This
method needed to be tested in part because we as-
sumed'” that the durations of the two cases in each pair
were statistically independent.

The 0.05 prediction bound for the time to complete a
pair of cases and the turnover time between the pair of
cases was also estimated by Monte-Carlo computer sim-
ulation. A duration for each of the two cases in the pair
was obtained by making a random draw from its appro-
priate Student ¢ distribution (equation 1). The process
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Table 1. Percentages of Cases Whose Earliest Start Times Can Be Estimated Using 2.5 yr of Historical Case Duration Data

Percentages of Cases (Mean =+ Standard Error)

Number of Previous Cases
Used to Predict the Duration
of the Preceding Case in the

Limiting Consideration to Cases that Were
Preceded by Another Elective Case

Including Cases that Were a “First-Start” in an

Same Operating Room (N = 8,717) Operating Room (N = 8,145)
19 or more 62.4 = 0.8 82.8 = 0.4
2 or more 845+ 0.6 92.6 = 0.3
1 or more 88.5 = 0.5 94.7 £ 0.2

was repeated thousands of times, until the 99% two-
sided confidence interval for the 0.05 quintile for the
sum of the durations was less than 5 min.'® Student
t-distributed random numbers were generated by the
T3T* algorithm."”

If the time that a patient would be asked to be ready
for surgery equals the sum of the three 0.05 prediction
bounds, and if the resulting risk of the OR staff waiting
for the patient is less than 0.05, then the sum of 0.05
prediction bounds would be the earliest time the patient
needs to be ready for surgery. On the day of surgery, the
patient could call the surgical suite or vice versa to learn
how much later than the original estimate he or she
should arrive at the surgical suite. We show in the
Appendix that the 7 = 0.05 prediction bound for the
duration of a case based on the number of hours (d)
because the case started equals

exp(T +sy1+ 1/N-T (N -1,
_ (@)
In(d) — T

+(1-7)T|N-1, ———]|).
r+-7) sy1+ 1/N »

We tested this method for cases in the data set with
durations that were at least d = 0.5, 1.0, or 1.5 h long.

Results

Characteristics of Surgical Cases

The mean * SD of the number of cases in each series
of elective cases in an OR was 2.0 = 1.1 cases, with an
SEM of 0.01 cases. Among the elective cases, 87 = 0.2%
were preceded by zero or one case.

To calculate a 0.05 percentile empirically necessitates
that there be at least 19 previous case durations because

§ Adding to this percentage the cases that were “first-starts” in an OR, para-
metric methods could be used to determine when 93 * 0.3% of patients should
be ready for surgery (table 1, row 2, column 2). This 93% value can be increased
further. We consider an OR with two scheduled cases. The first case has one or
zero previous case durations of the same scheduled procedure(s). The second
case has many previous cases of the same scheduled procedure(s). The sequence
of cases can be switched so that the case with historical case duration data is
performed first. Specifically, cases were switched if (1) a case was followed in the
same OR on the day of surgery by another elective case; (2) the first of the two
cases was of a scheduled procedure that in 2.5 yr no more than one case of the
same scheduled procedure had been performed; (3) the case that followed the
case was of a scheduled procedure with two or more previous cases of the same
scheduled procedure type; and (4) the case that followed was itself not followed
by another case. Making such switches increased the percentage of cases for
which the parametric method could be used to 95 * 0.2%.
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0.05 = 1/(19 + 1). Table 1, row 1, shows that with 2.5 yr
of historical data, 19 or more previous cases of the same
scheduled procedure type would be available to calcu%J
late a 0.05 percentile for 62 = 1% of elective case§
preceded by another elective case in the same OR on thé
same day.

Table 1, row 2, shows that, with 2.5 yr of data, clerkg
could use parametric methods to determine when patient%)
should be ready for surgery for 84 = 1% of cases preceded
by another case in the same OR on the same day.§

y wo,

Calculation of Prediction Bounds for the Duration

of the Preceding Case in the Operating Room

Table 2 shows the percentage of cases for which th
OR staff would have to wait for the patient.

The first column shows the results when the parame
ric method was used. The 0.05 prediction bound§
achieved an actual risk of 0.053 = 0.001 for the OR stafg
to wait for the patient. If the minimum number of pre3
vious cases used to calculate the parametric predictios
bounds was 19 instead of 2, then the achieved risk Waé}\D
more accurate at 0.050 = 0.001.

The second column shows results for the nonparame
ric method. It performed no better than the parametri
method.

In the third column we provide results from when w&
estimated the 0.05 prediction bound by having eaclgz
patient ready for surgery 1.5 h before the scheduled en&
of the preceding case in the OR. By design, the overaff
risk of the OR staff waiting for the patient equaleci
0.050 £ 0.001. Increasing the minimum number of pre,%
vious cases from at least two to at least 19 caused the rislg
to change from 0.050 * 0.001 to 0.035 = 0.001. Thi§
was because of the marked dependence of the risk of the
OR staff waiting for the patient on the mean of previous
cases’ durations. When the mean of previous cases’ du-
rations was less than or equal to 1.5 h, the patient was
(by definition) always available when the preceding case
in the OR was completed. The risk of the OR staff
waiting for the patient always equaled 0.000. When the
mean of previous cases’ durations was longer than 3.5 h,
the risk was 0.143 = 0.004 for two or more previous cases
and 0.100 = 0.004 for 19 or more previous cases. The
improvement in the accuracy of the prediction bounds for
the longer case durations, which was achieved by increas-
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Table 2. Comparison of Statistical Methods’ Abilities to Predict the Correct Answer (5%) that the Risk Was 0.05 that Case

Duration Would Be Briefer than Expected

Number of Previous Cases Mean Case Duration (h) Parametric Method* Nonparametric Method* Mean Minus 1.5 h* Sample Size
1 or more All 5.4 = 0.1 38,454
=15 0.0 £0.0 6,716
1.5-3.5 2.4 = 0.1 21,726
>3.5 15.6 = 0.4 10,012
2 or more All 53 0.1 5.0 £0.1 35,625
=15 4.8 =0.3 0.0 £ 0.0 6,155
1.5-3.5 52 +0.2 2.4 £0.1 20,338
>3.5 57+ 0.2 143 £ 0.4 9,132
19 or more All 5.0 £ 0.1 51x02 3.5 £0.1 21,755
=15 5.0=*0.3 44+ 03 0.0 = 0.0 4,132 o
1.5-3.5 51 =02 55 *0.2 2.2 £0.1 12,718 ¢
>3.5 49 *0.3 4.7 £0.2 10.0 = 0.4 4,905 §
@
* Percentage of cases (+ standard error) that would be delayed using the different methods of predicting the earliest starting time. %
3
ing the number of previous cases, had the effect of wors- can follow a distribution that is close to being normall§>

ening the overall accuracy of the method.

Application of the Parametric Method to More than

One Preceding Case in the Same Operating Room

If the patient having surgery after two preceding cases
and a turnover was ready for surgery at the time corre-
sponding to the sum of the three 0.05 prediction
bounds, the risk of the OR staff waiting for the patient
would be 0.016 = 0.001. If computer simulation were
used, the risk of the OR staff waiting would be 0.059 *
0.001.

If the patient contacts the surgical suite on the day of
surgery, the 0.05 prediction bound for the duration of
the first of two preceding cases could be adjusted based
on the number of hours since the case started. If this
preceding case in the OR had been underway for 0.5,
1.0, or 1.5 h, then the 0.05 prediction bounds achieved
actual risks for the OR staff to wait for the patient of
0.055 = 0.001, 0.058 = 0.001, and 0.056 £ 0.001,
respectively.

Discussion

Implications of Findings

Weiss showed previously that, based on a surgical
suite’s relative valuation' of patients’ waiting time to
staff’s idle time, there is an optimal number of hours
before the scheduled end of the preceding case in a
patient’s OR that the patient should be ready for sur-
gery.* We used actual case duration data to test statistical
methods to estimate the earliest start time of a case so
that Weiss’ theory can be programmed into surgical
services information systems.

The parametric method to calculate prediction bounds
assumes that the logarithms of case durations follow a
normal distribution. Although this assumption may not
be strictly satisfied, figure 1 suggested that for cholecys-
tectomies the logarithms of previous cases’ durations
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distributed. Case durations have been found to be logz
normally distributed,'® and statistical methods that ass
sume case durations follow log-normal distributions havé’
been used successfully in applications.®'® Therefore, wé
suspected that the parametric equation for the 0.0%
prediction bound would perform sufficiently well for thé
risk that the OR staff would wait for the patient to bg%
approximately 0.05 if the patient were ready for surgerg
at the time specified by the 0.05 prediction bound. WQ%
found that 0.05 prediction bounds calculated using th%

parametric method achieved actual risks of 0.053 &
0.001 for the OR staff to wait for the patient, which w@;
consider to be very accurate. 3

We found that the parametric method was preferablel
to having patients ready for surgery a fixed number og
hours before the scheduled end of the preceding case i1§
the OR. First, when the latter method was used, increass
ing the minimum number of preceding cases from ag
least two to at least 19 caused the risk to change fron§
0.050 = 0.001 to 0.035 = 0.001. In contrast, the parame
ric method became more accurate. Second, there was %
large dependence of the risk of the OR staff waiting for thé
patient on the mean of previous cases’ durations.

Updating the Earliest Start Time for Series of

Successive Cases

Among surgical suites in the United States, there wa§
an average of 2.0 cases per OR each work day.'® In our
data set, the mean number of cases in each series of
elective cases in an OR was also 2.0 cases. 87% of
patients had zero or one preceding case in their OR.

Some surgical suites have scheduled delays between
series of cases (e.g., a morning and afternoon session
separated by lunch). When there is a scheduled delay,
the cases after the delay start as if there were no preced-
ing cases in the OR. The use of scheduled delays in
surgical suites increases the applicability of statistical
methods for zero or one preceding cases.
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Nevertheless, a method is needed to choose the times
at which the patients with two or more preceding cases
should be ready for surgery. We showed that when there
are a series of successive cases in an OR, the sum of 0.05
prediction bounds can be used before the day of surgery
as the earliest time the patient needs to be ready forsur-
gery.|| This approach is conservative from the patient’s
perspective, in that the risk of the OR staff waiting for
the patient is less than 0.05.

An alternative approach is for the 0.05 prediction
bound for a series of cases to be calculated by using
Monte-Carlo computer simulation. However, for many
cases, there are only a few previous cases of the same
scheduled procedure type (table 1).” With a small num-
ber of cases, the Student ¢ densities had long lower tails
(fig. 2). It is the lower tail that is used for calculating 0.05
prediction bounds. Due to the long lower tails, hundreds
of thousands of Student #distributed random numbers
had to be generated for the precision of the estimate to
be within 5 min. Thus, although this method yielded
accurate results, the computational effort was substantial
compared with the use of equation 1, which may make
this approach less practical.

On the day of surgery, the patient can call the surgical
suite or vice versa so that the patient can get an updated
time to arrive at the surgical suite based on the updated
earliest start time of the first of two preceding cases in
the patient’s OR. We found that the parametric method
can accurately predict the 0.05 prediction bound for the
time remaining in a case. If this method is used, patients
may then have shorter waits while maintaining the risk
that OR staff will be idle at less than 0.05. Our experi-
ence is that this concept is readily understandable by
hospital staff and patients. Updating a patient’s arrival
time may be helpful if the second of two preceding cases
has not started when the patient calls. Having the patient
call may also be particularly useful if the number of
previous cases’ durations available to estimate the pa-
rameters for the prediction bound for the first of the two
preceding cases is small, and as such, the 0.05 prediction
bound is very brief, as in figure 2.

Updating the start time provides flexibility to the sur-
gical suite in moving cases from one OR to another while
maintaining a relative valuation of patients’ waiting time
to staff idle time of 0.05. We found that updating the
start time can be straightforward for patients who live
close to the surgical suite, are staying at hotels near the
hospital, or are coming to the surgical suite from a ward
or intensive care unit.

| Alternatively, the durations of previous “common” pairs of cases could, in
theory, be used directly in the analytical expression for the 0.05 prediction
bound. However, there were few “common” pairs of cases. Among the 3,717
pairs of cases with a turnover time in the 0.5-yr data set, only 26 * 1% of the pairs
had two or more like pairs in the earlier 2.5 yr of data.
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Time that Patients Should Arrive at the Surgical

Suite versus the Time that They Should Be Ready

Jor Surgery

We focused on predicting the time when a patient
needs to be ready for surgery. Based on the estimated
earliest start time of a patient’s case, a clerk will need to
decide when the patient should arrive at the surgical
suite. The difference between the estimated earliest start
time and the time at which the patient should be asked
to arrive varies among surgical suites because of differ-
ences in average patient punctuality, time necessary to
change into a hospital gown, availability of medicationsg
and turnover times, among other factors. For long pre§
ceding cases in the patient’s OR, variability in thesé
factors is relatively unimportant compared with the Val‘i%
ability in the duration of the preceding case.® For brieﬁ
preceding cases, variability in these factors may be in
portant.

Cancellation on the Day of Surgery of a

Preceding Case

The theory developed to balance the cost of a patienf;
waiting on the day of surgery versus the cost of OR staf§
waiting for the patient assumes that the preceding Casg.
is performed.* Institutions with a high percentage Q§
cancellations can incorporate the risk of Cancellatlolg
into its decision-making regarding when patients shoul%
be ready for surgery. For example, if the proportion og
appropriately scheduled cases that cancel on the day of
surgery equals 0.03, then a 0.02 prediction bound WoulcE
be used instead of a 0.05 prediction bound to mzuntang
the risk of the OR staff waiting for the patient at 0.05. IE
an OR has a cancellation rate greater than 0.05, therg
even if every patient scheduled for elective surgery wh(i
shows up were to be ready for surgery at the start of thé
workday, the risk of the OR staff waiting for a patieng
would always exceed 0.05.

00"11BY0IaA|IS ZESe/T

Otber Applications of Predicting Earliest Start

Times of Cases

We found that there are other ways that 0.05 predicz
tion bounds for preceding cases in ORs can be usedy
First, family members and friends of patients in th§
hospital need to decide when to come to the hospital ofF,
the day of surgery. Second, the equation for the 0.0
prediction bound of the time remaining in a case (equa-
tion 2) can be used for family members wanting to know
the earliest time a case is likely to end so that they can
take a walk or perform other tasks. Third, shortening the
preoperative fasting period to a few hours*>*' can be
difficult to manage in practice for patients who are not
the first cases of the day because of uncertainty in know-
ing the earliest time at which their cases will start.

We reviewed the theory for determining when a pa-
tient should be ready for surgery. We showed that the
0.05 prediction bound for a case can be estimated accu-
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rately assuming that the logarithms of case durations
follow a normal distribution.
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Appendix

A|IS Zese//:dny wouy p

To derive equation 2, the 7th prediction bound b = exp (T + 592
V1+ 1/N-T '[N — 1, 7]), where T~ '[N — 1, 7] represents the *rtls_g.
percentile of the Student ¢ cumulative distribution function witig
(N — D degrees of freedom.*'? Rearranging terms, 7 = T(N — 13
[In(b) — T]/[s\/ 1 + 1/N]). Because b > d, the number of hours sinc@
the case started is 7 = (T(N — 1, [In(b) — 'f]/[s\/ 1+ 1/ND — T(N 3
1, [In(d) — TI/[sV1 + 1/ND)/A — TN — 1, [In(d) — T]/[S\/l +

ND). Solving this equation for b gives equation 2.
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