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Background: Many pharmacologic studies record data as bi- 
nary yes-or-no variables, and analysis is performed using logis- 
tic regression. This study investigates the accuracy of estimation 
of the drug concentration associated with a 50% probability of 
drug effect (C5J and the term describing the steepness of the 
concentration-effect relation (y), 

Methods: The authors developed a technique for simulating 
pharmacodynamic studies with binary yes-or-no responses. 
Simulations were conducted assuming either that each data 
point was derived from the same patient or that data were 
pooled from multiple patients in a population with log-normal 
distributions of C5, and y. Coefficients of variation were calcu- 
lated. The authors also determined the percentage of simula- 
tions in which the 95% confidence intervals contained the true 
parameter value. 

Results: The coefficient of variation of parameter estimates 
decreased with increasing n and y. The 95% confidence inter- 
vals for C,, estimation contained the true parameter value in 
more than 90% of the simulations. However, the 95% confi- 
dence intervals of y did not contain the true value in a substan- 
tial number of simulations of data from multiple patients. 

Conclusion: The coefficient of variation of parameter esti- 
mates may be as large as 40-50% for small studies (n S 20). The 
95% confidence intervals of C50 almost always contain the true 
value, underscoring the need for always reporting confidence 
intervals. However, when data from multiple patients is naively 
pooled, the estimates of y may be biased, and the 95% confi- 
dence intervals may not contain the true value. (Key words: 
Anesthetic effect; binary data; Monte Car10 Studies.) 

PHARMACODYNAMIC data are often recorded as binary 
variables (eg . ,  whether the patient responds to com- 
mand, whether the patient can maintain adequate spon- 
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the patien taneous ventilation, whethe shows a hemo- 
dynamic or somatic response to surgical stimulus). In 
this situation, a common technique of data analysis is 
logistic regression, in which the probability (P) of drug 
effect is evaluated as a function of the drug concentra- 
tion in plasma or at the effect site (C), using the follow- 
ing equation: 

where C,, is the concentration at which the probability 
of drug effect is 50% and y is a measure of the steepness 
of the concentration-effect curve.* Values of C,, and y 
are estimated by expressing the logarithm of the likeli- 
hood of the observed results ( ie . ,  log likelihood) using 
equation 1 and then maximizing this with respect to C,, 
and y. Logistic regression has been used for the analysis 
of the pharmacodynamics of inhaled and intravenous 
anesthetics,'-'' usually with a primary focus of determin- 
ing values of CS0 and y. However, any statistical tech- 
nique should not only provide parameter estimates, but 
also measures of the accuracy of these estimates. Al- 
though typical statistical software programs provide con- 
fidence intervals for estimated parameters, because lo- 
gistic regression is a nonlinear technique, these 
confidence intervals are only valid asymptotically as the 
number of data points (N) goes to infinity.'* In reality, 
most studies in the anesthesia literature involve rela- 
tively small numbers of data points. Therefore, it is often 
unclear how reliable parameter estimates are. The pur- 
pose of this study was to use simulations to analyze the 
relation between sample size and the accuracy of param- 
eter estimates. 

f Throughout this article, P refers to the probability of drug effect 
(eg., the probability of ablating the response to some stimulus such as 
skin incision). 
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Methods 

Although logistic regression commonly is used in an- 
esthesiology research, the underlying statistical model is 
seldom described. A usefid general reference for these 
types of statistical models is the textbook by Cox and 
Snell.’2 This model assumes that anesthetic effect is 
measured by an underlying continuous variable, denoted 
y, which is related to the drug concentration by the 
following equation: 

y = y In c - y In c,, + x ( 2 )  

where x is a random variable that is assumed to have a 
logistic distribution. The logistic distribution is de- 
scribed by 

exp( - X I  

[I + exp( - x)]’ 
P ( x )  = 

where P(x) is the probability of a given value of x. This 
distribution has a mean of zero and a variance of $/3) .  
The model is applicable to binary yes-or-no data because 
we assume that a positive drug effect is observed only if 
y > 0 or equivalently if x > - (y  In C - y In C,,). 

Thus, the probability of drug effect is as follows: 

We attempted to illustrate the underlying model in 
figure 1. The solid line through solid diamonds depicts 
the deterministic part of the y In C - y In C50; the 
adjective “deterministic” refers to the fact that this part 
of the effect is determined solely by the drug concentra- 
tion and the pharmacodynamic parameters C5,, and y. 
This increases steadily as drug concentration ( C )  in- 
creases. The solid circles are random numbers conform- 
ing to a normal distribution; we used a normally distrib- 
uted variable for convenience because of the ready 
availability of normally distributed random-number gen- 
erators in standard statistical software packages. When 
the sum of the deterministic component (solid dia- 
monds) and the random variables (solid circles) is 
greater than or equal to zero, the observed drug effect 
(solid triangles) is one, and if the sum is less than zero, 
the observed drug effect is zero. 

To investigate the standard deviations of parameter 
estimates using logistic regression, simulations of typical 
anesthesia studies were performed. Simulations were 
performed for varying values of n (the number of data 

-2.5 L----- -t-- --- 
50 70 90 110 130 

Concentration 
Fig. 1. An illustration of the underlying statistical model of 
logistic regression. The solid line ( + - + ) depicts the determin- 
istic part of the effect, y In C - y In C50 for y = 3 and C,, = 100, 
where C is the drug concentration and C50 is the drug concen- 
tration associated with a 50% probability of drug effect. The 
fdled circles (0) are the realizations of a random variable with 
a normal distribution. A normally distributed variable was used 
for convenience because of the ready availability of normally 
distributed random-number generators in standard statistical 
software packages. The magnitude of these two variables is 
shown on the left-hand effect axis. When the sum of the deter- 
ministic component (+-+) and the random variables (0) is 
greater than or equal to zero, the simulated response (A) is one, 
and if the sum is less than zero, the simulated response is zero. 

points) and y,  assuming that equation 2 was the under- 
lying model and C, ,  = 100 (a valid assumption because 
the units of concentration are arbitrary). To begin each 
simulation, n data points were generated by randomly 
selecting n drug concentrations distributed uniformly on 
a logarithmic scale from 25 to 400 units using the ran- 
dom number generator of an Excel (Microsoft, Red- 
mond, WA) spreadsheet. In a human study, this corre- 
sponds to the investigator assigning a drug dose to each 
patient enrolled in the study. At this point, if the con- 
centration effect is totally deterministic ( ie . ,  if y is infi- 
nite), then a positive drug effect will be observed if the 
drug concentration (C)  assigned to the data point ex- 
ceeded C5”. However, as noted previously, there is an 
element of randomness in the concentration- effect re- 
lation, embodied in the fact that y is finite. To take into 
account this randomness, a uniformly distributed ran- 
dom variable from 0 to 1 was generated for each “pa- 
tient,” again using the random-number generator of an 
Excel spreadsheet. If this number was less than Cy6/ 
(C,,yg + Cyg)  the simulated patient was assumed to have 
a positive drug effect (the response variable [Rl was 
given a value of 1). Otherwise, it was assumed that R = 
0. In this manner, responses are obtained for a range of 
concentrations, and spreadsheets consisting of columns 
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of C (the drug concentration) and R (the response vari- 
able) are generated. For each simulation, the parameters 
(CS0, y)  were estimated by maximum likelihood estima- 
tion. The logarithm of the likelihood of observed results 
(LL) was maximized as a function of C,, and y 

log likelihood 

= Ci {Ri log (Pi) + (1 - Ri) log (1 - Pi)} (3) 

(P, is given by equation 1 for each value of C; R = 1 if a 
drug effect is observed and R = 0 otherwise; and i 
indexes data points). Equation 3 is the sum of the loga- 
rithms of the probabilities of independent outcomes, 
which is Pi when R, = 1 and 1 - Pi when R, = 0. The 
estimation procedure was implemented on the Excel 
spreadsheet, taking advantage of its Solver function. In 
some instances, the attempted maximization of the log 
likelihood failed with the Solver function returning a 
“#NUM” message, indicating it could not interpret the 
log likelihood as a number. In these cases, the simulated 
data set was discarded and a new set generated. 

Two separate simulation experiments were con- 
ducted. In the first, simulations were performed for y = 
1.0, 1.5, 3.0, 4.5, 6.0, and 7.5, and it was assumed that 
C50 = 100 (units are arbitrary) for every data point. Thus, 
in these simulations, interpatient variability was ignored 
by assuming that the data were derived from a single 
patient. Simulations were conducted for n = 10, 20, 30, 
40, 50, 75, and 100 data points. Because any nonlinear 
regression technique necessitates the stipulation of ini- 
tial parameter values (i.e., an initial guess of what the 
true value is), we repeated each simulation for C50 ini- 
tial = 40, 100 and 250, and y initial = 0.6, 1.0, or 1.4 
times the true value of y. Each simulation was repeated 
100 times, and the standard deviations of the estimates 
of C50 and y were calculated. We did not calculate 
confidence intervals, but we determined, for each sim- 
ulation, whether the confidence intervals would include 
the true values of C,, and y. We did this by calculating 
the change in the logarithm of the likelihood, multiplied 
by a factor of 2 (2 X 6LL), which occurred when the true 
value of either C,, or y was substituted for the value 
determined by minimization of LL. This parameter (2 X 
6LL) has a chi-square distribution with one degree of 
freedom, which enables the researcher to determine 
whether any specific value of either C,, or y is within 
the 95% confidence intervals.” It should be noted that 
the confidence intervals for this type of data often are 
markedly asymmetric, and the parameter estimates do 
not follow a t distribution. 

In the second set of simulation experiments, we as- 
sumed that we pooled single data points from multiple 
patients and that the C5,, and y values had log-normal 
distributions (i.e., P = P,exp(q), where P denotes the 
parameter (C50, y), T V  denotes the typical value, and q 
has a normal distribution with a mean value of zero and 
an SD of 0.3. We assumed that C,,TV = 100, and we 
considered yw values of 1.0, 1.5, 3.0, 4.5, and 6.0. 
Simulations were again conducted for n = 10, 20, 30,40, 
50, 75, and 100 patients and for each value of simula- 
tions were repeated 100 times for starting values of C50 

initial = 40, 100 and 250, and y initial = 0.6, 1.0, or 1.4 
times the typical value of y. We also determined whether 
C,.,,TV and yw were within the 95% confidence inter- 
vals, as described previously. 

Statistical Analysis 
Our results are presented as the coefficient of variation 

(i.e., the SD of the parameter estimates normalized to the 
mean value of parameter estimates (C5,, SD/mean or y 
SD/mean) and estimate confidence, which we define as 
the percentage of parameter estimates for which the 
95% confidence intervals include the ‘‘true’’ value 
(%C19,). 

Results 

Bias (i.e., the difference between the mean parameter 
estimate and the true value) is presented in table 1 for 
simulations in which the initial parameter values were 
the true values. The bias of C,, estimates generally was 
small (< 10%); unless n = 10 and y was small (5 2) ,  in 
which cases the bias was nearly 100%. The bias in the 
estimation of y was less than 20% if the number of 
simulated data points (n) was more than 10, with the 
notable exception of simulations in which the parame- 
ters had log-normal distributions (see Discussion). 

Figures 2 and 3 present the coefficient of variation and 
estimate confidence of C5, and y estimates as a function 
of sample size when we simulate data from a single 
patient (fixed C,, and y). In these figures, the initial 
“guesses” of the parameters are the true values. As ex- 
pected, the coefficient of variation decreases as the num- 
ber of patients (n) increases. Additionally, the variability 
in the estimate of C,, increases as y decreases (fig. 2). 
For y = 1.0, the coefficient of variation of the C,, 
estimate is substantial (> 50%) unless the number of 
patients in the simulated study (n) exceeds 30. However, 
if y is larger (> 6), the coefficient of variation of the C,, 
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Table 1. Mean C,, and Y Estimation 

Target y 

n 1 .o 1.5 3.0 4.5 6.0 

10 
c5, 

c50 

c50 

c50 

c50 

c50 

c5, 

Y 
20 

Y 
30 

Y 
40 

Y 
50 

Y 
70 

Y 
100 

Y 

119.5 
1.95 

116.0 
1.35 

107.8 
1.32 

11 0.0 
1.05 

110.2 
1.12 

95.3 
1.05 

105.7 
1.03 

119.0 
1.98 

112.7 
1.97 

115.0 
1.56 

105.9 
1.50 

111.6 
1.35 

107.2 
1.56 

102.1 
1.49 

11 4.4 
3.15 

103.8 
3.22 

105.2 
3.19 

104.3 
2.86 

102.4 
2.87 

103.9 
2.76 

99.8 
2.70 

107.3 
3.39 

98.0 
4.57 

99.0 
4.50 

98.9 
3.96 

96.7 
2.84 

99.6 
3.65 

100.5 
3.62 

102.9 
3.91 

102.5 
5.55 

102.4 
4.74 

102.2 
4.65 

102.8 
4.28 

102.4 
4.38 

101.2 
4.19 

Target C,, = 100. For these simulations, the initial estimates of C,, and y were equal to the target value 

estimate is approximately 10% if n 2 20. Equally impor- 
tant, the true value of C,, lies within the 95% confidence 
intervals of the estimates in more than 90% of simula- 
tions. In contrast to C,,, estimates, the magnitude of the 
true value of y has less influence on the variability of the 
estimates of y, as is shown in figure 3 .  The coefficient of 
variation of y estimates is somewhat greater than that of 
C,,, estimates and is approximately 60% for n = 20, 
decreasing only to approximately 40% for n = 100. 
However, the confidence of y estimates is similar to that 
of C,,, estimates, with %CI,, values well in excess of 90% 
in these simulations with no interpatient variability. 

Figures 4 and 5 present the coefficient of variation and 
estimate confidence for simulations in which C,, and y 
are different for different simulated patients. We as- 
sumed that the parameters have log-normal distribu- 
tions. These simulations mirror the common situation in 
which data from multiple patients are pooled for analy- 
sis. Again, we present simulations in which the initial 
guesses of C,,, and y are equal to C,,TV and y,Iv. As in 
the case with no interpatient variability, the coefficient 
of variation of estimates of either C,, or y decrease as n 
increases. The magnitude of this variability is similar to 
the previous simulations, in which C,, and y were fixed. 
As before, the coefficient of variation of C,, estimates 
decreases as y increases. For C,,, the confidence of the 

estimates are excellent, with the true value (100) within 
the 95% confidence intervals of the estimates in more 
than 90% of the simulations. However, it can be seen in 
figure 5 that the fraction of simulations in which the true 
value of y (yW) was within the 95% confidence intervals 
of the estimate decreased to as low as 60% as n increased 
for values of y more than or equal to 4.5. 

Simulations were also conducted using starting values 
for C5, and y other than the true values, which were 
used for the simulations illustrated in figures 2-5. The 
results were similar to those described previously, with 
the exception that, for n = 10 or n = 20, use of an 
overestimate as the starting value of C,, resulted in a 
markedly larger coefficient of variation in the C,,, esti- 
mate for small values of y (5 3). Despite this increase in 
variability, %C19, remained more than 90%. 

Discussion 

Evaluation of drug concentration-response curves is 
an important component of pharmacologic research. It 
has become customary to describe concentration-re- 
sponse curves with sigmoid functions characterized by 
two parameters: C,,, the concentration of drug which 
results in 50% of maximal effect, and y,  a parameter that 
reflects the steepness of the curve. For many applica- 
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Fig. 2. (Lower) The coefficient of variation of Cg0 estimates. 
(Upper) The percentage of the simulations (as a function of the 
sample size n) in which the 95O/0 confidence intervals contained 
the true value of C5* For these simulations, the initial values of 
C,, and steepness of the concentration-effect relation ( y )  were 
100 and 1.0 times the true value, respectively, and it was as- 
sumed that data came from a single patient. The different curves 
present results for y = 1.0 (.-a), 1.5 (W-.), 3.0 (x-x), 4.5 (+-+), 
and 6.0 (A-A). 

tions in anesthesiology research, the response is a binary 
all-or-none variable, and the maximal drug response or 
effect is unity. In this situation, estimation of CSO and y 
is usually referred to as logistic regression. Techniques of 
logistic regression are based on the principle of maxi- 
mum likelihood and are inherently nonlinear. Any 

" a ) #  fi t 

U 

40 $= 

20 

0 20 40 60 80 100 120 

Sample Size 

Fig. 3. (Lower) The coefficient of variation of y estimates. (Up- 
per) The percentage of simulations in which the 95% confi- 
dence intervals contained the true value of y. For these simula- 
tions, the initial values of drug concentration associated with a 
50% probability of drug effect (C,,) and y were 100 and 1.0 
times the true value, respectively, and it was assumed that data 
came from a single patient. The different curves present results 
for y = 1.0 (0-O), 1.5 (W-W), 3.0 (x-x), 4.5 (+-+I, and 6.0 (LA) .  

1 0 

T I  
z 
d 
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Sample Size 

Fig. 4. (Lower) The coefficient of variation of Cg0 estimates. 
(Upper) The percentage of simulations in which the 95% con- 
fidence intervals contained the typical value of C,". For these 
simulations, the initial values of C,, and steepness of the con- 
centration-effect relation ( y )  were 100 and 1.0 times the typical 
value, respectively, and it was assumed that data from multiple 
patients was pooled and that C,,, and y had log-normal distri- 
butions, with SDs of log C,,, and log y equal to 30% of the typical 
values. The typical value of C5,, was 100. The different curves 
present results for yTv = 1.0 (0-O), 1.5 (W-B), 3.0 (x-x), 4.5 
(+-+), and 6.0 (A-A). 

method of statistical analysis should provide parameter 
estimates and confidence intervals. In contrast to linear 
regression, the confidence intervals provided by most 
software packages for nonlinear regression are approxi- 

10 

0.1 I 
0 20 40 60 80 100 120 

Sample Size 

Fig. 5. (Lower) The coefficient of variation of y estimates. (Up- 
per) The percentage of simulations in which the 95O/o confi- 
dence intervals contained the typical value of y. For these sim- 
ulations, the initial values of drug concentration associated with 
a 50% probability of drug effect (C,,) and y were 100 and 1.0 
times the typical value, respectively, and it was assumed that 
data from multiple patients was pooled and that Cg0 and y had 
log-normal distributions with SDs of log C5, and log y equal to 
30% of the typical values. The typical value of C,, was 100. The 
different curves present results for yw = 1.0 (0-O), 1.5 (m-.), 
3.0 (x-x), 4.5 (+-+), and 6.0 (A-A). 
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Drug Concentration 

Fig. 6. A typical simulation for n = 10 data points and steepness 
of the concentration-effect relation (y)  = 1. For this simulation, 
it was assumed that each data point came from the same patient 
and that drug concentration associated with a 50% probability 
of drug effect (C50) = 100. Filled triangles indicate the simulated 
drug effect (Le., whether there was a positive drug effect or not) 
as a function of concentration. The solid line indicates the true 
concentration-effect relation. The dashed line shows the con- 
centration-effect predicted by the maximum likelihood esti- 
mates of C,, and y. 

mations that are only accurate asymptotically as the 
number of data points increases toward infinity. Because 
many applications of logistic regression in anesthesiol- 
ogy research involve 20 -50 data points, the accuracy of 
C,, and y estimates are unclear. In this study, we used 
simulations (a well-known technique for analyzing statis- 
tical methodology, also known as Monte Carlo simula- 
tion) to investigate the relation between study popula- 
tion size and the accuracy of parameter estimates. 

The primary measures we used to assess accuracy are 
the coefficient of variation and the fraction of simula- 
tions for which the 95% confidence intervals contained 
the true parameter value (%CI,,). The coefficient of 
variation is the SD of the parameter estimate expressed 
as a percentage of the mean estimate. We did not graph- 
ically present bias (Le., the difference between the mean 
estimate and the true value) because, in general, bias was 
small with the mean C,, estimate within less than 10% of 
the true value and the mean estimate of y within less 
than 20% of the true value. However, for simulations of 
small (n = 10) studies, we found a much larger bias for 
both parameters, although %CI,, was still more than 90% 
when we simulated data from single patients. When we 
simulated pooled data from multiple patients (with log- 
normal distributions for C,, and y), there was a larger 
bias in y estimates (up to 30%), even when n was large 
and %CI,, was signifkantly smaller. 

As expected, the variability of parameter estimates 

1 

0.8 

0.6 

0.4 

0.2 

0 

n 

0 100 200 300 400 

Drug Concentration 

Fig. 7. A typical simulation for n = 100 data points and steep- 
ness of the concentration-effect relation ( y )  = 1. For this sim- 
ulation, it was assumed that each data point came from the 
same patient and that drug concentration associated with a 50°/o 
probability of drug effect (C,,) = 100. The filled triangles indi- 
cate the simulated drug effect (Le., whether there was a positive 
drug effect) as a function of concentration. The solid line indi- 
cates the true concentration-effect relation. The dashed line 
shows the concentration-effect predicted by the maximum 
likelihood estimates of C,, and y. 

decreases (Le., the coefficient of variation decreases) as 
the number of patients in the simulated study (n) in- 
creases. This is evident in figures 2-5. We did not antic- 
ipate that the variability of C,, estimation would depend 
on the value of y, improving as y, the measure of the 
steepness of the concentration-response curve, in- 

1 

0.8 

0.6 

0.4 

0.2 

0 

n 

0 100 200 300 400 

Drug Concentration 

Fig. 8. A typical simulation for n = 100 data points and steep- 
ness of the concentration-effect relation (7) = 6. For this sim- 
ulation, it was assumed that each data point came from the 
same patient and that drug concentration associated with a 50% 
probability of drug effect (C5,) = 100. The filled triangles indi- 
cate the simulated drug effect (ie. , whether there was a positive 
drug effect) as a function of concentration. The solid line indi- 
cates the true concentration-effect relation. The dashed line 
shows the concentration-effect predicted by the maximum 
likelihood estimates of C,, and y. 
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creases. However, the basis for this observation is more 
evident with consideration of specific simulated data 
sets. Figure 6 illustrates a simulation of 10 data points 
(from the same patient, so that interpatient variability is 
not an issue) with y = 1. One could surmise that there 
is little information about either C,, or y in this data. 
Figure 7 presents a larger data set (n = 100) for y = 1. 
Comparing the two figures, one can see how C,, may be 
estimated more reliably when n is larger. Figure 8 pre- 
sents simulated data for n = 100 and y = 6. It is now 
clear that C,, and y both are estimated more reliably in 
this situation. 

Statistical techniques should not only provide param- 
eter estimates, but also measures of the accuracy of these 
estimates. The confidence intervals provided by typical 
statistical software programs for nonlinear techniques, 
such as logistic regression, are only valid asymptotically 
as the number of data points (n) approaches infinity.12 
We investigated the accuracy of these asymptotic confi- 
dence intervals by determining the frequency with 
which the 95% confidence intervals contained the true 
value of the parameter. We used the change in log 
likelihood that occurred when the true parameter value 
was substituted for the maximum likelihood estimate as 
a means of assessing this frequency. When we simulated 
data from a single patient, we found that the 95% confi- 
dence intervals included the true parameter value in 
more than 90% of the simulations, even for small n (n = 
10) and small y, when the coefficient of variation of 
parameter estimates was large. This suggests that, even 
when there is large estimate variability (Ae., even when 
the point estimate of a parameter may be significantly in 
error), the 95% confidence intervals will be large enough 
to include the true value, if interpatient variation is not 
an issue. When we considered interpatient variation and 
simulated pooled data from multiple patients, we again 
found that the 95% confidence intervals included the 
true value of C,, in more than 90% of the simulations. 
Thus, analyzing data from a population of patients in a 
naive fashion does not appear to compromise the accu- 
racy of C,, estimates. However, the 95% confidence 
intervals of y estimates were not as reliable. For larger y 
(y  2 4.5), the fraction of simulations in which the 95% 
confidence intervals included the true value actually 
decreased to less than 90% as n increased. We believe 
this stems from the inability to distinguish between in- 
trapatient and interpatient variability when data from 
multiple patients are pooled for analysis in a naive fash- 
ion (i. e., without explicitly accounting for interpatient 
variability). In one sense, the parameter y is a measure of 
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Fig. 9. A possible explanation of how the estimate of steepness 
of the concentration-effect relation ( y )  may be biased when 
data from multiple patients is pooled for analysis. In this ex- 
ample, single data points are taken from each of nine different 
patients, each of whom have a steep concentration-effect rela- 
tion (-) but different values of drug concentration associated 
with a 50% probability of drug effect (C5,,). The resultant pooled 
concentration-effect curve (-B-) appears flat (i.e., the apparent 
value of y is lower than the true value). 

intrapatient variability. If y is large, the concentration- 
response curve is steep. If the concentration of drug (C) 
is slightly larger than C,,, the probability of drug re- 
sponse is close to one, and if C is slightly less than C,,, 
the probability of drug response is close to zero. The 
concentration range over which the probability of drug 
effect is intermediate, where there is significant intrapa- 
tient variability, is narrow. In contrast, if y is small, the 
concentration-response curve is relatively flat, and the 
probability of drug response takes on intermediate val- 
ues over a wider concentration range (i.e., the region of 
significant intrapatient variability is larger). In figure 9, 
we illustrate how interpatient C,, variability may be 
indistinguishable from intrapatient variability. This figure 
presents concentration-response curves for nine hypo- 
thetical patients, each with y = 10, but with varying C,, 
values. If one data point is collected from each patient 
and pooled for analysis, the resulting curve (dashed line) 
appears to have a much lower value of y. We believe this 
is the basis for the failure of the 95% confidence intervals 
to include the true value of y when we simulated data 
from multiple patients with log-normal distributions for 
C,, and y. This is consistent with our observation that 
the bias in y estimation was increased in this case and 
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that the mean y estimate was less than the true value. It 
is somewhat surprising that the confidence of the esti- 
mate of y decreased with increasing n; however, it 
should be noted that the confidence intervals are derived 
from the change in log likelihood, which results from 
substitution of other parameter values for the maximum 
likelihood estimates. The width of the confidence inter- 
vals decrease as n increases. Conversely, the bias in 
estimation of y will not improve as n increases, because 
the steepness of the apparent concentration- effect 
curve will reflect the range of C,, values; this is evident 
from figure 9. Consequently, as the confidence intervals 
become more narrow, the chance that they will include 
the true value of y decreases. 

We used simulations to investigate the accuracy of 
analyses of concentration- binary response relations us- 
ing logistic regression. The implications of these simula- 
tions for pharmacodynamic investigations are as follows: 

1 .  The accuracy of parameter estimates increases as n 
and y increase. The coefficient of variation of C,, in 
small studies (5 20) may be as high as 30-40%. It 
should be emphasized that estimates of either C,, or 
y are statistics. The distributions of these statistics are 
unknown; thus, the exact meaning of the coefficient 
of variation is unclear. Nevertheless, it seems reason- 
able to assume that point estimates of C50 may be in 
error by 30 - 40% in a large number of studies of this 
size. The coefficient of variation of y is larger, indi- 
cating even greater error in point estimates of y. 

2 .  The 95% confidence intervals of C,, estimates contain 
the true value of Cg0 in most of the simulations (> 
90%>, even in simulations with larger coefficients of 
variation and even when we simulated naively pool- 
ing data from multiple patients. Confidence intervals 
for C,,, which are based on asymptotic statistical 
theory, appear to be reliable. Given the significant 
coefficient of variation that may occur in some stud- 
ies, indicating the possibility of error in point esti- 
mates of C50, it is clear that confidence intervals 
should always be reported. 

3. When we simulated pooling of data from multiple 
patients, we found that the 95% confidence intervals 

of the estimate of y frequently did not include the 
true value of y. The reason for this bias was discussed 
previously. Because of this, we believe that estimates 
of y from studies in which data from multiple patients 
was naively pooled must be viewed with suspicion. 
In this type of analysis, intrapatient variability (em- 
bodied in the parameter y )  cannot be distinguished 
from interpatient variability. Accurate estimates of y 
necessitate methods of analysis that take interpatient 
variability into account. 
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