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Background Although anesthesia with xenon has been sup- 
plemented with fentanyl, its requirement has not been estab- 
lished. This study was conducted to determine the plasma con- 
centrations of fentanyl necessary to suppress somatic and 
hemodynamic responses to surgical incision in 50% patients in 
the presence of 0.7 minimum alveolar concentration (MAC) 
xenon. 

Methods: Twenty-five patients were allocated randomly to 
predetermined fentanyl concentration between 0.5 and 4.0 
n g / d  during 0.7 MAC xenon anesthesia. Fentanyl was admin- 
istered using a pharmacokhetic model-driven computer-as- 
sisted continuous infusion device. At surgical incision each 
patient was monitored for somatic and hemodynamic re- 
sponses. A somatic response was defined as any purposeful 
bodily movement. A positive hernodynamic response was de- 
lined as a more than 15% increase in heart rate or mean arterial 
pressure more than the preincision value. The concentrations 
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of fentanyl to prevent somatic and hemodynamic responses in 
50% of patients were calculated using logistic regression. 

Results: The concentration of fentanyl to prevent a somatic 
response to skin incision in 50% of patients in the presence of 
0.7 MAC xenon was 0.72 2 0.07 ng/ml and to prevent a hemo- 
dynamic response was 0.94 zk 0.06 ng/ml. 

Conclusions: Comparing these results with previously pub- 
lished results in the presence of 70% nitrous oxide, the fentanyl 
requirement in xenon anesthesia is smaller than that in the 
equianesthetic nitrous oxide anesthesia. (Key words: Comput- 
er-assisted continuous infusion; Cp,,; opioid.) 

BECAUSE the minimum alveolar concentration (MAC) of 
xenon is 71%,' anesthesia with xenon must be supple- 
mented with other anesthetic agents or techniques. It 
has been achieved with the administration of fentanyl 
and muscle Previous clinical studies sug- 
gested that the requirement for fentanyl during xenon 
anesthesia is minimal. For example, only 20% of the 
surgical patients in one study required fentanyl to main- 
tain blood pressure within 20% of the baseline value 
during 70% xenon anesthesia at incision.' In addition, no 
patients had intraoperative recall, awareness, or hyper- 
tension during 0.8 MAC xenon anesthesia with 2.5 pg/kg 
fentanyl.3 However, the fentanyl requirement in xenon 
anesthesia has not been fully established. 

Somatic and hemodynamic responses to surgical inci- 
sion are clinical endpoints for assessing depth of anes- 
thesia. Patient movement is easily defined and observed, 
and, in its absence, recall of intraoperative events by 
nonparalyzed patients is rare. In clinical anesthesia, the 
endpoints used in anesthetizing surgical patients fre- 
quently are hemodynamic variables, such as arterial 
blood pressure and heart rate. Therefore, it is important 
to establish the therapeutic concentrations of fentanyl 
needed to block somatic and hemodynamic responses to 
incision if it is to be used with xenon in clinical anes- 
thesia. This study was designed to determine the con- 
centration of fentanyl necessary to suppress somatic and 
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hernodynamic responses to surgical incision in the pres- 
ence of xenon. 

Materials and Methods  

After approval from the Institutional Human Studies 
Committee of Teikyo University, we obtained informed 
consent from 25 adult patients classified as American 
Society of Anesthesiologists physical StdtUS I or I1 under- 
going elective lower abdominal surgery. They were to 
undergo at least 5-cm skin incisions on the abdomen. 
Patients scheduled for laparoscopic surgery were ex- 
cluded because of the small initial skin incision. Other 
exclusion criteria included history of cardiac and pulmo- 
nary abnormalities, neurologic disease, hypertension, 
and use of medications that might affect blood pressure, 
heart rate, or MAC values of inhaled anesthetics. 

The protocol was designed to be similar to that of the 
study by Glass et aZ.* to make a comparison valid. Using a 
computer-generated random-number table, patients were 
allocated randomly to a predetermined target fentanyl 
plasma concentration of 0.5, 1 ,  2, or 4 ng/ml. Fentanyl was 
administered using a pharmdcokinetic model- driven com- 
puter-assisted continuous infusion device capable of admin- 
istering intravenous drugs to achieve constant target 
plasma concentrations. The device consisted of a Dyna- 
Book 433 laptop computer (Toshiba, Minatc-ku, Tokyo, 
Japan) and a Harvard PHD2000 Syringe Pump (Harvard 
Apparatus, Holliston, MA). The pharmacokinetic parame- 
ters used in computer-assisted continuous infusion for 
administration of fentanyl were based on a study by 
Shafer et aL5 To ensure rapid equilibration between the 
plasma and effect compartments, infusion was adjusted 
for the first 6 min to achieve a concentration of fentanyl 
twice the predetermined target concentration according 
to the half-time (keJ for equilibration between the blood 
and the brain (6.6 min).6 Thereafter, the target concen- 
tration of fentanyl was returned to the value for the 
patient. 

No  patient received premedication. After the patients 
were in the operating room, monitoring with an electro- 
cardiograph, pulse oximetry, and a noninvasive blood 
pressure cuff was begun. A venous catheter was inserted 
into one arm for administration of drugs, and the com- 
puter-assisted continuous-infusion for administration of 
fentanyl was started. After preoxygenation and denitro- 
genation with 100% oxygen for 3 min, anesthesia was 
induced with inhalation of 70% xenon with continuous 
infusion of fentanyl, as previous~y.' After a loss of con- 

sciousness, the trachea was sprayed with 2.5 ml topical 
lidocaine, 4%, and tracheal intubation was facilitated 
with 1 mg/kg succinylcholine administered intrave- 
nously. Immediately after tracheal intubation, a 20-gauge 
arterial line was inserted into a radial artery at the wrist 
for continuous blood pressure measurement and for 
blood sampling. The transducer (Life Kit DX-36OR; Ni- 
hon Kohden, Shinjuku-ku, Tokyo, Japan) was placed at 
the level of the patient's right atrium and was calibrated 
by opening the stopcock to atmospheric pressure. Be- 
fore the study, the arterial catheter tubing and trans- 
ducer were inspected carefully to ensure that there were 
no air bubbles and that there was an optimum dynamic 
response.8 This was calculated before each study by 
performing the flush test after placement of the intraar- 
terial catheter. The tracing obtained during several fast 
flushes was recorded on the computer. Natural fre- 
quency and amplitude ratio were calculated to deter- 
mine the damping coefficient, as described by Gardner.' 
The inspired concentration of xenon was adjusted to 
maintain the measured end-tidal concentration at 0.7 
MAC in the closed-circuit anesthesia. The MAC values of 
xenon were adjusted to the patient's age using the 
Mapleson formula.' Respiratory gases were sampled at 
the Y connector, and inspired oxygen and expired car- 
bon dioxide concentrations were monitored continu- 
ously using an infrared gas monitor (PM8050; Drager, 
Riibeck, Germany), which was calibrated just before 
each anesthetic with a tank standard. The xenon con- 
centration was monitored continuously with an A2720 
xenon monitor (Anzai Medical, Minato-ku, Tokyo, Ja- 
pan), which used the absorption of a characteristic X-ray 
for the measurement. It was calibrated before each case 
using an 80% xenon-20% oxygen mixture analyzed to 
50.02% accuracy (Nihon-Sanso, Minato-ku, Tokyo, Ja- 
pan). The effective working range for this monitor was 
1 -loo%, with an error of f 1% and a 90% response time 
of less than 1 s. Patients' lungs were ventilated mechan- 
ically to normocapnia, and body temperature was main- 
tained at more than 35.5"C during the period of the 
study. No patient received drugs other than those stated. 

For approximately 30 min after tracheal intubation the 
patients were left unstimulated, except for positioning, 
preparation, and draping. The xenon concentration re- 
mained stable at the target end-tidal concentration for at 
least 15 min before surgical incision. Blood samples 
were taken from the arterial line 5 min before and after 
incision. The hernodynamic data were displayed contin- 
uously on the cardiac catheter monitor (RMC-1100; Ni- 
hon Kohden, Shinjuku-ku, Tokyo, Japan) and recorded 
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by a high-frequency thermal array chart recorder 
(WS-180G; Nihon Kohden, Shinjuku-ku, Tokyo, Japan). 
The data also were stored digitally in a computer system 
(Winkey; Sanyo, Minato-ku, Tokyo, Japan) using soft- 
ware (Hyperterminal Version 1.2; Hilgraeve, Monroe, 
MI) and were recorded every 10 s on paper. A person 
who was blind to the fentanyl concentration analyzed 
these hernodynamic data. We confirmed that patients 
could not respond to the verbal command just before 
surgical incision. If a patient responded to a command, 
the response was treated as indicating positive somatic 
and hemodynamic responses to incision. A blood sample 
was taken as a postincision sample, and the patient 
received propofol immediately. During surgical incision 
each patient was monitored for somatic and hemody- 
naniic responses. A somatic response was considered to 
be any purposeful bodily movement. The patients 
were monitored for somatic response for 1 min after 
surgical incision by an observer who was blind to the 
fentanyl concentration used; coughing, chewing, and 
swallowing were not considered to be positive purpose- 
ful movements. If patients did not move in response to 
incision, residual neuromuscular blockade was assessed 
by train-of-four stimulation of the ulnar nerve. We con- 
firmed that the train-of-four ratio returned to almost 1 .O, 
and first-twitch height at skin incision was not different 
from that recorded before administration of succinylcho- 
line. A positive hernodynamic response was defined as a 
more than 15% increase in heart rate or mean arterial 
pressure greater than the preincision value. The prein- 
cision value was defined as the mean value of the 2- and 
1-min measurements before skin incision. All patients 
received approximately 10 ml * kg-' * h-' of Ringer's 
lactate solution for the duration of the study. The total 
duration of these procedures was approximately 45 min. 

The blood samples were allowed to clot for 15 min, 
and then the plasma was separated and frozen at -70°C 
until assayed. Plasma fentanyl concentrations were mea- 
sured by gas chromatography-mass spectrometry in 
an outside laboratory." The lower detection limit was 
0.2 ng/ml. The pre- and postincision concentrations of 
fentanyl were compared to ensure that a steady concen- 
tration was maintained. Only paired samples that had 
concentrations within 2 35% of each other were in- 
cluded in the statistical analysis. 

Statistical Analysis 
The plasma concentrations (Cp) of fentanyl necessary 

to prevent somatic and hernodynamic responses to inci- 
sion in 50% of patients were defined as Cps0 and Cp,,- 

5.0 

4.0 

3.c 

2 s  

1 .c 

C 

\- 
,,.." 

Pre Post 
Incision Incision 

Fig. 1. Measured pre- and postincision fentanyl concentra- 
tions for all patients (n = 25). Solid lines represent the 
patients (n = 20) in whom the pre- and postincision plasma 
fentanyl concentrations were within 35% of each other, Actual 
differences in concentrations of fentanyl between preincision 
and postincision samples used for data analysis ranged from 
-25.0 to +25.0°/o. Dashed lines represent the patients in whom 
differences between the pre- and postincision plasma fentanyl 
concentrations exceeded 35% and were not included in the 
calculation of the Cp,, and Cp5,-BAR. 

BAR (blockade of adrenergic or cardiovascular respons- 
es), respectively. Using the preincision fentanyl 
concentration, the Cp,, and Cp,,-BAR values for fenta- 
nyl were determined using SAS/STAT Software (release 
6.04; SAS Institute, Cary, NC) from the following equa- 
tion: 

p = 111 + e-<ax + b) 

where P is the probability of no response, x is the 
fentanyl concentration, and a and b are parameters to be 
determined. Cp,, and Cp,,-BAR are then given by -b/a.I2 
Data are reported as the mean ? SD. 

Results 

In 20 of 25 patients studied, the fentanyl concentration 
postincision was maintained within 35% of preincision 
the preincision value (fig. 1). These 20 patients were 
used in the determination of Cp,, and Cp,,-BAR. Actual 
differences in concentrations of fentanyl between prein- 
cision and postincision samples used for data analysis 
ranged from -25 to +25%. Of these 20 patients, three 
were men and 17 were women. Average age was 47 2 9 
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yr (range, 25-57 yr), and weight was 57 +- 10 kg (range, 
46-86 kg). The average time between the pre- and 
postincision fentanyl samples was 8.6 5 4.5 min. Two of 
these 20 patients responded to verbal commands before 
skin incision. 

Seven patients moved in response to skin incision 

Fig. 2. The tick-mark plot shows the re- 
sponse-no response (movement) uersus 
plasma fentanyl concentrations. Each 
mark indicates the plasma fentanyl con- 
centration and response to surgical inci. 
sion. From these data, the predicted 
probability of no response (movement) 
plasma fentanyl concentration obtained 
using logistic regression is plotted in the 
upper graph. The bar indicates 2 1 SD of 
the estimate of the plasma fentanyl con- 
centration producing a 50% probability 
of no movement at surgical incision. 

04 

0 1 .o 2.0 3.0 4.0 5.0 

(fig. 2 ) .  All patients who moved showed a positive 
hemodynamic response. Three patients who did not 
move showed 15% or greater increases in mean arterial 
pressure or heart rate. Therefore, 10 patients showed 
positive hemodynamic responses (fig. 3). 

For a somatic response, Cp5,, of fentanyl in the pres- 

Fig. 3. The tick-mark plot shows the re- 
sponse-no response (hemodynamic) 
versus plasma fentanyl concentrations. 
Each mark indicates the plasma fentanyl 
concentration and response to surgical 
incision. From these data, the predicted 
probability of no response (hemodynam- 
ic) plasma fentanyl concentration ob- 
tained using logistic regression is plotted 
in the upper graph. The bar indicates f 1 
SD of the estimate of the plasma fentanyl 
concentration producing a 50% probabil- 
ity of no hemodynamic response at sur- 
gical incision. 

PLASMA FENTANYL CONCENTRATION (ng/ml) 
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ence of 0.7 MAC xenon was determined to be 0.72 -+ 
0.07 ng/ml, and the Cp,,-BAR was 0.94 i 0.06 ng/ml 
(figs. 2 and 3). 

Discussion 

We determined the plasma concentration of fentanyl 
(in the presence of 0.7 MAC xenon) necessary to prevent 
somatic and hemodynamic responses to skin incision in 
50% of patients, after the plasma and effect-site concen- 
trations were in equilibrium (0.72 and 0.94 ng/ml, re- 
spectively). A previous study reported that Cp,, and 
Cp,,-BAR of fentanyl in the presence of 70% nitrous 
oxide (approximately 0.7 MA@ were 3.26 and 4.17 
ng/ml,* both of which are considerably greater than the 
results obtained in the current study. The concentration 
of fentanyl necessary to prevent a somatic response in 
50% of patients at 0.7 MAC isoflurane or sevoflurane was 
approximately 0.8 ng/ml,1”14 which is similar to our 
results with xenon. However, the concentration of fen- 
tanyl necessary to prevent a hemodynamic response in 
50% of patients at 0.7 MAC sevoflurane was approxi- 
mately 1.8 ng/ml,15 which is considerably greater than in 
the current study. Therefore, we have demonstrated that 
the fentanyl requirement in xenon anesthesia is similar 
to or less than that using equianesthetic nitrous oxide, 
sevoflurane or isoflurane. These findings confirm previ- 
ous studies233 that suggested that the requirement for 
fentanyl during xenon anesthesia is minimal. Although 
the specific mechanism of the difference in fentanyl 
requirements was not identified in the current study, 
there are at least three explanations for this difference. 

First, the mechanism of analgesic effects of xenon may 
differ from that of other anesthetics. Although xenon 
and nitrous oxide both produce an analgesic effect by 
inhibiting inhibits the excitatory N-methybaspartate re- 
c e p t o r ~ , ’ ~ ~ ’ ~  xenon, in contrast to nitrous oxide, directly 
inhibits the nociceptive stimulation-induced activity of 
spinal wide-dynamic-range neurons. l8 The mechanism 
of analgesic effects of xenon is described to be via 
suppression of spinal dorsal horn neurons“ indepen- 
dent of a,-adrenergic or opioid receptors.’” The direct 
antinociceptive action of xenon on the spinal cord is 
greater than that of nitrous oxide.18 These differences in 
the mechanism of analgesic effects may explain the dif- 
ference in fentanyl requirements between xenon and 
nitrous oxide. 

Second, nitrous oxide augments sympathetic outflow, 
but xenon has not been reported to do so. The sympa- 

thetic activation by nitrous oxide has been shown by 
elevated plasma catecholamine concentrations2’ and, 
more recently, by microneurography.’23’3 The sympa- 
thetic activation induced by nitrous oxide increases ar- 
terial blood pressure and heart rate.’* In contrast, xenon 
decreases plasma catecholamine  concentration^,^^ indi- 
cating that the drug produces a sympatholytic effect. 
Furthermore, heart rate (a good indicator of sympatho- 
vagal balance)26 was significantly reduced during xenon 
administration in some, although not all, of the previous 
 investigation^.^^"^ To maintain stable hernodynamic 
variables, a larger dose of fentanyl may have been nec- 
essary to compensate for the increased sympathetic ex- 
citation by nitrous oxide. 

Third, the study protocol was not exactly identical to 
those of the previous studies. For example, the MAC 
value of xenon was adjusted to age in our study but not 
in the previous s t~dies*~’~-’~ ;  Our patients were older 
than those in the previous McEwan et al. l 3  

and Glass et ~ 1 . ~  used radioimmunoassay techniques for 
fentanyl concentration measurement; we measured fen- 
tanyl using gas chromatography-mass ~pectrometry.’~ 
The baseline hemodynamic variables were defined as 
mean preincision values in our study; they were mea- 
sured before induction of anesthesia in the study of Glass 
et aZ.* These differences in the protocols may, at least 
partially, explain the differences in the fentanyl require- 
ments among various inhaled anesthetics. 

Our previous study showed a similar sevoflurane re- 
quirement between xenon and nitrous oxide to achieve 
stable hemodynamic responses to surgical incision.30 In 
general, volatile anesthetics enhance activity of inhibi- 
tory y-aminobutyric acid type A receptors; fentanyl acts 
on the opioid recept01-s.~~ The difference in the mecha- 
nism of actions between sevoflurane and fentanyl may 
explain the difference in their requirement, although the 
exact mechanism was not revealed in our investigations. 

In conclusion, we determined that the Cp,, of fentanyl 
in the presence of 0.7 MAC xenon was 0.72 ? 0.07 
ng/ml for a somatic response, and the Cp5,,-BAR was 
0.94 f 0.06 ng/ml for a hemodynamic response. Com- 
pared with the results obtained in a previous study,* 
xenon needs the smaller concentrations of fentanyl than 
does the equianesthetic nitrous oxide to block somatic 
and hemodynamic responses. 

The authors thank Mieko Saito, M.S., for preparing the figures, and 
Satoshi Matsushita, M.D., for statistical analysis of the data. 
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