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Ion Channels Take Center Stage 
Twin SpotZights on Two Anesthetic Targets 
ONE of the fundamental ideas behind the science of 
anesthesiology throughout the majority of the twentieth 
century was the idea that there exists a “unitary site” of 
action for all general anesthetics.’ As our knowledge of 
the underlying neurobiology has grown, together with 
the database of potential anesthetic target sites, it has 
become increasingly obvious that this simplistic notion 
is incorrect.2 It now seems unlikely that general anes- 

Thia Editorial View accompanies the following article: de 
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thetics interact with a single common target site because 
the function of a variety of membrane proteins has been 
shown to be altered within the clinically relevant range 
of anesthetic concentrations.’ Not only do multiple po- 
tential anesthetic targets exist, but the array of suscepti- 
ble targets varies among different classes of anesthetic 
(review of Krasowski and Harrison*). For example, clin- 
ical concentrations of pentobarbital inhibit depolariza- 
tion mediated via AMPA- and kainate-type glutamate 
receptors, enhance and prolong y-aminobutyric acid 
(GABA)-mediated inhibition via an action at GABAA 
receptors, and inhibit the function of neuronal nicotinic 
acetylcholine receptors (n-nAChRs), whereas ketamine 
has no effect at GABA, receptors, but inhibits the func- 
tion of the N-methyl-D-aspartate (NMDA) subtype of 
glutamate receptors (reviews of Franks and Lieb3 and 
Krasowski and Harrison4). 

As the century draws to a close, this “multiple alternate 
target” hypothesis gains further support from a study 
published in this issue of ANESTHESIOLOGY.~ In this study, 
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Sara de Sousa et u Z . , ~  from Nick Franks' laboratory in 
London, compare the synaptic actions of the everyday 
inhaled anesthetic isoflurane with those of the more 
exotic noble gas xenon. Although isoflurane is easy to 
obtain and study, the expense and lack of potency of 
xenon have long been obstacles to the study of its 
mechanism of action. Yet, in evaluating the various hy- 
potheses of anesthetic mechanism, it is desirable to 
study a variety of anesthetic structures to test the general 
applicability of a potential mechanism. Xenon is a mono- 
atomic inert gas and therefore seems like an unpromis- 
ing substance for which to seek selective actions. Re- 
markably, Franks et al. has shown that xenon, applied at 
approximately 80% atm to cultures of rat hippocampal 
neurons, inhibits currents through the NMDA receptor, 
but fails to alter the function of GABA, receptors. 

In the de Sousa et al. a r t i ~ l e , ~  the authors point out the 
stark contrast between the actions of isoflurane and 
xenon. Isoflurane, at 1 minimum alveolar concentration 
(MAC), was found to increase the duration of inhibitory 
postsynaptic currents, while causing a small decrease in 
the amplitude of excitatory postsynaptic currents. The 
increase in inhibitory postsynaptic currents duration is 
consistent with the actions of isoflurane on postsynaptic 
GABA, receptors, whereas the decrease in amplitude of 
excitatory postsynaptic currents probably reflects pre- 
synaptic actions of the volatile anesthetics.".' Con- 
versely, xenon had no effect on the inhibitory postsyn- 
aptic current, but selectively reduced the slow 
component of the excitatory postsynaptic current that is 
mediated by NMDA  receptor^.^ 

These differences between two simple anesthetic 
gases at the level of molecular and cellular targets may 
seem surprising at first and are certainly at odds with the 
unitary models that dominated thinking in this field for 
so long. In fact, the discrepancy is less surprising when 
one considers the pharmacologic profile of the two 
anesthetics. Isoflurane produces hypnosis and uncon- 
sciousness and depresses spinal reflexes, yet confers 
little analgesia. Xenon, however, is an excellent analge- 
sic and has the ability to produce hypnosis and amnesia. 
The pharmacologic profile of xenon anesthesia is very 
similar to that of ketamine, another known antagonist of 
glutamate at NMDA receptors. The analgesic and amnes- 
tic actions of xenon and ketamine are shared by other 
NMDA receptor antagonists and fit well with what is 
known about the anatomic distribution and physiologic 
functions of this ligand-gated ion channeL5 

So much for the cellular and synaptic pharmacology of 
isoflurane and xenon. But what about the molecular 

level? How can such selectivity between ligand-gated ion 
channels be exhibited by simple gaseous anesthetics? 
The answer may lie in the differences of molecular struc- 
ture between the four transmembrane domain GABA, 
receptor subunits and the three transmembrane domain 
NMDA receptor subunits (which appear to be members 
of a distinct gene superfamily among the receptor mol- 
ecules) and in the existence of anesthetic-binding pock- 
ets or cavities within these target molecules. Recent 
work using site-directed mutagenesis has shown that 
specific mutations at serine 270 in the GABA, receptor (Y 

subunit can alter the sensitivity of the receptor to enflu- 
rane and i~oflurane.',~ A new article suggests that serine 
270 might be part of a hypothetical binding pocket of 
defined volume for anesthetic ethers," located between 
adjacent transmembrane domains within each receptor 
subunit polypeptide. 

Are anesthetic binding pockets merely fanciful inven- 
tions of molecular pharmacologists? Apparently not, be- 
cause the existence and precise location and dimensions 
of an anesthetic binding cavity has been demonstrated 
using X-ray crystallography in firefly luciferase. l' The 
binding of anesthetics within such pockets, although 
necessarily of low affinity, would be driven by a combi- 
nation of enthalpic and entropic free-energy changes 
and hence be governed by the customary laws of ther- 
modynamics. l2 

If one accepts for the moment the premise that such 
binding pockets exist within these ion channels, it fol- 
lows that xenon does not bind well within the anesthetic 
ether pocket associated with the GABA, receptor. This 
might reflect the inappropriate size or shape of the 
xenon atom, or perhaps an inability to participate in 
hydrogen-bonding interactions. Apparently the NMDA 
receptor is also selective, admitting xenon but excluding 
isoflurane. The search surely will now be on for the 
molecular determinants of the actions of xenon on 
the NMDA receptor, and for further clues concerning 
the lack of interaction of the noble gas with the GABAA 
receptor. 

The study by de Sousa et al.' therefore provides a 
satisfying conclusion to the discussions concerning uni- 
tary mechanisms of anesthesia. The unitary hypothesis 
has clearly outlived its usefulness; but all is not lost in 
terms of understanding. The illumination provided by 
this monochromatic concept has indeed been diffracted 
across a rainbow of molecular targets in recent years, but 
may now be refocussed to throw the spotlight onto two 
molecular stars of the synaptic stage: the GABA, and 
NMDA receptors. 
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