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Background: Medical institutions are under increased eco- 
nomic pressure to schedule elective surgeries efficiently to con- 
tain the costs of surgical services. Surgical scheduling is com- 
plicated by variability inherent in the duration of surgical 
procedures. Modeling that variability, in turn, provides a mech- 
anism to generate accurate time estimates. Accurate time esti- 
mates are important operationally to improve operating room 
utfiation and strategically to identify surgeons, procedures, or 
patients whose duration of surgeries differ from what might be 
expected. 

Methods: The authors retrospectively studied 40,076 surgical 
cases (1,580 Current Procedural Terminology-anesthesia com- 
binations, each with a case frequency of five or more) from a 
large teaching hospital, and attempted to determine whether 
the distribution of surgical procedure times more closely fit a 
normal or a log-normal distribution. The authors tested good- 
ness-of-fit to these data for both models using the Shapiro-Wilk 
test. Reasons, in practice, the Shapirc+Wilk test may reject the 
fit of a log-normal model when in fact it should be retained 
were also evaluated. 
Results: The Shapiro-Wilk test indicates that the log-normal 

model is superior to the normal model for a large and diverse 
set of surgeries. Goodness-of-fit tests may falsely reject the log- 
normal model during certain conditions that include rounding 
errors in procedure times, large sample sizes, untrimmed out- 
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liers, and heterogeneous mixed populations of surgical proce- 
dure times. 
Conclusions: The authors recommend use of the log-normal 

model for predicting surgical procedure times for Current Pro- 
cedural Terminology-anesthesia combinations. The results 
help to legitimize the use of log transforms to normalize surgi- 
cal procedure times before hypothesis testing using linear sta- 
tistical models or other parametric statistical tests to investigate 
factors affecting the duration of surgeries. (Key words: log 
transformations; normal probability plots; ShapireWilk tests.) 

MEDICAL institutions are under increased economic 
pressure to schedule elective surgeries efficiently to con- 
tain the costs of surgical services. Scheduling is compli- 
cated by variability inherent in the surgical procedures. 
A good statistical model for surgical procedure times is 
important for several purposes. It could be used retro- 
spectively, together with existing methods, to identlfy 
those surgeons or procedures whose surgical times are 
unusually slow or fast. Identlfying these may allow sur- 
gical managers to eliminate sources of variability or, 
alternatively, to identlfy the outliers and to schedule 
them separately. In real-time surgical suite management, 
models for surgical times could be used to identify sur- 
geries that are proceeding unexpectedly quickly or 
slowly, so that support personnel involved in subse- 
quent care can be alerted that the patient will arrive 
much earlier or later than expected.* The most appro- 
priate statistical distribution and accurate estimates of its 
parameters are also critical to surgical scheduling sys- 

especially if surgical suite availability is limited.* 
Modeling surgical procedure times has been of interest 

for at least 35 yr. For example, Rossiter and Reynolds5 
noted that waiting times visually appear to fit a log- 
normal distribution; others, including senior administra- 
tors we have observed, routinely assume that surgical 
times are normally distributed and provide summaries 
using typical parametric statistical tests (means 2 SD). 
The log-normal distribution is one whose logarithms are 
normally distributed. It can take on values from zero to 
infinity and is skewed with a long right tail; therefore, it 
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is attractive for time estimation in a surgical environment 
in which a small number of procedures may take much 
longer than average. The literature includes the use of 
the normal' and l~g-normal'-~ distributions for modeling 
surgical durations. In the current study, we rigorously 
compare the normal and log-normal models based on 
goodness-of-fit tests. We also briefly discuss why, in 
practice, goodness-of-fit tests may reject a log-normal 
model of surgical times when in fact it should be re- 
tained. 

Using the normal distribution where the log-normal is 
more appropriate can distort results derived from com- 
monly used statistical tools. Linear statistical models, for 
example, assume that variability of the predicted vari- 
able is normally distributed. If, instead, it is log-normally 
distributed, then a log transform must be applied before 
the tool is used, or inferences based on the analysis may 
be biased. The inverse is also true; if a log transform is 
applied to data that really follows the normal distribu- 
tion, then statistical analyses based on the transformed 
values will be misleading. Although the problem of 
model selection could be avoided by using nonparamet- 
ric procedures, such as using Kruskal-Wallis instead of 
analysis of variance, those analyses are typically less 
powerful than comparable parametric ones when the 
data are normally distributed. In the current study, we fit 
surgical times to the log-normal model to help lay a 
foundation for use of log-normal transforms used to 
normalize surgical procedure times before statistical test- 
ing using linear statistical models. 

Materials and Methods  

We retrospectively reviewed all recorded surgical 
cases from a large teaching hospital performed over a 
7-yr period from 1989-1995. Use of anonymous patient 
records was approved by the human subjects review 
committee of the institution that collected the data. Data 
were collected using a previously described computer- 
ized system." We analyzed total procedure time (m, 
the time from entry into the operating suite until emer- 
gence from anesthesia, and surgical procedure time (ST), 
the time from incision to closure of the surgical wound. 
Preliminary analyses' ','' indicated that to obtain a better 
model fit, our data should be subdivided into more 
homogeneous subgroups by Current Procedural Termi- 
nology (CPT) code'3 in combination with anesthesia 
type (general, local, monitored, or regional), as opposed 
to being fitted by CPT alone. 

Of 60,643 total case records in the initial database, 779 
were omitted from analysis because of incomplete data, 
leaving 59,864 surgeries that included between one and 
three CPTs. There were 46,322 patients with only one 
CPT code (5,125 different CPT-anesthesia combina- 
tions), 10,740 with exactly two different CPT codes, and 
2,802 patients with three CPT codes. To eliminate a 
potential confounding factor, we considered only surgi- 
cal procedures with a single CPT code. We therefore 
confined our analysis to only 40,076 cases (1,580 CPT- 
anesthesia combinations), all with only one CPT code 
and each CPT-anesthesia combination with case frequen- 
cies of five or more (i.e., enough to fit a probability 
distribution). We used goodness-of-fit tests to compare 
the fit of the normal and log-normal distributions to TT 
and ST for each of those 1,580 CPT-anesthesia combina- 
tions. 

Statistics 
We initially used Shapiro-Wilk'* and Lillief~rs'~ good- 

ness-of-fit tests. Both determine whether a set of data are 
consistent with a normal distribution. Taking logs of the 
data before performing the test measures consistency 
with a log-normal distribution because the logs of log- 
normal data are normally distributed. Using the Shapiro- 
Wilk and the Lilliefors tests, the null hypothesis is that 
the model distribution fits the data; a large P value 
indicates that the data fit the model well. Because the 
Shapiro-Wilk test is considered the single best general 
purpose test of norma1ity,l6 we report its results in 
preference to the Lilliefors results that we reported else- 
where. '', '' 

To perform the Shapiro-Wilk tests, we used the Inter- 
national Mathematical and Statistical Libraries Fortran 
routine SPWILK (Visual Numerics, Inc., Houston, W .  
We used normal probability plots to examine those CPT- 
anesthesia combinations that were not well-fitted by 
either the normal or log-normal models. We used Fried- 
man tests to compare Shapiro-Wilk P values (goodness- 
of-fit) for the log-normal uersws normal model for ST and 
TT. The Friedman test is the nonparametric equivalent of 
a paired t test. We also compared ST and TT for model- 
ing procedure times using both the normal and the 
log-normal models. 

Determining the Model 
The log-normal model is a random variable whose 

logarithms are normally distributed. The shape of the 
log-normal, like that of the normal, is given by two 
parameters: The mean and variance. An additional third 
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Table 1. Tabular Comparisons of Sample Size and Shapiro-Wilk Goodness-of-fit P Values for the Lognormal Model for Surgical 
Procedure Time and Total Procedure Time 

Category P < 0.01 

~ 

0.01 5 P < 0.1 P 2 0.1 Row Totals 

Surgical procedure time 
Small (n < 30) 
Medium (30 5 n 5 200) 
Large (n > 200) 
Column totals 

Total procedure time 
Small (n < 30) 
Medium (30 5 n 5 200) 
Large (n > 200) 
Column totals 

49 (3.10) 
45 (2.85) 
12 (0.76) 

107 (6.71) 

28 (1.77) 
24 (1.52) 
10 (0.63) 
62 (3.92) 

170 (1 0.8) 
28 (1.77) 
2 (0.13) 

200 (12.7) 

161 (10.2) 
41 (2.59) 

7 (0.44) 
209 (1 3.2) 

11 05 (70.0) 
159 (1 0.1) 
10 (0.63) 

1274 (80.6) 

1135 (71.8) 
167 (1 0.6) 

7 (0.44) 
1309 (82.9) 

1324 (83.8) 
232 (1 4.7) 
24 (1 52) 

1580 (1 00) 

1324 (83.8) 
232 (14.7) 
24 (1.52) 

1580 (1 00) 
~~ ~~~ 

Data are number of procedures (% total), n = 40,076 cases, 1,580 CPT-anesthesia combinations 
CPT = current procedural terminology. 

parameter, termed the location parameter, is the amount 
by which its minimum value is shifted away from the 
origin. In this article, we assumed the shift to be zero and 
fit the two-parameter model that provides probability 
estimates for all intervals between zero and positive 
infinity. Surgical procedures often have a large minimum 
duration; therefore, it may be very desirable to fit a more 
general log-normal model to them. Doing so, however, 
necessitates estimation of the third parameter, which in 
practice may be a difficult problem. Issues related to 
general log-normal modeling of surgical times are dis- 
cussed e l s e ~ h e r e ' ~ - ~ ~ ;  in the current study, we investi- 
gated only the two-parameter log-normal model. 

To examine goodness-of-fit tests for the normal and 
log-normal models, we cross-tabulated the Shapiro-Wilk 
test results for all CPT-anesthesia combinations by sam- 
ple size and P value of the Shapiro-Wilk tests. The 
results are shown in tables 1-3. To detect the influence 
of sample size on the Shapiro-Wilk tests, we divided the 
sample size arbitrarily into small (n < 30), medium (n = 

30-200), and large (n > 200) categories. Because com- 
monly used levels of significance for hypothesis testing 
are between 1 and lo%, a frequently used rule of thumb 
is to regard a P value of at least 0.10 as leading to the 
retention of the null hypothesis (the model fits well) and 
a P value < 0.01 as always leading to its rejection (the 
model fits poorly). We interpreted P values between 
0.01 and 0.1 as a mediocre fit for the model. Table 1 
shows how well the data fit the log-normal model as a 
function of sample size, and table 2 does the same for the 
normal model. 

We compared the overall performance of the log-nor- 
ma1 and normal models using qualitative (tabular com- 
parisons) and quantitative interpretations (Friedman 
tests). To determine whether the log-normal performed 
better than the normal on some CPT-anesthesia combi- 
nations, we compared the performance of the two mod- 
els on the same data sets (table 3). We also used Fried- 
man tests to compare the goodness-of-fit between the 
log-normal and normal model for ST and TT (table 4). 

Table 2. Tabular Comparisons of Sample Size and Shapiro-Wik Goodness-of-fit P Values for the Normal Distribution for Surgical 
Procedure Time and Total Procedure Time 

Category P < 0.01 0.01 5 P < 0.1 P 2 0.1 Totals 

Surgical procedure time 
Small (n < 30) 148 (9.37) 258 (16.3) 
Medium (30 5 n 5 200) 140 (8.86) 33 (2.09) 
Large (n > 200) 21 (1.33) 1 (0.06) 
Column totals 309 (19.6) 292 (1 8.4) 

Small (n < 30) 107 (6.77) 243 (1 5.38) 
Medium (30 5 n 5 200) 125 (7.91) 43 (2.72) 

Column totals 254 (1 6.08) 286 (18.10) 

Total procedure time 

Large (n > 200) 22 (1.39) 0 (0.00) 

Data are number of procedures (% total); n = 40,076 cases, 1,580 CPT-anesthesia combinations. 
CPT = current procedural terminology. 

918 (58.1) 

2 (0.13) 
979 (62.0) 

974 (61.65) 
64 (4.05) 
2 (0.1 3) 

1040 (65.82) 

59 (3.73) 
1324 (83.8) 
232 (14.7) 
24 (1.52) 

1580 (1 00) 

1324 (83.80) 
232 (14.68) 
24 (1.52) 

1580 (1 00) 

Anesthesiology, V 92, No 4, Apr 2000 

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/92/4/1160/401694/0000542-200004000-00035.pdf by guest on 13 M
arch 2024



1163 

MODELING SURGICAL PROCEDURE TIMES 

Table 3. Tabular Comparisons of the Lognormal (Ln) and Normal (N) Models, as Measured by Shapiro-Wi Goodness-of-fit Test P 
Values for Surgical Procedure Time and Total Procedure Time 

Normal Models 

Category P < 0.01 0.01 5 P < 0.1 P 2 0.1 Totals 

Surgical procedure time 
Ln (p < 0.01) 
Ln (0.01 5 p < 0.1) 
Ln (p 2 0.1) 
Column totals 

Ln (p < 0.01) 
Ln (0.01 5 p < 0.1) 
Ln (p 2 0.1) 
Column totals 

Total procedure time 

40 (2.53) 
58 (3.67) 

211 (13.3) 
309 (1 9.6) 

30 (1.90) 
93 (5.89) 

131 (8.29) 
254 (16.1) 

21 (1.33) 
54 (3.42) 

217 (13.7) 
292 (1 8.5) 

14 (0.89) 
60 (3.80) 

286 (1 8.1) 
212 (13.4) 

____ 

45 (2.85) 
88 (5.57) 

846 (53.5) 
979 (70.0) 

18 (1.14) 
56 (3.54) 

966 (61 .l) 
1040 (65.8) 

106 (6.71) 
200 (12.7) 

1274 (80.6) 
1580 (1 00) 

62 (3.92) 
209 (13.2) 

1309 (82.9) 
1580 (1 00) 

Data are number of procedures (% total); n = 40,076 cases, 1,580 CPT-anesthesia combinations. 
CPT = current procedural terminology; Ln = lognormal. 

Limitations of the Goodness-of@t Results 
Examination of failed model fits using normal proba- 

bility plots revealed that the log-normal model was some- 
times rejected inappropriately because of rounding of 
the surgical procedure times. We investigated briefly 
why rounding of these values should lead to rejection of 
the log-normal model when it fact it should have been 
accepted. 

In practice, surgical times are observed and recorded 
only to a convenient level of precision. Pearson et ~ 1 . ~ ~  
observed that if the unit of measure to which observa- 
tions are rounded is large relative to the variability of the 
data, goodness-of-fit tests on normal data may be unreli- 
able. To investigate the effect of rounding errors on 
goodness-of-fit tests applied to log-normal data, we gen- 
erated a representative normal sample with 50 values 
and then exponentiated those values to produce a log- 
normally distributed series with a mean of 30 min and a 
SD of 10 min. We subsequently rounded these log-nor- 
mally distributed values to the nearest 1, 3, 5, 10, and 15 
min. This resulted in five log-normally distributed series 
that differed only in the interval to which series values 

were rounded. Values from each series were then log 
transformed, and Shapiro-Wilk and Lilliefors tests were 
applied to the values. The P values for those tests were 
plotted against the rounding interval and compared. We 
also used normal probability plots to illustrate graphi- 
cally the effect of progressively rounding the series val- 
ues. Finally, to assure that adjusting the rounding interval 
did not alter the mean of any of the series, each of the 
rounded data series was compared with the original 
series using paired Friedman tests. 

Results 

Table 1 displays the results of fitting cases involving 
exactly one CPT-anesthesia combination to the log-nor- 
ma1 model. The ST data fit the log-normal distribution 
for > 93% of total CFT-anesthesia combinations. We 
noticed a decrease in the proportion of combinations 
that fit the log-normal model as the sample size in- 
creased. ST fitted the log-normal distribution well (P = 
0.1) for 87% (l., 105 CFT-anesthesia combinations) of 

Table 4. Friedman Test Results for Paired Comparisons of the Shaplro-Wilk Goodness-of-fit Test P Values for the Lognormal and 
Normal Models for Surgical and Total Procedure Times 

L n l T = N T T  Hypotheses Ln lT = Ln ST N T = N S T  Ln ST = N ST 

Friedman test statistic 4.90 554 155 228 
Kendall coefficient of concordance 0.003 0.351 0.098 0.144 
Rank sum 2414 (Ln lT) 2838 (N TT) 2617 (Ln ST) 2670 (Ln TT) 
Rank sum 2326 (Ln ST) 1902 (N ST) 2122 (N ST) 2070 (N TT) 
P value 50.027 <o.ooo <o.ooo <o.ooo 

n = 1,580 different CPT-anesthesia combinations with 1 degree of freedom. Trfitted both the lognormal and normal models better than ST; the lognormal model 
fits both ST and T better than the corresponding normal model. 

CPT = current procedural terminology: Ln = lognormal; lT = total procedure time; ST = surgical procedure time; N = normal. 
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small-sized samples, for 12% (159 CPT-anesthesia combi- 
nations) of medium-sized samples, and for < 1%” of 
large-sized samples. The results for TT were similar to 
those for ST. We return to possible reasons for the 
decreased proportions of goodness-of-fit tests later. 

Table 2 cross-tabulates analogous results for the nor- 
mal distribution. The ST data fit the normal distribution 
for about 80% of CPT-anesthesia combinations. Similar to 
the log-normal model, there is a decrease in the propor- 
tion of combinations for ST that fit the normal as the 
sample size increases. ST fits the normal model well (P = 
0.1) for 94% of small-sized samples, for 6% of niedium- 
sized samples, and for < 1% of large-sized samples (n > 
200). The results for TT were similar to those for ST. 

To determine situations in which the normal distribu- 
tion fit but the log-normal did not, we compared Shapi- 
ro-Wilk results for the two models using tabulations. In 
table 3,  we cross-tabulated the P values for the log- 
normal and the normal Shapiro-Wilk tests on the same 
CPT-anesthesia combinations. From the first row of table 
3, there are only 4% of samples that fail to fit the log- 
normal (P < 0.01) but fit the normal at least a mediocre 
level (P = 0.01). The second row shows that there are 
only 88 cases in which the fit to the normal is superior 
to that to the log-normal. Conversely, the first column 
shows that the data fit the log-normal well in 21 1 of the 
309 cases that fail to fit the normal, and the data fits the 
log-normal well in 217 of the 292 cases in which the fit 
to the normal is mediocre. The frequencies below the 
diagonal, in which the fit to the log-normal is superior to 
that of the normal, dominate the corresponding frequen- 
cies above the diagonal, in which the fit to the normal is 
superior to that of the log-normal. 

Table 4 is a paired comparison of the log-normal and 
normal models using Friedman tests. The log-normal 
model was superior to the normal for modeling ST and 
TT. These two comparisons are the quantitative equiva- 
lent of the tabular comparisons in table 3 .  In addition, 
persons wishing to model surgeries will discover TT is 
better estimated than ST when modeling using both the 
log-normal and the normal distributions. 

To contrast the appearance of actual data with the 
ideal models, we compared the actual (empirical) data 
(illustrated as a frequency histogram) with the fitted 
log-normal and normal models for a single CPT-anesthe- 
sia combination. The procedure illustrated (fig. 1) was 
exploration of the chest for postoperative bleeding dur- 
ing general anesthesia. To show that the actual data 
differ from estimates using the normal and log-normal 
models, we compared estimates for the log-normal and 

6o 1 n Actual procedure times 
50 

# 40 
F 

k 

u 

0 

g 30 

; 20 

10 

0 

Lognormal model 

Normal model 

0 100 200 300 400 500 600 
Surgical Time (minutes) 

Fig. 1. To illustrate the differences between models, we com- 
pared the actual (empirical) data (illustrated as a frequency 
histogram) with the fitted ideal log-normal and normal models 
(the surgical procedure is exploration of the chest for postop- 
erative bleeding during general anesthesia; n = 241 surgical 
cases). 

normal models for values of the tenth, thirtieth, fiftieth, 
seventieth, and nintieth percentiles of the actual (empir- 
ical) data for the same CPT-anesthesia combination. The 
50th percentile estimate for the normal model is both 
the mean and the median, whereas for the log-normal 
model it is only the median. The log-normal model pro- 
duced estimates closer to the actual data than the normal 
model for all percentiles computed (table 5) .  

Limitations of Goodness-of@ Tests 
The Shapiro-Wilk and Lilliefors goodness-of-fit tests 

were similarly affected by increased rounding of the 
log-transformed values (fig. 2). Using a rounding interval 
of 1 min, both tests accepted the hypothesis that the 
data fit the distribution. As the rounding intervals in- 
creased, the P value for both tests decreased, but the 
Lilliefors test proved more likely to reject the log-normal 
model incorrectly, .as evidenced by the corresponding 
normal probability plots. Using rounding intervals of > 3 
min, the Lilliefors test incorrectly rejected a fit to the 
log-normal each time (P < 0.01). Conversely, the Shapi- 
ro-Wilk test proved less sensitive and did not incorrectly 
reject the fit to the log-normal model until the rounding 
interval increased to 10 min (P < 0.01). None of the 
sample means of the five rounded series differed from 
the initial (unrounded) series (Friedman tests, P < 0.00). 

Normal probability plots of simulated data series indi- 
cated that smooth probability plots become lumpy and 
exhibit what we termed a “stepping” phenomenon (fig. 
3)  as series values were progressively rounded from 1 to 
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3 -  

Discussion 
2 -  

Choosing the most appropriate model is an important 

with only one combination of surgical procedure and 
anesthesia, our research indicates that the log-normal 

step in forecasting surgical procedure times. For cases 

model is significantly better than the normal. 
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Table 5. Surgical Times (min) From the Actual Data (empirical 3 
distribution) Are Compared With Estimates (rnin) Using 
Various Percentiles of the Lognormal and Normal Models 

Percentile Actual Data Lognormal Model Normal Model 

10th 

2 

59 51 29 3 1  
30th 75 75 74 s- 
50th 95 95 105 B o  

w“ -1 
* u 
0) 

70th 120 120 135 
90th 155 168 180 a 

Note the 50th percentile estimate for the normal model is the mean and for the 
lognormal model; it is the median (n = 241 cases, the procedure modeled is 
exploration of the chest for postoperative bleeding with general anesthesia). -2 

0.4 2 
i, 
e3 g 0.3 

0.2 

0.1 

0 .0  

Ln (Procedure Time (min)) 
Fig. 3. Normal probability plots of two identical data series 
derived from the same ideal log-normal distribution (n = 50; 
mean = 30 min; SD = 10 rnin). Compare the smooth plot in A 
(values rounded to the nearest 3 min) with the ”lumpy” appear- 
ance of the plot in% (values rounded to the nearest 5 rnin). (B) 
Illustrates a phenomenon termed “stepping.” Stepping is in- 
creased with larger rounding intervals. Ln = the natural loga- 
rithm. 

I I I I -0.1 ’ To schedule surgical procedures, we must have a sta- 
0 3 6 9 1 2  1 5 tistical model that accounts for the variability inherent in 

surgical times. We previously showed how prevailing 
cost structures could determine the percentile point of 
the time model used to allocate surgical subspecialty 

Rounding Interval (min) 
Fig. 2. Rounding interval influenced the goodness-of-fit P value 
for two common tests of normality: the Lwefors test (open 
circle) and Shapiro-Wilk test (open~triangle). The test datase- 
ries was an ideal log-normal distribution (n = 50; mean = 30 
min; SD = or 

block times.23 In an analogous procedure, a similar min- 
imal cost analysis can be used to allocate time to a single min) rounded to the nearest 1-, 3-, 5-, 

15-min interval and log transformed before testing. surgical procedure. The theory and application are sim- 
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ilar, except that single procedures are better modeled by 
the log-normal distribution. If overtime costs are 1.5 
times regular, then during ideal conditions, the 60th 
percentile point estimate of the time model should be 
chosen to minimize the cost of scheduling the proce- 
dure. Different point estimates may be chosen for differ- 
ent cost structures, and fitting a statistical model to 
surgical procedure times is the best way to obtain these. 
It should be noted, however, that this analogy may not 
apply to the scheduling of consecutive surgical proce- 
dures. That is a more complicated problem and thus 
necessitates additional research. 

We believe that clinician managers will increasingly 
explore surgical data to discover methods to improve 
the efficiency of surgical services. Linear statistical mod- 
els may be used to explore this data looking for factors 
that increase variability in procedures and that can be 
either manipulated or alternatively scheduled. If the pre- 
dicted measure is log-normal, then one should be careful 
to use such techniques to forecast and model logs of 
times rather than the times themselves. The current 
study, and additional studies,",24,25 lays a foundation 
intended to help legitimize log-normal transformations 
as tools used for the exploration of surgical procedure 
times. 

Limitutions of Goodness-ofpt Tests 
The Shapiro-Wilk tests rejected the log-normal model 

for almost 7%) of total CPT-anesthesia combinations 
tested. Examination of rejected combinations using nor- 
mal probability plots revealed that most were indeed 
compatible with a log-normal model. We briefly discuss 
the variety of reasons why goodness-of-fit tests some- 
times rejected the log-normal model when in fact it 
should have been accepted. 

Goodness-of-fit tests may inappropriately reject preferred 
models in a variety of known circumstances if they are 
the only tools used for model selection. 14-16722226,27 The 
Shapiro-Wilk test was intended by its creators to be used 
in conjunction with graphical methods such as normal 
probability plotting, not as a substitute for them.28 In 
practice, selection of a model should be based on an 
examination of a normal probability plot (a possibly 
subjective procedure) in conjunction with a formal 
goodness-of-fit test (a more objective measure). 

Some samples that at first appear not to fit a model can 
be fit after a simple transformation of the measured 
values.z6 Potential additional causes of poor fits include 
rounding of shorter procedures times, large sample 

sizes, untrimmed outliers, and failure to properly seg- 
ment sample mixtures. 

Rounded procedure times may distort the results of 
goodness-of-fit tests. Anesthesia records record time to 
the nearest 5 min, and some information systems record 
times only to the nearest 15 or 30 min. The larger the 
rounding interval, the greater the likelihood that the 
modeled distribution will be rejected by goodness-of-fit 
tests. Pearson et aLZ2 studied the sensitivity of several 
tests of normality, including the Shapiro-Wilk test, to 
rounding and numeric ties. If the ratio of the sample SD 
to the rounding interval was large (5 10) for a sample of 
data, he found the Shapiro-Wilk test result was little 
affected. However, if the ratio was small (2-3),  the test 
was significantly less reliable. If data are recorded to the 
nearest 15 min, for example, the goodness-of-fit test 
results cannot be relied on unless the SD of the values is 
at least 150 min. Our experiment confirms that rounding 
is also an important factor when testing log-transformed 
data for goodness-of-fit; however, additional research is 
necessary to find the range of values for which goodness- 
of-fit tests are reliable when applied to log-normal data. 

Outliers, or extreme values in tails of a distribution 
because of nonrecurring factors, also affect goodness- 
of-fit tests. T ~ k e y ~ ~  proposed deleting 2 to 5% of obser- 
vations equally from both ends of all larger samples 
when contamination of the sample by outliers is sus- 
pected. Conversely, deleting valid data points can lead to 
acceptance of a model fit when it should be rejected. We 
did not trim the tails of our data sets because we had no 
information that would support doing so. 

Common goodness-of-fit tests are designed for small 
samples (n = 100). The sensitivity of the tests increases 
roughly linearly with the log of the sample size,'* so that 
stricter standards are applied to larger samples than to 
smaller ones. This effect might contribute to the decreas- 
ing P values we observed for larger samples. 

A goodness-of-fit test compares a set of data to a single 
model and is meaningful only if the data set is homoge- 
neous except for a random component. If, instead, a data 
set contains values from two different populations, the 
data should be separated into two homogeneous groups 
before model fitting because goodness-of-fit tests are not 
designed to detect heterogeneity. We separated data by 
CPT code and anesthesia. For our data, it was possible 
that a single CPT-anesthesia combination included cases 
from several surgeons, one of whom operates much 
more quickly than the others (a heterogeneous popula- 
tion). If we had segmented such heterogeneous CPT- 
anesthesia combinations by additional factors such as 
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surgeon, the fit to the log-normal model might have been 
even better. 

Our analysis of procedure times from a large and di- 
verse surgical database leads to the following conclu- 
sions. Procedure times (surgical time and total time) fit 
the log-normal distribution significantly better than they 
do the normal. Percentile estimates derived using the 
log-normal model may be very different from those de- 
rived from the normal. The Shapiro-Wilk goodness-of-fit 
test results should be confirmed using normal probabil- 
ity plots before rejection of an expected model if the 
sample size is large, short procedures times are rounded, 
the sample is a mixture of two or more populations, or 
outliers are present. In addition to statistical model fit- 
ting, our research implies that statistical tools such as 
regression and analysis of variance should be applied to 
log transforms of the procedure times, as opposed to 
being applied to the untransformed times. 

The authors wish to thank Dr. Gerard Bashein for his assistance with 
this article. 
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