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Intrathecal Drug Therapy for Chronic Pain

From Basic Science to Clinical Practice
Patrick M. Dougherty, Ph.D.,* Peter S. Staats, M.D.†

SYSTEMIC analgesics and conservative therapies are ef-
fective in controlling chronic pain for the majority of
patients. However, many other patients, such as those
with advanced head and neck carcinoma and those with
neuropathic pain, require more aggressive therapy to
directly modulate pain transmission in the central ner-
vous system. Reversible methods of aggressive therapy
in the spinal cord include electrical stimulation proce-
dures and intrathecal delivery of analgesics by implanted
pumps, both of which are finding ever-expanding roles
in pain control. Of these, long-term intrathecal drug
therapy is likely to show the largest near-term expansion
because the numbers of agents approved for this route
of administration are likely soon to increase substan-
tially. Moreover, drug therapy itself will change as treat-
ments using microsome drug encapsulation and novel
suspension media are introduced. Further on the clinical
horizon is intrathecal cell implantation for the relief of
chronic pain. The goal of this review is to update the
reader regarding each of these pending advances in
intrathecal drug therapy for chronic pain.

Present and Future Intrathecal Analgesics

Morphine is the only drug presently approved for long-
term intrathecal treatment of pain by the United States
Food and Drug Administration and by the major manu-
facturers of infusion pumps for use in their devices.
Nevertheless, chronic pain conditions are not always
adequately treated by intrathecal opioids alone. Opioids
have many unwanted side effects and a significant
stigma. Therefore, extensive basic animal and clinical
research has focused on identifying alternative classes of
analgesics and adjuvants to manage pain.1 Many recep-
tors and compounds that modulate pain transmission
have been identified (Fig. 1).2 The analgesic properties
of drugs active at a variety of these targets are being
investigated, both alone and in combination, in humans
(table 1).3 Herein, we review the basic and clinical sci-
ence of many of these compounds organized on the
basis of their function in the spinal dorsal horn. Agents
that nonspecifically alter transmission in the dorsal horn
by interacting with the ion channels and second-messen-
ger systems that generate action potentials, release syn-
aptic neurotransmitters, and regulate cell excitability are
discussed first. We progress to compounds that act on
neurotransmitter receptor systems. Finally, we discuss
compounds that act on peptide neuromodulator and
novel trans-synaptic signal molecule receptor systems.

Various animal models of nociception are used to ap-
proximate specific pain conditions in humans. For ex-
ample, hot plate, tail flick, tail–paw pinch, and shock
titration experiments assess analgesic effects on acute
cutaneous thermal and mechanical pain. Intraplantar in-
jections of formalin, zymosan, carrageenan or Freund’s
adjuvant are models of acute and sustained inflammatory
pain. Intraperitoneal hypertonic saline, acetic acid, and
colorectal distension model acute visceral pain. There
are also a number of nerve injury models of human
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neuropathic pain. Despite these models, it is impossible
to directly assess the effects of drugs in animals on the
complex cognitive experience that humans know and
can communicate as pain. Although we refer to certain
drugs as showing “analgesic” properties in animals, it is
more appropriate to state that these studies assess “an-
tinociceptive” properties. This is because we know that
particular stimuli activate nociceptors or produce noci-
ceptive responses and that certain drugs block these
activities. The effect of analgesics in animal studies there-
fore needs validation in humans before a given com-
pound can enter widespread clinical use. Preclinical
studies not only need to be designed as thorough,
blinded, placebo-controlled studies, but also should eval-
uate drug toxicity and drug interaction effects. There-
fore, our review is intended to update readers regarding
the future of intrathecal drug therapy and not as an
explicit charge to alter current therapies to include un-
proven experimental compounds.

Blockade of Ion Channels and Second-messenger
Systems
Propagation of bioelectric signals in the nervous sys-

tem is crucially dependent on the movement of various
ions and the activity of cellular enzymes and metabolites.

The proteins that form ion channels and function as
second-messenger enzymes can be blocked by numer-
ous agents, and many of these have been studied as
putative analgesics. However, because ion channels and
second messengers are found in all neural elements, the
effects of compounds acting at these sites are not spe-
cific to pain circuitry. Therefore, side effects are often
encountered with these drugs that limit their usefulness
when given alone. Nevertheless, many compounds in
this category will be successful as analgesic adjuvants.
The four ion channels involved in pain transmission,
those for sodium, calcium, potassium, and chloride, are
discussed individually. In contrast, the eight second-
messenger enzymes involved in pain transmission (in-
cluding adenylate and guanylate cyclase; phospholipases
A3, D, and C; and protein kinases C, A, and G) have
complex biochemical interrelations and therefore are
discussed as a set.

Sodium Channels. Local anesthetics such as lido-
caine and bupivacaine inactivate voltage-sensitive so-
dium channels (fig. 2). The opening of these channels is
the primary event underlying the depolarization of nerve
membranes and therefore is the key to propagation of
neural impulses throughout the nervous system. Dorsal
root ganglion neurons have multiple types of sodium

Fig. 1. Schematic diagram of the major
neurochemicals involved in somatosen-
sory transmission and processing in the
spinal dorsal horn. The figure is orga-
nized with the pain signaling output neu-
rons of the dorsal horn, the dorsal horn
projection neurons, as the central cellu-
lar component. These cells are the source
of all inputs for pain and temperature to
the rostral central nervous system struc-
tures, such as the thalamus, brain stem,
and hypothalamus, that in turn influence
cortical and limbic brain structures nec-
essary for conscious perception and ap-
preciation of pain. The primary afferents
that convey input from peripheral tissues
to spinal interneurons and projection
cells are shown entering at the right of
the figure. The local circuit interneurons
that influence the processing of sensory
inputs to projection cells are represented
by the cell profile at the bottom right.
Meanwhile, the inputs to the spinal cord
that have come from rostral central ner-
vous system sensory modulatory sites are
shown in the cellular component at the
top of the figure, alongside the departing
axon of the projection cell. The chemi-
cals involved as neurotransmitters (trans-

mitters) and neuromodulators (modulators) associated with each compartment are indicated in the boxes associated with each
profile. Boxes at the bottom left list the nonspecific and trans-synaptic signals that provide additional sites for intervention.
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currents that are mediated by at least one class of tetro-
dotoxin-sensitive channel and by as many as four tetro-
dotoxin-resistant sodium channels.4 Sodium currents in
dorsal horn neurons are mediated by at least three types
of tetrodotoxin sensitive channels.5

The effects of spinally delivered local anesthetics for
short-term pain management have been studied in ani-
mals and humans for many years.6 However, use of
long-term intrathecal infusion of local anesthetics for
pain relief in animals was first investigated in the early
1980s.7 Since then, these compounds have been used in
numerous experimental studies for long-term relief of

somatic, visceral,8 and neuropathic pain.9–12 Although
relief of experimental measures of pain was often pro-
found in each of these studies, many side effects, includ-
ing somatic and visceral motor impairment, were en-
countered.

Prolonged infusion of local anesthetics for postopera-
tive pain in humans became widespread in the
1990s.13–16 Many patients with cancer and chronic non-
malignant pain receive continuous infusions of intrathe-
cal local anesthetics outside of the hospital.17–20 Intra-
thecal local anesthetics combined with intrathecal
opiates have provided pain relief in each of these con-
ditions, but side effects are common.17–20 These include
delayed urinary retention, paresthesia, paresis–gait im-
pairment, periods of orthostatic hypotension, brady-
pnea, and dyspnea. The percentages of patients affected
by one or more of these side effects varied among stud-
ies, ranging from one third to two thirds of all sub-
jects.17–21 Additionally, tolerance often increased drug
requirements to such a large extent that increases in
drug concentration (limited by solubility) and increases
in drug infusion rate (limited by pump design) did not
permit administration of sufficient doses to produce pain
relief.22 Externalized epidural and intrathecal catheters
were therefore necessary to maintain analgesia, increas-
ing the risk of infection.

Future local anesthetics for treatment of chronic pain
will probably be compounds active at C-fiber–specific

Table 1. Human Intrathecal Analgesics

Class Drug
Chronic
Infusion

Bolus
Infusion

Sodium channel
antagonists (local
anesthetics*)

Bupivacaine Y Y
Lidocaine Y Y
Tetracaine Y Y

Calcium channel
antagonists

Verapamil Y
Conotoxin Y

NMDA antagonists
Ketamine Y
CPP Y

GABA agonists
Midazolam Y
Baclofen† Y Y

a2-Adrenergic agonists
Clonidine Y Y

Acetylcholinesterase
inhibitors

Physostigmine Y
Neostigmine Y

Adenosine agonists
Adenosine Y

Opioid agonists
Morphine Y Y
Hydromorphone Y Y
Fentanyl Y Y
Meperidine Y Y
Sufentanil Y Y
D-ala-D-leu-enkephalin Y Y
Dynorphin Y
b-Endorphin Y

Somatostatin
Somatostain Y
Octreotide Y Y

Y 5 those compounds that have been tested as analgesics by chronic or
acute intrathecal administration.

* Compounds have been tested both alone and in combination with opiates.

† Baclofen has been infused chronically for the treatment of spasticity but not
for the treatment of pain.

Fig. 2. Summary of the two major classes of sodium channels
involved in somatosensory transmission at spinal levels. Drugs
that modify each channel are listed, with arrows indicating sites
of action. The “X” indicates blockade of the channel. 4030W92 5
2,4-diamino-5-(2,3-dichlorophenyl)-6-fluoromethylpyrimi-
dine.34
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sodium channels.23,24 Tetrodotoxin-resistant sodium
channels are concentrated in primary afferent C fibers of
the mouse, the rat, and humans and present only at
much lower concentrations in other dorsal root and
autonomic ganglion neurons.23–27 Tetrodotoxin-resistant
sodium channels are the chief mediators of action po-
tentials in nociceptive C primary afferents,28 and algesic
compounds, such as prostaglandins, specifically increase
sodium currents through these channels.29 Expression
of tetrodotoxin-resistant channels increases during the
development of nociceptive (inflammatory) pain but un-
dergo down-regulation with development of neuro-
pathic pain.30–33 Finally, the usefulness and specificity of
antagonists at these channels to pain signaling has been
substantiated in an animal study with one recently de-
veloped compound.34 Extension of these findings should
soon follow, with novel antagonists to these channels
based on the chemical structure of the anticonvul-
sants.35

Calcium Channels. Calcium ions are essential for
regulation of neuronal excitability and for the release of
neurotransmitter with synaptic depolarization.36 At least
four types of calcium channels, the L, N, T, and P types,
have been identified in dorsal root ganglion and dorsal
horn neurons (fig. 3). There are numerous chemical
antagonists of L-type calcium channels,36 whereas N-
type calcium channels are blocked using toxins of Conus
magnus.37 P channels are especially prevalent in Pur-
kinje cells and are sensitive to venom toxins of the
funnel-web spider (Agelenopsis aperta).36 T channels
are involved in the regulation of neuronal excitability
and pacemaker activity.38 T channels in dorsal root gan-
glia are also blocked by some conotoxins.39

Mixed antinociceptive effects of intrathecal L-type cal-

cium channel antagonists have been observed in ani-
mals. In one series, verapamil alone had little effect on
tail-flick latency of rats, although it potentiated the ef-
fects of small doses of morphine.38,40 In contrast, vera-
pamil and diltiazem produced analgesia in the tail-flick
and colorectal distension tests41; and nifedipine pre-
vented capsaicin-induced mechanical hyperalgesia.42 N-
type calcium channel antagonists have shown a clearer
antinociceptive profile in animal studies. Intrathecal ad-
ministration of conopeptides in rats relieved neuro-
pathic pain,37,43 attenuated both phases of the formalin
test,37 produced short-term thermal antinociception,38

and prevented capsaicin-induced hyperalgesia.42 How-
ever, pronounced motor disturbances persisted for 2 or
3 days after administration of high-dose conotoxin in
rats.43

The analgesic properties of P-type calcium channel
antagonists have been evaluated after intraspinal infu-
sion of agatoxins. 42,44 Agatoxin did not affect the re-
sponses of rats to short-term noxious mechanical or heat
stimuli or to spontaneous pain behaviors after intrader-
mal injection of capsaicin or after joint inflammation.
However, agatoxin prevented development of mechan-
ical hyperalgesia after capsaicin and thermal hyperalge-
sia after joint inflammation.42,44 Similar effects were re-
ported on dorsal horn neurons after application of
agatoxin to the surface of the spinal cord.45 There was
little effect on the responses of single dorsal horn neu-
rons to pressure applied to the knee joint in normal
animals. However, agatoxin markedly decreased the re-
sponse to pressure in neurons from animals with in-
flamed knee joints.45

Both L- and N-type calcium channel antagonists have
clinical analgesic properties. Patients who received epi-

Fig. 3. Summary of the four classes of
calcium channels involved in sensory
transmission at spinal levels. Drugs that
modify each channel are listed, with ar-
rows indicating the sites of action. The
“X” indicates blockade of the channel.
Some conotoxins block “P”-type chan-
nels, but these may not be involved in
transmission of sensory information at
spinal levels.
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dural verapamil (in combination with bupivacaine) con-
sumed smaller doses of analgesics postoperatively than
patients treated with bupivacaine alone.46 Similarly, an
N-channel antagonist, conotoxin, was analgesic after in-
trathecal administration to patients with uncontrolled
pain caused by malignant disease.47 Verapamil did not
produce any major side effects, whereas side effects
similar to those of excessive lidocaine limited the use-
fulness of conotoxin.47

In summary, combinations of L-type calcium channel
antagonists with standard analgesics such as morphine
will probably find increasing clinical use in the near
term. However, the future of calcium channel analgesics
will probably follow the course observed in sodium
channel research, with efforts to identify C-fiber–specific
channel subtypes.

Potassium Channels. Potassium is the second main
cation of the neuronal action potential. There are two
large families of potassium channels: the voltage-gated
channels and the inwardly rectifying channels.48 The
voltage-gated channels include the “A” fast-transient con-
ductances sensitive to 4-aminopyridine, barium, and co-
balt and the calcium-activated potassium channels sensi-
tive to cobalt, manganese, and cadmium.49 Dorsal root
ganglion neurons are believed to have one to three types
of voltage-gated channels and three or four types of
delayed rectifier channels.50,51 Opening of voltage-gated
potassium channels allows outward positive current
flow from neurons, such as during repolarization after an
action potential. Blockade of these channels initially pro-
longs generation of action potentials.52 Continued appli-
cation, however, prevents repolarization and, therefore,
ultimately produces a failure to generate action poten-
tials.52

Although intrathecal administration of potassium chan-
nel antagonists has not been used to treat pain in either
animals or humans, 4-aminopyridine is used for long-
term intrathecal treatment of spasticity in multiple scle-
rosis.53 One side effect of this treatment, paresthesia, is
suggested to be caused by preferential blockade of non-
myelinated fibers,54,55 which in turn suggests analgesic
potential. However, a number of patients have also re-
ported abdominal pain with these treatments that may
relate to abnormal discharge patterns in primary afferent
fibers.55 Potassium channel agonists–antagonists are not
likely to be used soon for the treatment of pain.

Chloride Channels. Three major classes of chloride
channels have been identified.56 The first class identified
was the ligand-gated chloride channels, including those
of the g-aminobutyric acid type A (GABAA) and glycine

receptors. The ligand-gated chloride channels are com-
mon in dorsal root ganglia and dorsal horn neurons.57

The second class, also probably common at spinal levels,
is the voltage-gated chloride channel.58 The final chlo-
ride channel class is activated by cyclic adenosine mono-
phosphate (cAMP) and may include only the cystic fibro-
sis transmembrane regulator.59 Activation of chloride
currents usually produces inward movement of chloride
to cells that hyperpolarize neurons; facilitation of these
hyperpolarizing currents underlies the mechanisms of
many depressant drugs. An important exception at spi-
nal levels, however, is that GABAA receptors on primary
afferent terminals gate a chloride channel that allows
efflux of chloride,60,61 with a net effect therefore of
depolarizing primary afferent terminals.

Chloride channel antagonists, such as bicuculline and
strychnine, have not been administered to relieve pain,
but instead to produce an experimental pain state char-
acterized by a pronounced opiate refractory allo-
dynia.62–64 These compounds were also used to exacer-
bate the anatomic consequences of nerve constriction
injury.65 Nevertheless, chloride channels may have para-
doxic effects in some pain conditions.66 As mentioned
previously, C-fiber volleys depolarize primary afferent A
fibers by activating outward chloride currents through
GABAA receptor channels.60,61 This primary afferent de-
polarization was proposed as a means of limiting painful
input to the dorsal horn, consistent with the gate-control
theory of pain transmission.67 However, new evidence
suggests that the allodynia produced by intradermal in-
jection of capsaicin is caused by an increased effective-
ness of chloride currents evoked by A-fiber “touch”-type
afferents on C-fiber nociceptors.66 If substantiated, chlo-
ride channel antagonists may prove to be useful for
treatment of chronic pain conditions that have touch-
evoked nociceptive components.

Second-messenger Systems. Surface receptors af-
fect neuronal activity either by direct gating of an ion
channel or by activating biochemical cascades and,
therefore, are often classified as either ionotropic or
metabotropic, respectively (fig. 4). The transduction of
metabotropic receptor activation to biochemical pro-
cesses involves interactions with a family of so-called
G-binding (guanosine triphosphate) proteins.68–71 G pro-
teins assemble as trimeric complexes composed of a, b,
and g subunits that associate physically to surface recep-
tors. The b and g subunits are constant in all complexes,
whereas one of three differing isoforms of the a subunit
confers functional specificity.68–71 The a subunit is acti-
vated after ligand-receptor interaction by the addition of
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guanosine triphosphate, dissociates from the complex,
and interacts with and modulates the function of numer-
ous intracellular targets until the bound guanosine
triphosphate is autohydrolyzed.68–71 The aS subunit in-
creases conductance at L-type calcium channels, inacti-
vates guanylate cyclase, and activates adenylate cyclase,
thereby increasing cellular concentrations of cAMP.68–70

The aI subunit, in contrast, inactivates adenylate cyclase,
thereby decreasing levels of cAMP; negatively modulates
calcium channels; activates outward potassium currents;
and activates guanylate cyclase, thereby increasing cel-
lular cyclic guanosine monophosphate (cGMP). Finally,
the aq,12 subunits activate one of several phospholipase
enzymes (e.g., phospholipase C, D, or A3), resulting in
release of membrane phospholipid metabolites, includ-
ing arachidonic acid, diacyl-glycerol, and inositol triphos-
phate.

The metabolites generated by each of the G proteins,
in turn, activate one of three types of protein kinases or
increase intracellular calcium. Increases in diacylglycerol
or arachidonic acid activate the protein kinase C family
of enzymes.72 There are at least 12 isoforms of protein
kinase C, although three (a, b, and g) subtypes predom-
inate in the spinal cord.70,72 Protein kinases A and G are
those families of enzymes activated by cAMP and cyclic
guanosine monophosphate (cGMP), respectively. The
functions of protein kinases at the spinal level include
regulation of tetrodotoxin-sensitive sodium channels in

primary afferent fibers,28 release of neurotransmitter,72

and control of excitatory neurotransmitter currents in
dorsal horn cells.73 Intracellular calcium is released from
internal stores by binding inositol triphosphate and is
stimulated by the action of aS on L-type calcium chan-
nels. Increases of intracellular calcium activate the en-
zymes calmodulin, cam kinase II, and nitric oxide syn-
thase.

The role of second-messenger systems on pain sensi-
tivity has been evaluated in a number of studies. Levels
of membrane-bound protein kinase C increase after
nerve injury74 and intraplantar injection of formalin.75

Spinal infusion of phorbol esters to activate protein ki-
nase C increases the behavioral response to intraplantar
formalin76 and increases the spontaneous and evoked
activity of primate spinothalamic tract neurons.77 In con-
trast, antagonists for protein kinase C decrease pain
behavior after nerve injury,74 intraplantar formalin,75,76

intraspinal N-methyl-D-aspartate (NMDA)78 and intrader-
mal capsaicin.79 Similarly, inhibition of phospholipase
C76 or phospholipase A80 (needed for release of cofac-
tors to protein kinase C) reduced hyperalgesia after in-
traplantar formalin and zymosan, respectively. Antago-
nists of protein kinases A and G79 also decreased
capsaicin-induced pain. Finally, animals engineered with
defects in protein kinase C had less pain after nerve
injury,81 whereas those engineered with defects in pro-

Fig. 4. Schematic summary of the spinal
second-messenger systems involved in
pain transmission. The figure is orga-
nized in columns and rows. Filled rectan-
gles represent surface drug receptors.
Compounds that activate each receptor
are listed at the side. G-labeled pentagons
represent the G-protein b and g subunits,
whereas the circles labeled “q”, “s,” and
“i” represent the three functionally dis-
tinct isoforms of the a subunit. Circles
with arrows represent enzymes that gen-
erate secondary metabolites as a direct
consequence of activity of the G-protein
subunits. The products of these enzymes
are listed in the center of the figure. Rect-
angles represent the final tier of enzymes
activated in the cascade. The “1” indi-
cates activation or positive modulation,
whereas the “-” indicates inactivation or
inhibition. *Indicates those targets for
which antagonists were shown to pro-
duce antinociception. AC 5 adenylate cy-
clase; CamKII 5 calcium-calmodulin de-
pendent protein kinase II; cAMP 5 cyclic
adenosine monophosphate; cGMP 5 cy-

clic guanosine monophosphate; GC 5 guanylate cyclase; IP3 5 inositol triphosphate; NOS 5 nitric oxide synthase; PKA 5 protein
kinase A; PKC 5 protein kinase C; PKG 5 protein kinase G; PL 5 phospholipase.
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tein kinase A had decreased responses to formalin, cap-
saicin, and hind-paw inflammation.82

In summary, many second-messenger systems may ul-
timately become targets for clinical pain treatment. How-
ever, the role of these systems in pain management is
indirect through the action of various drugs that interact
with surface receptors linked to G proteins. Receptors
linked to GS (receptors associated with bgaS subunits)
include the b1-adrenergic, dopaminergic type 1, and
adenosine type 2 receptors. Those that activate Gq,12

(bgaq,12) include the serotonin 2c, a1-adrenergic; hista-
mine; thromboxane A2; metabotropic glutamate; and
muscarinic types 1, 3, and 5 receptors. Finally, GI-
(bgai)–linked receptors include adenosine 1; serotonin
1B; GABAB; muscarinic type 2; and m-, d-, and k-opioid
receptors.68 As reviewed in the after-sections, neuro-
transmitter receptors linked to GS and Gq,12 generally
increase pain transmission, whereas GI-linked receptors
inhibit pain signaling.68–70,83

Blockade or Facilitation of Neurotransmitter
Function
Neurotransmitters are the chemicals that mediate

transmission of action potentials at synaptic junctions
between neurons. There are four major groups of neu-
rotransmitters in the spinal dorsal horn: excitatory
amino acids, inhibitory amino acids, monoamines, and
purines. All are relatively small molecular-weight com-
pounds. Their rapid release and reuptake (degradation)

yields a corresponding rapid time course in effects, usu-
ally measured in the range of milliseconds. Most phar-
macologic agents act by either blocking or mimicking
neurotransmitter actions.

Excitatory Amino Acids. The amino acids glutamate
and aspartate are the main excitatory neurotransmitters
of somatosensory transmission pathways. Glutamate and
aspartate are present in peripheral nerves, dorsal root
ganglia and axons, and cells of the dorsal horn.2,84–87

There are at least four distinct types of excitatory
amino acid receptors named for the selective synthetic
agonists that bind to them88 (fig. 5). The sites that bind
NMDA define the NMDA receptors. These have the high-
est affinity for the natural ligand aspartate and form an
ion channel that is permeable to calcium (and sodium
and potassium).88 NMDA receptors are selectively
blocked by a number of chemical antagonists, such as
CPP. Ketamine and dextromethorphan are also NMDA
antagonists; however, both act on nonexcitatory amino
acid receptors.88 Ketamine, for example, binds to s
opioid and serotonin receptors.88 NMDA receptors are
blocked at resting membrane potentials by magnesium.
Relief of this blockade requires depolarization of the cell
by other synaptic inputs, which means NMDA receptors
function as detectors of temporally coincident synaptic
events.89 The combined features of calcium permeability
and coincidence detection are thought to be the keys to
NMDA-receptor mediation of heterosynaptic (Hebbian)
plasticity in neural pathways, such as that underlying

Fig. 5. Schematic summary of the spinal
excitatory amino acid (glutamate) recep-
tors that participate in pain transmis-
sion. Excitatory amino acid receptor an-
tagonists that modulate each receptor are
listed, with arrows indicating the site of
action. The boldface names and solid
lines indicate the two classification
schemes for these receptors. The “-” indi-
cates antagonist effect.
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hippocampal long-term potentiation and dorsal horn
neuron sensitization.89,90

Non-NMDA excitatory amino acid receptors include
three distinct sites. The first of these selectively binds
AMPA and the second selectively binds kainate. Gluta-
mate has its higheset affinity for AMPA and kainate re-
ceptors.91–93 Most AMPA and kainate receptors form
monovalent cationic channels, although subtypes of
each have been identified that are also permeable to
calcium.94,95 Although antagonists for these receptors,
such as CNQX and DNQX, do not select between the
AMPA and kainate binding sites, the receptors have dif-
ferential sensitivity to antagonists of receptor desensiti-
zation.96,97 Finally, the third non-NMDA site selectively
binds ACPD and is blocked by 4C3HPG. The ACPD
receptor, in contrast to the NMDA, AMPA, and kainte
receptors, is a G-protein–linked complex that initiates
inositol phospholipid metabolism when activated. This
feature results in a second partitioning of excitatory
amino acid receptors into ionotropic (NMDA, AMPA,
kainate) and metabotropic (ACPD) subtypes.

All four excitatory amino acid receptors mediate so-
matosensory transmission in the dorsal horn. Intrathecal
injection of NMDA, AMPA, and kainate produced nocif-
ensive biting and scratching behavior,98 whereas injec-
tion of ACPD increased the behavioral responses to in-
traplantar formalin.99 Intrathecal injection of NMDA
antagonists has little effect on the responses to acute
nociceptive stimuli in normal animals but markedly de-
creases touch and heat hyperalgesia after peripheral in-
flammation or nerve injury.100–103 Similar effects have
been observed after intrathecal injection of magnesium
sulfate.104 In contrast, intrathecally administered AMPA
and kainate receptor antagonists reduce behavioral re-
sponses to short-term nociceptive stimuli and after in-
duction of hyperalgesia.103,105,106 However, AMPA and
kainate antagonists, unlike NMDA antagonists, impair
motor function at analgesic doses.103,105,106 Finally,
metabotropic receptor antagonists had no effect in a
model of postoperative pain107 but reduced the behav-
ioral responses to intraplantar formalin,99 and treatment
with metabotropic receptor antisense oligonucleotide
increased tail-flick latency.108

Neurophysiology studies confirm the roles of excita-
tory amino acids in pain transmission. Ionotropic gluta-
mate receptor agonists increase109–114 and antagonists
decrease the responses of dorsal horn neurons to so-
matosensory stimuli.91,93,115–124 Non-NMDA–receptor
antagonists decreased the transmission of both noxious
and non-noxious information, whereas NMDA-recep-

tor antagonists selectively attenuated responses to sus-
tained noxious stimuli.92,93 ACPD produced excitation
of nociceptive neurons in monkeys and rats and a selec-
tive increase in responses to innocuous cutaneous
stimuli.125,126 The majority of synapses activated by pri-
mary afferent fibers on arrival to the dorsal horn are
mediated by the “fast” ionotropic non-NMDA (AMPA and
kainate) receptors. NMDA receptors are recruited with
polysynaptic activation of intrinsic dorsal horn neurons
and are essential for induction of hypersensitivity of
dorsal horn cells after injury. Influx of calcium through
the NMDA receptor is the crucial first step in initiation of
hypersensitivity.101 In turn, increased intracellular cal-
cium increases resting membrane potential and mem-
brane resistance and initiates changes in gene expres-
sion. Long-term maintenance of hypersensitivity requires
coincident activation of neuropeptide receptors involv-
ing either GS- or GQ-mediated biochemical cascades.127

Finally, ACPD receptors appear to affect global sensitiv-
ity of multirecetpive dorsal horn neurons to innocuous
and noxious stimuli and, therefore, function to control
the gain of these neurons to peripheral inputs.126

Clinical analgesia trials have been begun with NMDA
antagonists.128–130 Intrathecal ketamine has consistently
produced analgesia at dosages of 50 mg and more, al-
though this dosage is also analgesic when given system-
ically.131–133 Limitations to intrathecal use of ketamine
include its well-described psychotropic effects.128 Addi-
tionally, vacuolar myelopathy has been reported in a
patient who received intrathecal ketamine.129 Although
this neurotoxicity might be attributed to preservative in
the preparation,129 similar toxicity was observed in ani-
mals administered preservative-free ketamine.134 Finally,
a “pure” NMDA antagonist, CPP, relieved intractable
neurogenic pain in a single patient trial, although psych-
otropic side effects were encountered.135 In summary,
studies in animals suggest that excitatory amino acid
receptor antagonists have promise as future analgesics.
However, preliminary clinical studies with these com-
pounds indicate limitations.

Inhibitory Amino Acids. g-Aminobutyric acid and
glycine are the inhibitory amino acid neurotransmitters
of the spinal dorsal horn.136,137 Three types of GABA
receptors and two glycine receptors have been identi-
fied,138–140 although a fourth distinct GABA receptor
may be expressed by human dorsal root ganglion neu-
rons141 (fig. 6). The GABAA receptor is part of a chloride
ionophore complex.142,143 Selective GABAA agonists in-
clude muscimol; selective antagonists include gabazine.
Barbiturates and alcohol modulate activity at this recep-
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tor by direct facilitation of inward chloride cur-
rents.142,143 Benzodiazepines bind to a unique site on the
GABAA receptor complex that facilitates GABA recep-
tor–agonist binding and, therefore, increases channel
open time.136,138,140 The GABAB receptor is a G-protein–
linked complex that, when activated, typically increases
outward potassium currents.144 Baclofen is a selective
GABAB receptor agonist and phaclofen is a selective
antagonist. It has been suggested that the newly de-
scribed GABAC receptor is directly associated with a
potassium channel ionophore. Cis-4-aminocrotonic acid
is a selective GABAC receptor agonist, but there is no
selective antagonist for these receptors.

Glycine receptors include one subtype linked to a
chloride ionophore and sensitive to the antagonist
strychnine. The second is a strychnine-insensitive mod-
ulatory site on the NMDA-receptor complex antagonized
by HA-966.139,140

Both GABAA and GABAB agonists have analgesic prop-
erties after intrathecal administration in a number of pain
models in animals. Muscimol and baclofen blocked both
the allodynia produced by a long-term nerve constriction
injury145 and the biting and scratching behavior elicited
by intrathecal injection of substance P.146 Similarly, mus-
cimol and baclofen each produced antinociception in
phases 1 and 2 of the formalin model147 and in the
electrical current threshold test in rats148 and mon-
keys.149 Midazolam, similar to muscimol and baclofen,
produced antinociception in the hot plate, tail-flick and
electric current threshold test in rats.150–154 Of note, the
baclofen-induced increase of tail-flick latency and inhibi-

tion of hot plate responses were attenuated by pretreat-
ment with pertussis toxin,155 and the effects of midazo-
lam were additive with that of morphine.151 Therefore,
GABAB receptors and opioid receptors probably access
complementary G-protein systems (GI) in the dorsal
horn.

GABAA and GABAB receptor antagonists enhance no-
ciceptive behaviors after intrathecal injection in rats.156

However, a long-term facilitation of the flexor with-
drawal reflex was produced by intrathecal injection of
the GABAA receptor antagonist bicuculline but not by a
GABAB antagonist.64 These results indicate that GABAA

receptors mediate a tonic inhibition, whereas GABAB

receptors mediate a stimulus-driven inhibition of spinal
pain-signaling (somatosensory) pathways.

Intrathecal administration of glycine in awake animals
decreased responses to noxious heat157 and inhibited
substance P-induced biting and scratching.146 Similarly,
iontophoresis of glycine profoundly inhibited the re-
sponses of spinal neurons to all peripheral stimuli,158,159

probably by a direct membrane hyperpolarization.158

Strychnine facilitates flexor withdrawal64 and produces
morphine-insensitive allodynia in rats.62,63 Finally, ad-
ministration of the strychnine-insensitive glycine recep-
tor antagonist HA-966 predictably results in effects sim-
ilar to those of NMDA antagonists, including reduction of
responses to noxious, but not non-noxious, stimuli.160

Although antinociception is well-demonstrated with
intrathecal GABA agonists in animal studies, similar an-
algesic effects in humans have not been produced con-
sistently. Intrathecal injection of the GABAA agonist mi-

Fig. 6. Summary of the spinal GABA re-
ceptors involved in pain transmission.
Agonists and antagonists active at each
receptor are listed, with arrows indicat-
ing the site of action. The “1” indicates
agonist function and the “-” indicates an-
tagonist function.
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dazolam was effective in treating chronic mechanical
low back and postoperative pain.161,162 Long-term mida-
zolam treatment also successfully relieved chronic non-
malignant musculoskeletal and neurogenic pain without
evidence of toxicity.163 However, midazolam did not
have an independent effect on pain of peripheral arteri-
opathy or in malignant disease.163

Intrathecally administered GABAB agonists have also
shown mixed results for pain relief. Intrathecal baclofen
is approved by the Food and Drug Administration of the
United States and is widely used for the relief of spasm in
spinal cord injury, cerebral palsy, and multiple sclero-
sis.164–171 Baclofen has also been used to relieve central
poststroke and musculoskeletal pain164,172 However, in
other studies, baclofen was ineffective for neurogenic
pain in patients with spinal cord injury173 and had no
effect on pinch-evoked or musculoskeletal pain.174

In summary, the usefulness of intrathecal GABA recep-
tor analgesics in humans remains open to question. Basic
science studies have emphasized that GABAA and GABAB

agonists have analgesic effects that are very modality
specific. For example, muscimol, but not baclofen, an-
tagonized the biting and scratching behavior elicited by
intrathecal injection of the excitatory amino acid ago-
nists NMDA, quisqualic acid, and kainate.175 In contrast,
baclofen, but not midazolam, attenuated formalin-
evoked pain behaviors.151 Future clinical studies with
these compounds may show more consistent effects as
the conditions most appropriate for each agonist sub-
type in humans are clarified.

The effects of intrathecally administered glycine or
glycine antagonists, such as HA-966, in humans have not
been reported.

Monoamine. Norepinephrine. Norepinephrine
was first detected in fibers of the dorsal lateral spinal
funiculus in the late 1960s.176 Potential analgesic effects
were not considered, however, until inhibition of dorsal
horn neurons by microstimulation of norepinephrine-
containing brain stem nuclei was shown in the late
1970s.177 The native receptors for norepinephrine in-
clude two broad classes, the a- and b-adrenergic recep-
tors, of which there are multiple subtypes (e.g., a1a,
a1b,a2a,a2b,b1, b2).

a-Adrenergic receptors, in particular a2 receptors,
have antinociceptive properties in many models of acute
pain in rats, cats, and monkeys.178 This includes an
increase in shock titration assay,149 suppression of the
flexion withdrawal reflex,179 increase in tail-flick and hot
plate latencies,151,155,180–183 and inhibition of responses
to colorectal distension184 and noxious compression of

skin.185,186 a2 Agonists also have antinociceptive prop-
erties in animal models of prolonged and chronic pain,
including the formalin test,187 experimental neuropa-
thy,188 spinal cord ischemia,179 and autotomy.189

Epidural clonidine recently was approved for treat-
ment of intractable pain, and intrathecal clinical trials are
now being conducted. Intrathecal infusion of clonidine
with hydromorphone or other opiates provided relief of
intractable cancer pain.190,191 Intrathecal clonidine was
also effective for management of reflex sympathetic dys-
trophy and postoperative pain,191,192,193 and prolonged
the effects of local anesthetics and potentiated the effec-
tiveness of other agents used in neuraxial delivery.194

The interactions of clonidine with morphine and other
opiates may be a result of combined effects of both
agents in reducing calcium currents in presynaptic ter-
minals. Alternatively, the effects of clonidine may be
mediated, in part, by local release of acetylcholine.191

Alhough intrathecal clonidine has promise as an ad-
junctive analgesic compound, clinical use has been lim-
ited by a number of side effects, most particularly, hy-
potension and bradycardia.195,196 Thus, a2-adrenergic
compounds need further improvement before they can
be used widely.

Dopamine. Dopamine is found in axon terminals in
the superficial laminae of the dorsal horn. These termi-
nals arise from cells at supraspinal levels that send axons
to the spinal cord via the dorsal lateral spinal funicu-
lus.197 Intrathecal injection of dopamine and dopamine
receptor agonists increased tail-flick latency198,199 and de-
creased hot plate and acetic acid writhing.200 This effect
was blocked by a type 2 dopamine but not by a type 1
receptor antagonist.198,199 Interestingly, the analgesia of
spinal apomorphine is reduced by naloxone201 and do-
pamine-2 receptor agonists facilitated the motor effects
of morphine,202 suggesting reciprocal interactions be-
tween spinal opioid and dopamine receptor systems.

Patients with dysfunction of endogenous dopamine
systems, such as Parkinson’s disease, often have an ac-
companying pain syndrome.203 However, no studies
have evaluated the possible analgesic effects of dopa-
mine in these or other patients.

Serotonin. Increases in serotonin, or 5-hydroxy-
tryptamine, in the spinal dorsal horn after microstimula-
tion of brain stem pain inhibitory nuclei suggest antino-
ciceptive activity for this monoamine.177,180,204

Serotonin is present in terminals in the dorsal horn,
primarily in laminae I and II, the intermediolateral cell
column, and the ventral horn. Serotonin colocalizes with
several peptides, including enkephalin, somatostatin,
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calcitonin gene-related peptide, substance P, and the
neurotransmitter GABA. There are at least three seroto-
nin receptor classes in the dorsal horn termed 1, 2, and
3, each of which has multiple subtypes.205 The effect of
these receptors in control of pain remains unclear. In-
trathecal serotonin produced antinociception in tail-
flick, hot plate, paw pressure, intraplantar formalin, and
shock titration experiments in mice and rats.180;206–209

Yet, in other studies, serotonin facilitated input to dorsal
horn cells from primary afferent C fibers and facilitated
paw pressure and tail-flick responses.205,209,210 Intrathe-
cal studies with more selective serotonin receptor ago-
nists have not clarified these discrepancies. For example,
one group reported serotonin-1a receptor agonists in-
hibit hot plate responses,211 whereas others reported a
facilitation of tail flick.210,212 Intrathecal-1b receptor ago-
nists were analgesic in tail-flick and colorectal distension
tests210,212–214 but without effects on hot plate re-
ponses.211 Similarly, serotonin type 2 receptors en-
hanced nociceptive responses in some studies215,216 and
reduced responses in others213,214 Intrathecal type 3
agonists were also pro-217 and antinociceptive.208 Thus,
serotonin modulates pain transmission; however the re-
ceptor mechanisms that govern these effects are poorly
defined. Possible confounding factors in previous studies
are that serotonin differentially regulates nociceptive
stimuli of varying modality,209 the distribution of seroto-
nin receptor subtypes varies between spinal regions,215

and the drugs available have been inadequately selective.
Further study with more selective pharmacologic tools
will be needed to resolve these issues before initiation of
clinical studies.

Acetylcholine. Another potentially analgesic member
of the monoamine family is acetylcholine. Cholinergic
terminals are abundant in the dorsal horn, arising from
brain stem raphe nuclei,218 the nucleus ambiguous, the
dorsal motor nucleus of the vagus,177 and local dorsal
horn neurons.219 Spinal cholinergic receptors include
nicotinic and muscarinic 1 and 2 subtypes.220 Although
intrathecal injections of acetylcholine had no effect on
nociceptive responses of animals, injection of synthetic
cholinergic agonists were antinociceptive in a number of
behavioral paradigms. For example, carbachol and ox-
otremorine produced antinociception in tail-flick, hot
plate, and acetic acid writhing tests.183 These effects
were additive to that of morphine,151,221,222 were pre-
vented by atropine and pirenzepine223 but not by d-
tubocurarine, and were not reproduced with nico-
tine.222 These results suggest that spinal muscarinic-1
and -2 receptors are antinociceptive but nicotinic recep-

tors are not. This conclusion, however, may be prema-
ture based on recent studies with a novel nicotinic cho-
linergic agonist that had an excellent antinociceptive
profile after systemic administration.224

Intrathecal injection of acetylcholinesterase inhibitors
also produced analgesia in animal studies.225 Although
the analgesic effects of the cholinesterase inhibitors
were transient, the effects were synergistic to those of
clonidine and morphine, resulting in a profound and
long-lasting analgesia. Side effects described as “abnor-
mal behavior” were observed in these studies that were
reduced with clonidine.225

Clinical studies of acetylcholinesterase inhibitors have
begun.226 Intrathecal administration of neostigmine pro-
duced antinociception to a cold stimulus in normal hu-
man volunteers226,227 and relieved visceral and somatic
postsurgical pain.228,229 However, side effects included
nausea, emesis, reversible lower extremity paresis,226–

230 tachycardia, hypertension, sedation, and anxi-
ety.226,227 Application of cholinesterase inhibitors with
opiates did not increase the incidence of nausea or
emesis, although postsurgical analgesia was produced at
lower doses of each drug than when either was given
alone.231 In summary, cholinesterase inhibitors have
promise as novel independent analgesics and as adju-
vants to established analgesics such as morphine. How-
ever, a solution to the side effects of nausea and emesis
may be needed before widespread use of these com-
pounds.

Tricyclic Antidepressants. Tricyclic antidepressants
have long been known to modulate pain transmission.
This effect is believed to be a result of inhibition of
reuptake and consequent increases in norepinephrine
and serotonin. However, there is uncertainty regarding
the mechanism of analgesia of tricyclics. For example, in
vitro studies have shown that tricyclics bind to the
NMDA-receptor complex,232,233 suggesting that the hy-
peralgesia and allodynia treated by tricyclics is caused by
NMDA-receptor inhibition, rather than by increases in
levels of serotonin or norepinephrine. Intrathecal injec-
tion of desiprimine or amitriptyline decreased NMDA-
induced pain behaviors in a dose-dependent fash-
ion.234,235 These effects were unaffected by
coadministration of phentolamine or methysergide, sug-
gesting that monoamines were not involved.235 Clinical
application of intrathecal tricyclic antidepressants is not
possible because preservative-free preparations are not
available, toxicology has not been assessed, and motor
weakness developed at high doses in rat experiments.235

In that tricyclics are synergistic with opiates236 and po-
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tently decrease inflammatory hyperalgesia,235 further at-
tention should be devoted to this potentially effective
mode of pain control.

Purines. Evidence has accumulated during the past
several years that adenosine and adenosine triphosphate
are somatosensory neurotransmitters.237 There are at
least three types of adenosine receptors, termed 1–3,
each with differing effects on target cells (fig. 7). Aden-
osine 1 receptors link to the GI-protein subunit and
therefore inhibit target cells by decreasing cAMP238,239

and facilitating currents at adenosine triphosphate–sen-
sitive potassium channels.240 In contrast, adenosine 2
receptors link to the Gs-protein subunit and therefore
excite target cells by increasing the activity of adenyl
cyclase.238 Type 3 adenosine receptors are not present
in the dorsal horn, but rather are expressed in dermal
mast cells.237 Activation of adenosine 3 receptors pro-
vokes pain as a result of mast cell degranulation and the
release of serotonin and histamine.241

Adenosine produces pain when administered peripher-
ally but produces analgesia when administered spinally.237

For example, intrathecal adenosine produced antinocicep-
tion in the rat tail-flick test. This effect was enhanced by
supplemental calcium.242 The mixed type1–type 2 recep-
tor agonist 59-N-ethylcarboxamide adenosine produced an-
algesia in rats that was enhanced by clonidine.243 Adeno-
sine produced antinociception in the hot plate test in
mice.180 Intrathecal administration of type 1 receptor ago-
nists decreased the discharges of deep dorsal horn cells to
C-fiber volleys. 244 The antinociception produced by aden-
osine was inhibited by methylxanthines, confirming that
adenylate cyclase is involved in these effects. Many reports

cite a role for adenosine in morphine-produced antinoci-
ception that may be a result of a shared action on adenylate
cyclase.244–248 Adenosine and opiate-like substances may
also mediate norepinephrine-produced antinociception.246

Four studies have addressed the role of adenosine in
pain transmission in humans. Intravenous and subcuta-
neous administration of adenosine caused pain in
healthy subjects,237 but intravenous adenosine relieved
neuropathic pain in one study.249 Adenosine decreased
spontaneous and touch-evoked pain in healthy volun-
teers after application of mustard oil250 and relieved
neuropathic allodynia.251 No significant complications
or side effects were reported, although one volunteer
experienced transient lumbar pain with drug injec-
tion.251,252 Further study with intrathecal adenosine
and adenosine-receptor selective agonists should be of
interest.

Blockade or Facilitation of Neuromodulator
Receptors
Neuromodulators are substances that adapt the action

of neurotransmitters to varying biologic conditions.49,253

Similar to transmitters, modulators are released at syn-
apses and act on specific membrane receptor sites. Un-
like transmitters, the time course of neuromodulator
effects is long, with effects measured in seconds to
minutes. The sites of action for neuromodulators are not
necessarily confined to a single synapse. Modulators of-
ten spread from their site of release and through tissue
after high-intensity stimulation to affect synapses at a
distance.254 The majority of neuromodulators are rela-
tively large-molecular-weight peptides.

Fig. 7. Schematic summary of the spinal
adenosine receptors involved in pain
transmission. Subtype-selective agonists–
antagonists have not yet been studied
and therefore are not listed.
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Opioid Receptors. The natural opioids include the
peptides b-endorphin, leuenkephalin, and met-enkepha-
lin and dynorphin derived from the proopiomelanocor-
tin, proenkephalin, and prodynorphin genes, respec-
tively.255 The opioid peptides are found in axon
terminals and cell bodies throughout the spinal dorsal
horn, although mostly in the superficial laminae.177 The
nerve terminals containing opioid peptides arise from
dorsal root ganglia, cells intrinsic to the dorsal horn, and
cells of various brain stem nuclei that descend via the
dorsal lateral funiculus.

Opioid agonists exert their effects at m, d, and k recep-
tors. All three consist of seven transmembrane spanning
G-protein–coupled complexes.256,257 Dorsal horn opi-
oid receptors are located presynaptically on capsaicin-
sensitive small-diameter primary afferent nerve end-
ings258–260 and postsynaptically on dendrites and somata
of intrinsic neurons.177 Inhibition of transmitter release
from primary afferent nerve terminals by suppression of
voltage-gated calcium currents is one widely recognized
mechanism for opioid-induced analgesia.256,257 A second
is direct inhibition of dorsal horn neurons by inhibition
of adenyl cyclase and activation of outward potassium
currents.177,261 Synthetic opioid receptor–selective ago-
nists include the nonpeptide compounds morphine (m-
agonist) and trans-3,4-dichloro-N-methyl-N-[2-(1-pyrro-
lidinyl)- cyclohexyl] benzeneacetamide (U50488,
k-agonist) and peptide analogs such as D-Pen2-D-Pen5-
enkephalin (d-agonist).

A number of studies in animals have established the
analgesic effects of intrathecal morphine to short-term
noxious stimuli. For example, intrathecal morphine in-
creases shock-titration threshold in monkeys,149 sup-
presses the responses of rats to colorectal distension,262

decreases hyperalgesia in a model of postoperative
pain,263 and increases tail-flick and hot plate latencies in
rat.155 Intrathecal morphine also decreases the discharge
of deep dorsal horn cells to C-fiber volleys.244,264 These
effects of morphine are mimicked by the natural m-ago-
nist b-endorphin.265–267 Pertussis toxin blocks the ef-
fects of morphine and b-endorphin, confirming the role
of G proteins in transduction after receptor activa-
tion.155

Intrathecal morphine also has analgesic effects in pro-
longed models of nociception, such as experimental
arthritis268 and intraplantar formalin.269 However, intra-
thecal morphine is less effective in animal models of
chronic neuropathic pain. For example, morphine had
no effect on the onset of thermal hyperalgesia in sciatic
experimental peripheral neuropathy.270 Relief of neuro-

pathic pain in rats has been observed only when mor-
phine is coadministered with other compounds.271

Although intrathecal d- and k-opioid receptor agonists
decreased the response to short-term noxious thermal
stimuli,264 these usually produce antinociception only in
specific models of acute pain in animals. For example,
d-agonists produced marked analgesia in the colorectal
distension and intraplantar formalin models,272,262

whereas k-agonists had only marginal effects.262 Con-
versely, k-agonists markedly reduced arthritis-induced
pressure pain, whereas d-agonists were ineffective.268

Toxicity has not been reported after intrathecal en-
kephalin, but the k-agonist dynorphin produced hind-
limb paralysis in some studies.273,274 A long-lasting tac-
tile allodynia has also been reported after intrathecal
dynorphin.275 Interestingly, NMDA-receptor antagonists
prevented dynorphin-induced paralysis and allodynia.
This suggests not only that dynorphin may be neurotoxic
when administered in the intrathecal space, but also that
there are important functional interactions between
dynorphin and the excitatory amino acids that contrib-
ute to this toxicity.

Intraspinal delivery of opioids for pain management in
humans is relatively new; nevertheless, morphine is the
gold standard for intrathecal analgesics.276 Epidural and
intrathecal opiates usually produce excellent analge-
sia,277,278 and infusion pumps have been developed to
provide continuous delivery of spinal opioids in patients
with chronic pain. Intrathecal morphine has fewer side
effects than do systemic opioids.279–286 Only minor neu-
rohistopathologic changes, including focal foreign body
giant cells and small aggregates of lymphocytes and re-
active microglia near the catheter site, have been ob-
served after long-term infusion of morphine to cancer pa-
tients.287 Nevertheless, complications are common, most
notably, pruritis, respiratory depression, somnolence, and
gastrointestinal and urinary dysfunction.279–285,288 Addi-
tionally, development of tolerance often necessitates
continued escalation of dose until the capacity of current
infusion pumps is exceeded. Furthermore, some authors
reported that continuous morphine infusion is ineffec-
tive for long-term management of chronic pain from
nonmalignant causes289 and that accumulation of mor-
phine metabolites provokes development of a paradoxic
hyperalgesia, allodynia and myoclonus.290

Other opioids have also been tested as intrathecal
analgesics. Lipophilic agents, such as fentanyl, dilaudid,
and sufentanil, that diffuse poorly in cerebrospinal fluid
may have a role in well-localized pain syndromes when
delivered by catheters to spinal levels corresponding to
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the affected areas. d-Opioid and k-opioid receptor ago-
nists may be useful in pain syndromes that are little
affected by m-agonists such as morphine. Intrathecal
b-endorphin produced postsurgical analgesia291 and re-
lief of intractable pain caused by disseminated can-
cer.292,293 Intrathecal dynorphin produced analgesia for
cancer pain patients without obvious toxicity.294 There-
fore, future studies with opioids will probably focus on
improving effectiveness for neuropathic-related pains,
perhaps with a focus on the usefulness of d- and k-ago-
nists in these conditions, and to limit unwanted effects,
such as tolerance.

Neurokinin Receptors. The neurokinin peptides in-
clude substance P and neurokinins A and B.295–297 Sub-
stance P and neurokinin A are involved in transmission
and modulation of nociceptive inputs, whereas a role for
neurokinin B is poorly defined. Neurokinin peptides are
located in primary afferents, dorsal roots, and cells and
axon terminals in the spinal cord. The majority of neu-
rokinin-containing terminals are from primary afferent
fibers, whereas the remainders are from axons descend-
ing from various brain stem nuclei.2

There are at least three neurokinin receptors (1, 2, and
3) expressed in the dorsal horn295 and on dorsal root
ganglion neurons.298 Although each peptide binds to all
three receptors, substance P binds preferentially to the
neurokinin-1 receptor, whereas neurokinin A and neu-
rokinin B prefer type 2 and type 3 receptors, respec-
tively. Neurokinin-1, and perhaps neurokinin-2, recep-
tors are important in transmission of short-term
nociceptive stimuli and induction of hypersensitivity af-
ter peripheral injury.127,299–303 The transduction mech-
anisms of neurokinin-1 and -2 receptors involve metab-
olism of phosphatidyl inositol and increases of
intracellular calcium levels.2

Evidence for substance P as a transmitter for noci-
ceptive afferents was initially based on its excitation
of nociceptive neurons in the dorsal horn of experi-
mental animals in the late 1970s.304,305 Subsequently,
intrathecal administration of substance P was shown
to produce a “caudally directed biting and scratching
syndrome,” presumed to reflect nocifensive behav-
ior.306 –308 Smaller intrathecal doses of substance P
reduced thresholds to noxious heat stimuli.306 –308

The tachykinin peptides produce small but prolonged
depolarizations of many dorsal horn neurons in
vitro309 –311 and excite many nociceptive dorsal horn
cells in vivo.304,305,312–316 Tachykinin receptor antag-
onists decrease nociceptive responses in behavioral
paradigms317–321 and the responses of dorsal horn

neurons to noxious stimuli.301,315,322,323 Finally, ani-
mals with bioengineered disruptions of the tachyki-
nin-1 gene, the source of substance P and neurokinin
A, have increased baseline nociceptive thresholds and
decreased responses to formalin and capsaicin,324,325

whereas animals with bioengineered alterations of the
neurokinin-1 receptor showed decreased ‘wind-
up’.326 Interestingly, animals given intrathecal injec-
tions of neurokinin-1 receptor antisense oligonucleo-
tide did not show a decrease in receptor level or
change in behavioral responses to formalin until also
treated with intrathecal substance P.327

Human studies with intrathecal neurokinin receptor
antagonists have not been reported, possibly because of
the potential toxicity and rapid degradation of the pep-
tide analog antagonists that were available. Newer non-
peptide antagonists have alleviated these previous con-
cerns, and clinical trials for relief of depression328 and
postoperative pain have begun for orally active antago-
nists.329 Intrathecal studies should follow soon.

Calcitonin Gene-related Peptide Receptors. Calci-
tonin gene-related peptide is found in many small dorsal
root ganglion cells, in thinly myelinated (A-d) and unmy-
elinated (C) axons, in axons of Lissauer’s tract, and in
terminals of these primary afferents in spinal laminae I,
II, and V.330 Although two types of calcitonin gene-
related peptide, a and b, are present in dorsal root
ganglion cells and as many as four types of G-protein–
coupled receptors are present in the dorsal horn, the
function of this neuropeptide is unknown.330,331 The
coexistence of calcitonin gene-related peptide and sub-
stance P within spinal cord terminals332,333 and dorsal
root ganglion neurons334 suggests a functional relation
between the two. The levels of calcitonin gene-related
peptide in the dorsal horn change in parallel with those
of substance P after acute knee joint inflammation335 and
after injury to peripheral nerve.336 Noxious thermal,
mechanical, and chemical stimuli provoke the corelease
of calcitonin gene-related peptide with substance P in
the substantia gelatinosa.332,337,338 However, intrathecal
administration of calcitonin gene-related peptide has
mixed effects in models of nociception. Calcitonin gene-
related peptide had no effect on nociceptive reflexes in
one series of studies333,339 but facilitated tail-flick reflex
in another series.340 Similarly, calcitonin gene-related
peptide antagonized the effects of substance P in one
series341 but enhanced the effects of substance P by
preventing degradation or increasing peptide release in
others.333,342 The effects of intrathecal injection of cal-
citonin gene-related peptide 8-37, a receptor antagonist,
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have been clearer. This compound produced a dose-
dependent increase in paw-withdrawal latency of
normal rats to paw pressure and radiant heat.339 Addi-
tionally, calcitonin gene-related peptide 8-37 reversed hyper-
algesia produced by thermal343 and nerve injury.344 These
effects were suggested to be a result of antagonism at
endogenous opioid receptors.344,345 In summary, the role
of calcitonin gene-related peptide in dorsal horn somato-
sensory processing necessitates further definition before its
usefulness for treatment of human pain can be evaluated.

Somatostatin Receptors. Terenius346 first suggested
an antinociceptive role for somatostatin in the spinal
cord. Somatostatin is detected in primary afferent axons
terminating in the dorsal horn, spinal interneurons, and
terminals of axons from descending pathways.347 There
are at least five distinct somatostatin receptors, desig-
nated by numbers 1–5, encoded by separate genes.348

This may be an underestimate, however, because sub-
types of the somatostatin-2 receptor (A and B) have been
identified. All receptors identified to date are G-protein
coupled and widely expressed throughout the central
nervous system.348 Somatostatin is specifically increased
in the dorsal horn after noxious thermal but not after
noxious mechanical stimulation.349,350 Similarly, intra-
thecal injection of somatostatin, or somatostatin analogs,
produced analgesia to thermal but not mechanical stim-
uli.351–357 Evidence of neurotoxicity, including gait dis-
turbance, paralysis, pyknotic dorsal horn neurons, and
posterior column demyelination, are common after in-
trathecal somatostatin in cats and rats.358–360

Despite the neurotoxicity observed in animals, two
clinical trials with intrathecal somatostatin have been
conducted in cancer patients361,362 In the first study, six
of eight patients had good-to-excellent pain relief, al-
though tachyphylaxis or short-term tolerance after a
short period of infusion necessitated increased dosing.
Postmortem observations revealed histopathologic
changes in two of eight patients.361 Although these
changes were attributed to progression of disease, a
direct neurotoxic effect of somatostatin cannot be dis-
counted because of the animal data.358 Another similar
study used octreotide, a synthetic analogue of somatosta-
tin, because of its longer half-life and lack of associated
neurodegenerative effects.362 Two patients with nonma-
lignant pain were treated successfully with continuous
intrathecal infusion of octreotide for 5 yr, although ad-
ditional opioids were necessary. When blinded to the
drug, each patient preferred octreotide to placebo.362

Thus, although a number of factors limit the use of

somatostatin, derivatives of this peptide may ultimately
have clinical usefulness.

Other Neuromodulators. A large number of neu-
ropeptides and neuropeptide receptors have been iden-
tified in the dorsal horn of animals and humans for
which a clear role in nociceptive processing has yet to
be established. Neuropeptide Y, for example, is colocal-
ized in GABA-containing cells of the dorsal horn.363 The
peptide and its receptors concentrate in the superficial
layers of the dorsal horn, where afferent information is
modulated,364 and neuropeptide Y decreases transmitter
release from primary afferent fibers.365 Galanin and its
binding sites also concentrate in the superficial layers of
the dorsal horn.366 Galanin antagonizes many effects of
substance P and calcitonin gene-related peptide.341,367

The levels of neuropeptide Y and galanin substantially
increase after peripheral nerve injury.368

Other neuropeptides and neuropeptide receptors
found in the dorsal horn include angiotensin II,369,370

bombesin,371 corticotropin releasing hormone,370 vaso-
pressin, oxytocin,372 vasoactive intestinal polypep-
tide,373 and cholecystokinin. Of this group, bombesin
produces a caudally directed biting and scratching be-
havior similar to that of substance P after intrathecal
injection374; vasoactive intestinal polypeptide is directly
excitatory to dorsal horn neurons375; and cholecystoki-
nin may act as a natural opiate-receptor antagonist.

In summary, there are many peptides in the dorsal
horn for which function is poorly defined. However, it
appears that several of these limit the signaling of noci-
ceptive information, whereas others promote this signal-
ing. Eventually, agonists for some, such as neuropeptide
Y and galanin, and antagonists for others, such as bomb-
esin and vasoactive intestinal polypeptide, may prove
useful for the clinical treatment of pain.

Modulation of Trans-synaptic Signal Molecules.
The trans-synaptic signal molecules are the newest class
of substances to be identified. Similar to neuromodula-
tors, these substances have relatively slow onset and a
prolonged duration of effect. In addition, these sub-
stances often have effects that are remote from their site
of release. The trans-synaptic molecules differ from neu-
romodulators, however, in that they do not necessarily
have either a discrete neuronal locus for release or a
specific neuronal target site of action, but rather may
also have non-neuronal (glial) sites of release and ef-
fect.376–379 Members of this family include the prosta-
glandins, leukotrienes, nitric oxide, and carbon monox-
ide.
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Prostaglandins and Leukotrienes. Prostaglandins
and leukotrienes are synthesized from arachidonic acid
by the fatty acid cyclooxygenase and lipoxygenase path-
ways.380 Prostaglandins and leukotrienes both have im-
portant roles in the sensitization of peripheral primary
afferent fibers381–383 and the generation of primary
hyperalgesia.384 It is the prostaglandins, however, that
play the more important role in dorsal horn (central)
mechanisms of pain transmission.385 Influx of calcium to
neurons and glia through NMDA and voltage-gated ion
channels activated by nociceptive inputs activates phos-
pholipase A2 and releases arachidonic acid.379,386,387 Ar-
achidonic acid is then metabolized in the central nervous
system by the enzyme cyclooxygenase type 2 and in
peripheral tissues by cyclooxygenase type 1 to form
prostaglandins.378,385 Effects of prostaglandins on pain
transmission are mediated by increases in neuronal lev-
els of calcium and cAMP,386 thereby increasing excitabil-
ity and the release of excitatory neurotransmitters and
neuromodulators.388,389

Effectiveness of intraspinal cyclooxygenase inhibitors
has been evaluated in two animal models of sustained
pain.390–392 Intrathecal ketorolac, aspirin, and indometh-
acin had limited effects on the short-term phase reaction
to formalin, but markedly attenuated the delayed second
phase.390,392 Interestingly, ketorolac produced a syner-
gistic antinociceptive effect with morphine and an a2-
adrenergic agonist, suggesting complementary but un-
shared cellular mechanisms between these receptor
systems.390 Ketorolac probably decreases activation of
GS by prostaglandins, whereas the opioids and a2-adren-
ergic agonists activate GI, resulting in inhibition of spinal
adenylate cyclase.386 Finally, intrathecal administration
of a cyclooxygenase type 2 antagonist decreased thermal
hyperalgesia after paw inflammation.391 In summary, in-
trathecal cyclooxygenase inhibitors are effective in
reducing moderate levels of pain but not completely
effective against more severe pain. This reduced effec-
tiveness compared with analgesics, such as morphine,
may reflect the observation that not all prostaglandins
provoke pain, but rather some prostaglandins appear to
limit pain.393 Future directions in prostanoid research
will probably focus on the design of antagonists that
selectively reduce synthesis of pain-provoking prosta-
noids, such as the prostaglandin E2, while sparing for-
mation of pain-limiting prostanoids, such as prostaglan-
din F2.393,394

Nitric Oxide and Carbon Monoxide. Nitric oxide
and carbon monoxide have recently been recognized as
novel neurotransmitter substances.71,395–397 Nitric oxide

is synthesized from L-arginine by activation of the en-
zyme nitric oxide synthase. Nitric oxide synthase is ac-
tivated by increases in intracellular calcium after open-
ing of NMDA receptors and neurokinin-1 receptor-
mediated release of inositol triphosphate.398 Free nitric
oxide diffuses to nearby and distant cells, penetrates the
cell membranes, and increases the function of guanylate
cyclase and protein kinase G, thereby influencing gene
regulation.395,396 Although less studied, carbon monox-
ide appears to function identically to nitric oxide in
many neural systems.397

The role of nitric oxide in nociceptive transmission has
been tested in several animal studies. Levels of nitric
oxide synthase increase in the dorsal root ganglion and
dorsal horn of rats with paw inflammation and neuro-
pathic pain.399,400 Nitric oxide is involved in the devel-
opment of wind-up and several models of hyperalge-
sia.78,399,401–403 Intrathecal administration of arginine
analogs, which inhibit nitric oxide synthesis as false
substrates, produced a dose-dependent reduction in hy-
peralgesia as a result of intraplantar formalin and nerve
injury.401–403 Recently, a possible role of carbon monox-
ide in nociceptive transmission was evaluated. Intrathe-
cal zinc protoporphyrin IX, which binds and neutralizes
carbon monoxide, produced a blockade of spinal noci-
ceptive transmission.404 Thus, both substances may have
future roles in the management of pain. However, no
clinical trials have assessed the analgesic or potential
neurotoxic effects395,397 of nitric oxide or carbon mon-
oxide inhibitors.

Future Methods of Drug Delivery

Many of the compounds reviewed herein may have
more widespread clinical use in the near future. Further
on the treatment horizon will be the introduction of
novel drug delivery strategies. For example, analgesics
encapsulated in liposomes for prolongation of pharma-
cologic effects will become available. Two compounds,
tetracaine and meperidine, produce prolonged analgesia
in the mouse after liposome encapsulation.405,406 Initial
attempts have been made to develop slowly degradable
polymers that contain local anesthetics or opioids to
provide prolonged, sustained release of analgesics.407

For example, epidurally implanted biodegradable poly-
mers that contain local anesthetics yielded an 8- to 10-
fold increase in duration of neural blockade.408 Similarly,
a hydromorphone-containing polymer delivered a con-
stant amount of drug over 30–90 days both in vitro and
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in animal models, without an early drug spike.409 Al-
though these preparations have not been studied exten-
sively with intrathecal administration, the implications
are obvious.

Still further on the horizon looms the possibility of
long-term pain relief using intrathecal cell implantation.
Antinociceptive effects were produced in rats by intra-
thecal transplantation of catecholamine-producing B16
melanoma cells.410 Analgesia has also been produced by
intrathecal transplantation of adrenal medullary chromaf-
fin cells that secrete opioid peptides and catecholamines
411.

Conclusion

We are entering an exciting era in the therapy of
chronic pain conditions as basic science provides many
new intrathecal compounds and drug delivery systems
to meet the needs of clinical practice. The only com-
pound approved by the Food and Drug Administration
for long-term intrathecal treatment of pain is morphine.
All other compounds that we discussed are experimen-
tal, and issues regarding long-term toxicity and drug
interactions are not resolved. Nevertheless, it is likely
that many new compounds and treatment approaches
will ultimately have a clinical niche and, as a conse-
quence, alter and improve the treatment of chronic pain.
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