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A REMARKABLY exciting field of research has developed
since nitric oxide (NO) was identified in 1987 as a key
endothelium-derived relaxing factor (EDRF).1,2 The
awarding of the 1998 Nobel prize in physiology or med-
icine to three seminal researchers in the field of NO
biology provided the most recent evidence for the
emerging prominence of this area of study.3 The under-
standing of the roles of NO in the cardiovascular, im-
mune, and nervous systems; the isolation and localiza-
tion of NO synthases (NOS); the manipulation of the
genes for NOS, including their cloning and selective
transfer or knock-out; and the therapeutic use of inhaled
NO gas have revolutionized many fields of physiologic
research and are influencing clinical therapy.

Many insights into the mechanisms of action of NO
have been gained. Since the reported applications of
inhaled NO in the laboratory4 and in adult patients with
primary pulmonary hypertension in 1991,5 hundreds of
studies have been conducted to determine the clinical

applicability of inhaled NO. In subgroups of severely ill
and hypoxic children and adults, inhaled NO improves
arterial oxygenation and selectively decreases pulmo-
nary arterial hypertension (PAH). NO inhalation therapy,
in combination with conventional6,7 or high-frequency
oscillatory ventilation,8 can reduce the need for extra-
corporeal membrane oxygenation (ECMO), an expen-
sive and invasive procedure in newborn patients with
hypoxic respiratory failure.6,7 However, it remains un-
certain whether NO inhalation improves survival rates in
adults or children with severe lung injury.

New applications for NO inhalation have been discov-
ered. Recent studies indicate that inhaled NO may de-
crease intestinal ischemia–reperfusion injury9 and may
be useful to treat thrombotic disorders.10,11 By increas-
ing the oxygen affinity of sickle cell hemoglobin,12 in-
haled NO may prevent or treat sickle cell crisis. This
article reviews the relevant physiologic effects, thera-
peutic uses, side-effects, and toxicity of NO inhalation.
The first portion of this article concentrates on the
chemistry, biochemistry, toxicology, and biology of NO;
the second portion summarizes the results of NO inha-
lation studies to date in experimental settings and the
results of clinical studies in newborns, children, and adults.

Chemistry, Biochemistry, and Toxicology of
Nitric Oxide

Nitric oxide is a colorless, almost odorless gas that is
slightly soluble in water (2 or 3 mM).13 Environmental
NO arises from combustion processes (e.g., fossil fuel
combustion and tobacco smoke) and lightning.14 Atmo-
spheric concentrations of NO usually range between 10
and 500 parts per billion (ppb), but can exceed 1.5 parts
per million (ppm) in areas of heavy traffic.15 Concentra-
tions of NO produced in the hot cone of a glowing
cigarette can reach 1,000 ppm in a 40-ml puff.16 The
Occupational Safety and Health Administration has set
8-h time-weighted average exposure limits in the work-
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place at 25 ppm for NO breathing and at 5 ppm for
nitrogen dioxide (NO2).17 Commercially, NO is manufac-
tured from the reaction of sulfur dioxide with nitric acid,
from the reaction of sodium nitrite and sulfuric acid, or
by the oxidation of ammonia over a platinum catalyst at
a high temperature (. 500°C).18 In an anaerobic envi-
ronment (i.e., in highly purified nitrogen), NO can be
stored for several years.

Reaction of Nitric Oxide with Oxygen
In the gaseous phase, NO reacts with molecular oxy-

gen to form NO2. The conversion rate of NO to NO2 can
be described by the relation

2 d@NO#/dt5k z @NO#2 z @O2#19,20

where k is the rate constant for conversion of NO to
NO2. The rate constant has been reported to be between
0.79 3 1029 to 2.26 3 1029 z ppm22 z min21, dependent
on experimental conditions.19 Approximately half of a
10,000-ppm NO mixture in air is converted into NO2

within 24 s, whereas 50% of a 10-ppm NO mixture in air
is converted into NO2 within 7 h at 20°C.21 In aqueous
solution, NO2 decomposes to give equal amounts of
nitrite (NO2

2) and nitrate (NO3
2).13

The pathologic effects of NO2 inhalation have been
studied in various animal species. High levels of inhaled
NO2 (. 10 ppm) induce pulmonary edema, alveolar
hemorrhage, changes in the surface tension activities of
surfactant, hyperplasia of type 2 alveolar epithelial cells,
intrapulmonary accumulation of fibrin, neutrophils, and
macrophages, and death.22,23 Lower inhaled NO2 con-
centrations (, 2 ppm) can alter surfactant function,
produce alveolar cell hyperplasia, and alter the epithe-
lium of the terminal bronchioles.24 Inhalation of 2 ppm
NO2 in humans increases alveolar permeability25 and
airway reactivity.26–28 Inhalation of 0.5–1.5 ppm NO2 for
9 weeks caused focal degeneration of pulmonary inter-
stitial cells, with mild emphysematous changes, in rats.29

Reaction of Nitric Oxide with Superoxide
Nitric oxide and superoxide (O2

2) readily react to
form peroxynitrite (2OONO) at nearly a diffusion-lim-
ited rate.13 During physiologic conditions, O2

2 is scav-
enged by endogenous O2

2 scavengers (e.g., superoxide
dismutase) and formation of 2OONO is minimal. During
pathologic conditions, such as in the presence of in-
creased concentrations of O2

2 or after O2
2 scavengers

are exhausted, significant concentrations of 2OONO
may be produced.30 Peroxynitrite directly causes oxida-
tion, peroxidation, and nitration of biologically impor-

tant molecules (e.g., lipids, proteins, DNA; for review
articles see Szabo et al.31,32). The cytotoxic effects of
2OONO provide protective functions if they are di-
rected by inflammatory cells against invading microor-
ganisms or tumor cells.

An important example of a reaction caused by 2OONO
is the nitration of tyrosine. Tyrosine nitration inhibits
tyrosine phosphorylation, alters the dynamics of assem-
bly and disassembly of cytoskeletal proteins, and inhibits
tyrosine hydroxylase, thereby reducing dopamine pro-
duction by neurons and inhibiting cytoskeletal move-
ments of endothelial cells.31 Nitrotyrosine has been de-
tected in lung tissue sections from patients with lung
injury,33,34 in atherosclerotic lesions,35,36 and in lungs
after ischemia–reperfusion injury.37

Exposure of surfactant to high concentrations of
2OONO in vitro reduced its minimum surface tension.38

Peroxynitrite exposure impaired pulmonary surfactant
function, because of peroxidation of surfactant lipids,
and decreased the ability of the major hydrophilic sur-
factant, protein A, to aggregate lipids and act synergisti-
cally with other surfactant proteins to reduce the mini-
mum surface tension.39,40 These changes of surfactant
protein A were associated with nitrotyrosine forma-
tion.39 A mixture of surfactant proteins B and C exposed
to 2OONO was incapable of reducing phospholipid min-
imum surface tension during dynamic compression.41

Peroxynitrite can cause cell apoptosis by DNA strand
breakage, activation of poly-adenosine-diphosphate-ribo-
syltransferase and by inhibition of mitochondrial respi-
ratory enzymes.31,32 Peroxynitrite rapidly reacts with
carbon dioxide to form an adduct that participates in
nitration and oxidation reactions.42 Interestingly, in a
model of thrombin or hydrogen peroxide (H2O2)–in-
duced vascular injury of the rat mesenteric endothelium
and in an ischemia–reperfusion model of the rat heart,
infusion of 2OONO significantly reduced neutrophil ad-
hesion to the endothelium and expression of adhesion
molecules, suggesting that 2OONO exerts inhibitory ef-
fects on neutrophil adhesion in inflammatory processes.43

In summary, 2OONO is more cytotoxic than NO in a
variety of experimental systems,32 and the balance of
NO, O2

2, and O2
2–2OONO scavenging systems deter-

mines whether biologically relevant 2OONO concentra-
tions will occur in tissues.30

Reaction of Nitric Oxide with Heme Proteins and
Metals
Nitric oxide binds to intracellular iron and heme-con-

taining proteins. Examples of heme proteins that are
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directly affected by NO are oxyhemoglobin, soluble
guanylate cyclase (sGC), cyclooxygenase, and cyto-
chrome p450. Guanylate cyclase is stimulated by NO;
cyclooxygenase is stimulated by low NO concentra-
tions44 and inhibited by high NO concentrations.45 The
cytochrome p450 system is inhibited by NO.46,47 The
ratio of rates of uptake and release of NO for ferrous
(Fe21) hemoglobin is 105–106 times larger than for oxy-
gen.48 Different from other iron–heme ligands, such as
carbon monoxide or oxygen, NO can bind with the
ferric (Fe31) and Fe21 oxidation state of hemoglobin.
The vasodilating effects of NO in vivo are limited by its
rapid reaction with oxyhemoglobin or oxymyoglobin to
form nitrosylhemoglobin or nitrosylmyoglobin. Methe-
moglobin (Fe31 hemoglobin) is produced when the
heme iron is oxidized from Fe21 to Fe31 and NO3

2 is
released.49 Most of the methemoglobin is reduced back
to Fe21 hemoglobin by NADH-cytochrome b5/cyto-
chrome b5 methemoglobin reductase within erythro-
cytes. In addition, reduced glutathione reduces methe-
moglobin.50

Reaction of Nitric Oxide with Thiols
Nitric oxide can nitrosate thiol groups to form S-nitro-

sothiols. Common, naturally occurring S-nitrosothiols in-
clude S-nitrosocysteine, S-nitrosohomocysteine, and S-
nitrosoglutathione.51 S-nitrosothiols have similar platelet-
inhibitory and vasorelaxant activities to NO, which are
mediated through guanylate cyclase activation,52 but
which differ in other important physiologic characteris-
tics from gaseous NO.53–55

In addition to binding to the iron–heme center of
hemoglobin, NO participates in transnitrosation reac-
tions with the sulfhydryl group of hemoglobin to form
S-nitrosohemoglobin. Such reactions may serve as impor-
tant steps in the uptake and distribution of NO in the
systemic circulation. In vivo analysis reveals that arterial
blood samples from normal rats contained larger con-
centrations of S-nitrosohemoglobin than did venous sam-
ples,56 suggesting that S-nitrosylation is regulated by he-
moglobin oxygenation and changes with erythrocyte
transit through the lungs. Stamler et al.57 demonstrated
that hemoglobin cysteines (Cysb93) participate in the
binding and release of NO. When deoxygenated hemo-
globin with a high oxygen affinity enters the pulmonary
circulation, the affinity of the hemoglobin thiol groups
for NO is high and NO uptake occurs. In the peripheral
circulation, where oxygenated hemoglobin with a low
oxygen affinity releases oxygen to tissues at a low partial
pressure of oxygen (PO2), release of NO is enhanced.

Such localized release of NO permits vasodilation and
increased oxygen delivery to occur in tissues with re-
duced PO2.57

Effect of Nitric Oxide on DNA
Nitric oxide can alter DNA by the formation of muta-

genic nitrosamines,58,59 by direct modification and
strand breakage of DNA from the formation of radical
nitrogen oxide species (e.g., 2OONO),60–62 and by inhi-
bition of enzyme systems that are necessary to repair
DNA lesions.63–65 NO deaminates desoxynucleosides
and desoxynucleotides in mammalian cell preparations
and in aerobic solutions of nucleic acids66 and causes
dose-dependent DNA strand breakage.67 In contrast, NO
can abate DNA damage caused by xanthine oxidase and
H2O2.68–70

Tumoricidal and tumor-promoting effects of NO have
been reported.65 Nitric oxide derived from the inducible
NOS (iNOS) of macrophages, Kupffer cells, natural killer
cells, and endothelial cells produces tumoricidal effects
against many types of tumors,71–79 reduces the viability
of several tumor cell lines,80 and inhibits angiogenesis,
tumor growth, and metastasis.81 Transfection of iNOS
into metastatic melanoma cells reduces their potential
for metastasis.82 NO inhibits tumor cell adhesion83 and
decreases the metastatic activity of colon cancer cells.84

In other studies, NO mediates tumor growth through
NO-mediated control of angiogenesis and of growth fac-
tors.65,85,86 Wink et al.65 recently concluded that the role
of NO in carcinogenesis is multidimensional. Tissues that
are exposed for prolonged durations to high NO con-
centrations in combination with long-term inflammation
and production of reactive oxygen species may accumu-
late mutations caused by the direct or indirect effects of
NO. As a tumor develops, NO produced from iNOS can
kill tumor cells through cytostatic and cytotoxic activity.
As the tumor progresses, NO may inhibit or support
angiogenesis, may limit leukocyte infiltration, and may
limit metastasis or kill tumor cells through the induction
of apoptosis.65

Effect of Nitric Oxide on Lipids
Nitric oxide has contrasting effects on lipids, particu-

larly on the oxidation of low-density lipoproteins in the
pathogenesis of atherosclerotic lesions (for review see
Rubbo et al.87). NO inhibits lipid peroxidation by inhib-
iting radical chain propagation reactions via radical–
radical reaction with lipid peroxyl and alkoxyl
groups.87,88 As a ligand to iron (and other transition
metals), NO modulates the prooxidant effects of iron
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and thereby limits the formation of hydroxyl radicals and
iron-dependent electron-transfer reactions.87 NO inhib-
its cell and 2OONO-mediated lipoprotein oxidation in
macrophage and endothelial cell systems.89 However,
NO-induced 2OONO formation can oxidize low-density
lipoproteins to potentially atherogenic species.90,91 The
antioxidant versus prooxidant outcome of these reac-
tions appears to depend on the relative concentration of
the various reactive molecules.88,92

Endogenous Nitric Oxide Synthesis
Nitric oxide synthase catalyzes a partially tetrahydro-

biopterin-dependent five-electron oxidation of the termi-
nal guanidino nitrogen of L-arginine.93 The reaction sto-
ichiometrically consumes oxygen and nicotinamide
adenine dinucelotide hydrogen phosphate (NADPH), re-
quires the cofactors flavin adenine dinucleotide, flavin
mononucleotide, and calmodulin, and produces L-citrul-
line and NO. NOS does not produce detectable levels of
NO unless superoxide dismutase is present.94 During
conditions of L-arginine depletion, NOS generates
O2

2.95,96 NOS is homologous to the cytochrome p450
reductase enzyme containing iron–protoporphyrin IX.97,98

Three NOS isoforms have been identified and classified
based on the tissue in which they were first identified,
the regulation of their activity, and their substrate–in-
hibitor profile. Constitutive neuronal NOS (nNOS,
NOS1) initially was discovered in nerve tissue. Inducible
NOS (iNOS, NOS2), a cytokine-inducible isoform, is ex-
pressed in a variety of inflammatory cells. Constitutive
endothelial NOS (eNOS, NOS3) was originally described
in vascular endothelial cells. More recent studies have
shown that expression of the constitutive NOS isoforms
(nNOS and eNOS) is regulated,99–102 and that the induc-
ible isoform (iNOS2) is constitutively present without
previous stimulation.103 NOS isoforms are expressed in
many different cell types and intracellular organelles,
and most cells are able to synthesize NO.104,105 Altered
NOS expression and endogenous NO synthesis have
been reported in a large variety of ischemic, traumatic,
neoplastic, inflammatory, and infectious diseases.106–115

In addition to enzymatic generation of NO by NOS iso-
forms, nonenzymatic formation of NO in vivo during
reduced and acidotic conditions (e.g., organ ischemia)
has been reported116 and can contribute to NO produc-
tion during pathologic conditions.

Neuronal NOS. Neuronal NOS fulfills a myriad of
disparate functions in a wide variety of tissues. In the
peripheral nervous system, NO acts as a neurotransmit-
ter, regulating smooth muscle relaxation in the gastroin-

testinal, urogenital, and respiratory tracts via nonadren-
ergic noncholinergic nerves containing nNOS.114

Neuronal NOS expression is also present in vasodilator
nerves that innervate large cerebral vessels.117 In the
central nervous system, NO is essential in neuronal plas-
ticity to modulate information storage in the brain118 and
has effects on brain development, memory function,
behavior, and pain perception.114 In human skeletal
muscle, nNOS modulates contractile force, myocyte de-
velopment, myofiber differentiation, and myotube inner-
vation.114 Other nNOS expression sites include cardiac
nerve terminals that regulate the release of cat-
echolamines in the heart,119 and the retina, where nNOS
is involved in NO production in photoreceptors and
bipolar cells.120

Inducible NOS. Inflammatory cells (e.g., macrophages
and granulocytes), among many other cell types, express
iNOS in response to a variety of infectious and inflam-
matory stimuli. Inducible NOS produces effects that are
beneficial and critical for survival during important bac-
terial and parasitic infections (e.g., Mycobacterium tu-
berculosis, Toxoplasma gondii) and in the response to
inflammation (e.g., decrease of neutrophil adhesion in
endotoxemia, increase of wound closure, and neovascu-
larization of wounds), as shown in murine models of
congenital iNOS deficiency.115 In contrast, increased
iNOS expression has been associated with the worsen-
ing of other infectious diseases (e.g., influenza pneumo-
nitis) and inflammatory states (e.g., endotoxin-induced
hypotension, autoimmune vasculitis).115 Enhanced ex-
pression of iNOS and increased vascular NO synthesis
and release have been associated with systemic arterial
vasodilation and the “low-tone state” in sepsis.121

Endothelial NOS. The 1998 Nobel prize in physiology
or medicine was awarded to three researchers who dis-
covered endothelium-derived relaxing factor and dem-
onstrated that NO, generated from eNOS in vascular
endothelial cells, is endothelium-derived relaxing fac-
tor.1,2,122 Endothelial NOS activity is increased by acetyl-
choline, bradykinin, and other mediators that increase
intracellular calcium concentrations.122 Endothelial NOS
activity modulates systemic122 and pulmonary vascular
tone123 and plays important roles in lung development
and disease. Endothelial NOS expression in the fetal lung
changes with lung maturation.124,125 NO production and
eNOS expression by endothelial cells is increased by
vascular shear stress.126,127 For example, pulmonary vas-
cular eNOS expression is reduced in patients with
chronic pulmonary hypertension.128 Congenital absence
of eNOS in mice results in pulmonary hypertension and
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increased right ventricular remodeling if the mouse is
stressed by long-term hypoxic breathing.129 Endothelial
NOS can be reversibly inhibited by NO130 and eNOS
expression can be upregulated by cyclic guanosine
monophosphate (cGMP).102 In cardiac endothelial cells,
eNOS activity inhibits contractile tone and proliferation
of the underlying vascular smooth muscle cells, reduces
platelet aggregation and monocyte adhesion, promotes
diastolic relaxation, and decreases the oxygen consump-
tion rate of cardiac muscle.119 Endothelial NOS is con-
stitutively expressed in cardiac myocytes, where its ac-
tivity opposes the inotropic action of catecholamines
after muscarinic cholinergic or b-adrenergic receptor
stimulation.119

Smooth Muscle Relaxation by Inhaled NO
Soluble guanylate cyclase (sGC) mediates many of the

biologic effects of NO and is responsible for conversion
of guanosine-5’-triphosphate to cGMP (fig. 1). Cyclic
3’:5’ GMP is an important second messenger in a variety
of cell types and is found in the cytosol of almost all
mammalian cells. A variety of nitrovasodilators (e.g., ni-
troglycerin, sodium nitroprusside) stimulate cGMP syn-
thesis, which, in turn, is responsible for the smooth
muscle relaxation mediated by these drugs.131 The com-
mon mechanism of action of these drugs is attributed to
the release of NO.132

Soluble guanylate cyclase is a heme-containing protein
composed of an a and b subunit. The heme moiety in
sGC is essential for activation of the enzyme. The pres-
ence of heme results in a 100-fold increase of enzyme
activity after stimulation with NO, whereas basal enzyme
activity is low without heme and does not change with
the addition of NO.133 Effects of cGMP on vascular tone,
cardiac function, and intestinal water and ion transport
by protein kinase-dependent and -independent mecha-
nisms have been reviewed in detail by others.134,135

The physiologic action of cGMP is limited by its hy-
drolysis to GMP by a family of cyclic nucleotide phos-
phodiesterases. Of the seven known phosphodiesterase
isozymes, phosphodiesterases 1 and 5 hydrolyze cGMP.
Phosphodiesterase 1 catalyzes cyclic adenosine mono-
phosphate and cGMP hydrolysis and is found in high
concentrations in the brain, the heart, the lung, and the
testis. Phosphodiesterase 5 is cGMP specific and has
been found in lung tissue, platelets, vascular smooth
muscle, and the kidney. It has a high affinity for cGMP
and can be inhibited by the selective phosphodiesterase
5 inhibitors zaprinast, sildenafil, and dipyridamole. Inhi-
bition of phosphodiesterase 5 enhances endothelium-

dependent vasorelaxation, reduces pulmonary vascular
tone, and enhances the hypotensive effects of nitrovaso-
dilators.136,137

Physiology of Inhaled Nitric Oxide Therapy

Selective Pulmonary Vasodilation
Alveolar Hypoxia. The ability of NO to selectively

dilate the pulmonary vasculature was evaluated in an
awake lamb model of alveolar hypoxia. Alveolar hypoxia

Fig. 1. Nitric oxide (NO)–cyclic guanosine monophosphate
(cGMP) signal transduction pathway. NO, formed by endothe-
lial cells (left) or administered by inhalation (right), diffuses to
vascular smooth muscle cells (lower). NO activates soluble
guanylate cyclase, which in turn catalyzes the production of
cGMP. Through cGMP-dependent protein kinase mediated ef-
fects, increased intracellular concentration of cGMP relaxes
smooth muscle and inhibits leukocyte adhesion, platelet adhe-
sion, and cellular proliferation. The action of cGMP is limited by
phosphodiesterases, which convert cGMP to GMP.
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produces reversible pulmonary vasoconstriction medi-
ated by an unknown mechanism. During normoxia, in-
halation of 80 ppm NO did not alter the normally low
mean pulmonary artery pressure (MPAP) and pulmonary
vascular resistance (PVR). With alveolar hypoxia (in-
spired fraction of oxygen [FIO2

], 0.1), pulmonary vaso-
constriction increased MPAP from 17 mmHg to 28
mmHg. With NO inhalation (40 ppm), MPAP decreased
to 20 mmHg and further to 18 mmHg (80 ppm NO)
within 3 min of NO breathing.4 Cardiac output and
systemic arterial pressure were not affected by NO inha-
lation. These results were confirmed in mechanically
ventilated sheep,138 in awake healthy volunteers breath-
ing low oxygen concentrations at ambient pressure139

(fig. 2), and in volunteers at high altitude (at 4,559 m,
hypobaric hypoxia).140

Pulmonary Selectivity and Vascular Sites of
Vasodilation
The pulmonary selectivity of inhaled NO and its rapid

inactivation by hemoglobin was first evaluated in an
isolated perfused rabbit lung model. The effluent of the
perfused lung was conducted to an isolated, pharmaco-
logically preconstricted segment of aorta. The pulmo-
nary vasculature was then preconstricted with U46619,
a thromboxane analog. When the perfusate was a hemo-
globin-free aqueous buffer, inhalation of NO first de-
creased MPAP and subsequently the tone of the sequen-

Fig. 2. Physiologic effects of inhaled NO (40 ppm) during hypoxia in nine healthy volunteers. Note the decrease of mean pulmonary
artery pressure and pulmonary vascular resistance achieved by NO inhalation. Values are mean 6 SE. LVSWI 5 left ventricular stroke
work index; PaO2

5 arterial partial pressure of oxygen, PaCO2
5 arterial partial pressure of carbon dioxide; PCWP 5 pulmonary

capillary wedge pressure; PPA 5 mean pulmonary artery pressure; PVR 5 pulmonary vascular resistance; RVSWI 5 right ventricular
stroke work index. Reprinted with permission from Frostell et al.139
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tially perfused aorta. When erythrocytes were added to
the perfusate, inhaled NO still caused pulmonary vaso-
dilation, but its vasodilatory effect on the effluent-per-
fused aorta was abolished,141 suggesting that inhaled NO
was inactivated by contact with hemoglobin. The pul-
monary vascular selectivity of NO inhalation (i.e., pulmo-
nary vasodilation in the absence of systemic arterial
vasodilation) has been confirmed in numerous subse-
quent studies.142–147

The longitudinal effects of inhaled NO within the pul-
monary vasculature are important because increases of
arterial or venous vascular tone differentially influence
hydrostatic fluid exchange within the lung. Pulmonary
venoconstriction increases pulmonary capillary pressure
and promotes edema formation.148,149 If venous and
arteriolar constriction both contribute to increased PVR,
a vasodilator selectively acting on arterial tone may
worsen edema formation by increasing mean pulmonary
vascular surface area and pressure. Lindeborg et al.150

reported that inhalation of 5, 20, and 80 ppm NO de-
creased arterial, microvascular, and venous resistances
to the same extent in an isolated rabbit lung model.
Shirai et al.151 used an X-ray television system to visualize
the in vivo effects of NO inhalation on the internal
diameter of pulmonary arteries and veins in a feline
model. Inhaling 5–40 ppm NO caused a dose-dependent
increase of the diameter of small arteries and veins dur-
ing normoxic conditions. After induction of hypoxic
vasoconstriction by lobar anoxia, NO inhalation dilated
smaller constricted and larger nonconstricted arteries, as
well as veins. These results suggest that the pulmonary
vasodilator response to inhaled NO is similar in pulmo-
nary arteries and veins.

Selective Vasodilation of Ventilated Areas
The intrapulmonary distribution of blood flow and

ventilation (ventilation–perfusion [V̇/Q̇] distribution) is a
major determinant of transpulmonary oxygenation effec-
tiveness, and the resulting partial pressure of oxygen in
arterial blood (PaO2

). In a normal, healthy lung, venti-
lated areas are well perfused. The shunt from the right to
the left side of the circulation is mainly extrapulmonary
(e.g., bronchial veins) and is less than 5–8% of cardiac
output.152 Local alveolar hypoxia constricts the vascular
bed adjacent to hypoxic regions and redistributes blood
flow to lung regions with better ventilation and a higher
intraalveolar PO2. It has been proposed that inhaled NO
amplifies this mechanism by increasing blood flow
through well-ventilated lung areas. Pison et al.138 studied
the effects of inhaled NO on distribution in an ovine

model of acute hypoxia. Because they studied general-
ized alveolar hypoxia, no improvement of PaO2

during
NO inhalation was expected. However, they demon-
strated increased blood flow to better ventilated (but still
hypoxic) lung areas and a stable PaO2

during NO inhala-
tion.

The effects of NO inhalation on gas exchange have
been assessed using lung injury models that induce mis-
match. The mismatch induced by oleic acid injury in
sheep was significantly improved by inhalation of 40
ppm NO153 and was augmented by the simultaneous use
of continuous positive airway pressure to open col-
lapsed alveoli.154 Hopkins et al.155 studied the effects of
inhaled NO on gas exchange in dogs by selectively cre-
ating areas of shunt or areas with a low ratio. NO (80
ppm) decreased blood flow to shunting regions. In areas
with a mismatch, NO produced an inconsistent re-
sponse. When the PVR of the partially obstructed airway
regions was decreased by NO inhalation, inequality was
increased because blood flow to the relatively poorly
ventilated areas was increased by vasodilation. When NO
did not reach the lung regions distal to the partial ob-
struction, and thus did not reduce local PVR, matching
was improved.

Bronchodilator Action
Nitric oxide synthase inhibitors suppress the broncho-

dilator actions of nonadrenergic noncholinergic–medi-
ated bronchodilation, suggesting that endogenous NO
synthesis is involved in the control of bronchial
tone.156,157 The expression of various NOS isoforms in
peripheral nonadrenergic noncholinergic nerve end-
ings158 and in human bronchial epithelium159 supports
this finding. Dupuy et al.160 demonstrated that inhaled
NO decreased airway resistance after bronchoconstric-
tion with methacholine in guinea pigs, later confirmed in
various experimental models using rabbits,161,162

dogs,163–165 and pigs.166,167 In human volunteers, how-
ever, inhaled NO only reduced airway resistance mini-
mally after a methacholine challenge.168 Large airways
appeared to be preferentially dilated by inhaled NO.169

Pulmonary Surfactant
Surfactant synthesized by type 2 alveolar epithelial

cells affects lung mechanics by reducing surface tension,
modifies pulmonary gas exchange, and has antimicrobial
functions.40 Isolated type 2 alveolar epithelial cells ex-
posed to NO (generated by the NO donor drugs S-
nitroso-N-penicillamine, spermine NONOate, or 3-mor-
pholino-sydnonimine) in the presence of superoxide
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dismutase reduced their surfactant synthesis by approx-
imately 60%.170 Exposure of surfactant to NO ex vivo
was not associated with changes of surface activity.38 In
vivo, a combination of high inspired oxygen concentra-
tions and high inspired NO concentrations (100 ppm)
inhaled by newborn piglets for 48 h significantly de-
creased the minimum surface tension of surfactant re-
covered by bronchoalveolar lavage.38

In lambs, high inhaled NO concentrations (80–200
ppm) resulted in abnormal surface activities and inhibi-
tion of surfactant protein A lipid aggregation.171 In addi-
tion, NO (from NO donor drugs) can decrease surfactant
protein A gene expression by distal respiratory epithelial
cells.172 In contrast, in an experimental model of acute
lung injury, combining exogenous surfactant therapy
with inhaled NO improved ventilation–perfusion match-
ing and arterial oxygenation.173 Other interactions of NO
and surfactant were recently summarized by Hallman
and Bry.40

Metabolic Fate of Inhaled Nitric Oxide
Nitric oxide is inactivated by reaction with its biologic

target molecules. The half-life of NO in vivo is only a few
seconds. The main metabolic pathways are the binding
of NO to O22 and to the heme iron of hemoglobin with
the subsequent release of NO32. The binding and release
of NO to thiols presents another important metabolic
pathway. Approximately 90% of NO is absorbed during a
steady state inhalation. Almost 70% of the inhaled gas
appears within 48 h as NO32 in the urine.174 The remain-
ing 30% of inhaled NO is recovered as NO22 in the oral
cavity through secretion from salivary glands. NO22 is
also partly converted to nitrogen gas in the stomach and
some NO22 in the intestine is reduced to ammonia,
reabsorbed, and converted to urea.175,176

NO Inhalation in Experimental Acute Lung
Injury and Pulmonary Artery Hypertension

Models of Persistent Pulmonary Hypertension of the
Newborn and Respiratory Distress Syndrome
Hypoxia in the preterm and term newborn is usually

characterized by severe PAH, extrapulmonary right-to-
left shunting, hypoxemia, and acidosis. Roberts et al.177

studied the effects of inhaled NO in hypoxic and acidotic
term newborn lambs delivered by cesarean section. Hyp-
oxia associated with hypercapnia doubled PVR. In this
model, inhaling 20 ppm NO during hypoxia completely
abolished pulmonary vasoconstriction, despite the pres-

ence of a marked respiratory acidosis. Similar results
were obtained in hypoxic, mechanically ventilated late-
gestation ovine fetuses.178 In an experimental model of
persistent pulmonary hypertension of the newborn
(PPHN) in lambs (induced by ductal ligation), inhaled
NO decreased PVR and markedly increased survival
rates.179,180

The responsiveness of the premature lung to inhaled
NO depends on gestational age and the maturity of the
pulmonary vasculature. In the immature lung of the
ovine fetus at 0.78 of term, initiation of mechanical
ventilation caused maximal pulmonary vasodilation and
the addition of NO (20 ppm) or 100% oxygen did not
increase vasodilation further. If surfactant was adminis-
tered and mechanical ventilation at 0.78 term continued
with 100% oxygen for 2 h, PVR continued to increase
and the initial beneficial effect of mechanical ventilation
on PVR and oxygenation decreased. With initiation of
NO inhalation 2 h after commencing mechanical venti-
lation, PVR was again decreased and oxygenation im-
proved.181 At 0.86 of term, initiation of mechanical ven-
tilation caused pulmonary vasodilation, which was
further increased by NO inhalation but not by 100%
oxygen. Near term (0.96), NO inhalation and 100% ox-
ygen administration both further increased the pulmo-
nary vasodilation caused by mechanical ventilation.182

Models of Acute Pulmonary Artery Hypertension
and Lung Injury in Adult Animals
Selective pulmonary vasodilation during NO inhalation

has been shown in numerous animal models: after phar-
macologic preconstriction of the pulmonary vasculature
with U46619, a synthetic thromboxane analog4; after a
heparin–protamine reaction that induces thromboxane-
mediated pulmonary vasoconstriction183; after pulmo-
nary oleic acid instillation, which induces endothelial
and alveolar edema, cell necrosis, and PAH184,185; and
after bilateral lung lavage, which depletes surfactant.186

Inhaled NO is also an effective pulmonary vasodilator in
endotoxin-induced PAH187–189 and after smoke inhala-
tion injury.190

Lung Injury Induced by Neutrophil-derived
Oxidants and by Molecular Oxygen
Reactive oxygen species (e.g., H2O2, O22) promote

lung injury in various clinical settings.191–194 The use of
high inspired concentrations of oxygen is sometimes
necessary during the treatment of acute lung injury, but
these high oxygen concentrations may cause or worsen
lung injury.195,196 Thus, the effects of NO inhalation
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during lung injury caused by neutrophil oxidants or
oxygen are of particular interest. Reaction of NO with
oxygen or O22 results in NO2 or 2OONO formation,
which may damage the lung.33,34,96 In contrast, NO may
also protect against the cellular toxicity of H2O2, alkyl
peroxides, and O22.197

Data from isolated lung studies suggest that the net
physiologic effects of NO inhalation protects against
tissue injury by typical neutrophil oxidants. In buffer-
perfused isolated rabbit lungs, NO inhalation decreased
H2O2-induced pulmonary edema, pulmonary vascular
permeability,198 and edema formation after injury with
O22 (generated by the reaction of purine with xanthine
oxidase).199 In hyperoxic lung injury, low-dose (10 ppm)
but not high-dose (100 ppm) inhaled NO completely
prevented pulmonary edema caused by inhalation of
100% oxygen for 40 h (fig. 3).200 In rats exposed for 60 h
to 95% oxygen, pulmonary endothelial permeability,

protein transfer, and type I alveolar epithelial cell injury
were attenuated by inhalation of 20 ppm NO.201 In
vitro, however, using isolated microvascular endothelial
cells and alveolar epithelial cells, simultaneous exposure
to a NO donor drug and hyperoxia was associated with
earlier cell death, as compared to hyperoxia alone. These
in vitro findings have been related to an increased pro-
duction of 2OONO.202

Inhibition of Neutrophil Adhesion by NO
Inhalation
Migration and adherence of neutrophils to the pulmo-

nary vasculature and the local release of their oxidants
are believed to be key events in oxidant lung injury.203,204

The effects of inhaled NO on neutrophil activity and
neutrophil–endothelium interactions, in addition to di-
rect effects of their oxidizing products, have been
studied extensively. NO inhalation reduced pulmonary
neutrophil accumulation after intestinal ischemia–reper-
fusion injury in rats205 and after dialysis in pigs.206 In an
isolated rat lung model perfused with a mixture of hu-
man neutrophils and either N-formyl-L-methionyl-L-
leucyl-L-phenylalanine207 or interleukin 1,208 inhalation
of 50 ppm NO markedly decreased lung edema forma-
tion, neutrophil accumulation and neutrophil migration
from the vascular into the alveolar space. Similarly, in-
haled NO reduced pulmonary leukocyte sequestration in
premature lambs with severe respiratory distress.209 In
an in vivo porcine model of Pseudomonas aeroginosa
sepsis, inhalation of NO (20 ppm) for 5 h after bacterial
infusion had significant beneficial effects on pulmonary
neutrophil sequestration and neutrophil oxidant activity.
Inhaled NO reduced protein and neutrophil sequestra-
tion into the alveolar space. Neutrophil oxidant activity
(stimulated O22 production) and alveolar structural dam-
age (assessed by electron microscopy) were also re-
duced in these septic lungs treated with inhaled NO.210

However, opposing effects also have been reported.
Increased oxidant activity (production of O22 and
2OONO) from intraalveolar neutrophils and increased
protein sequestration into the alveolar space after NO
inhalation have been observed.211 In a rat model of
intratracheally administered endotoxin, inhaled NO (15
ppm) failed to prevent neutrophil sequestration and ac-
tivation when inhalation was commenced 8 h after en-
dotoxin challenge.212 One important difference in these
studies was the time point when NO inhalation was
begun; early NO inhalation (with respect to bacterial or
endotoxin challenge) appeared to be associated with
more effective inhibition of neutrophil activation and

Fig. 3. Effects of 100% oxygen exposure with or without inha-
lation of nitric oxide (NO; 10 and 100 ppm) on pulmonary
edema in rats. (Upper) After 40 h of oxygen exposure, the
increase of the wet to dry ratio (QW/QD) was prevented by
inhalation of 10 ppm NO, but not by 100 ppm NO. (Lower) The
increase of the alveolar–arterial oxygen difference was also
prevented by inhalation of 10 ppm NO, but not by 100 ppm NO.
Data are mean 6 SD of six rats in each group. Reprinted with
permission from Garat et al.200
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sequestration than did NO inhalation begun at a later
time.

The effects of inhaled NO on pulmonary neutrophil
sequestration may be mediated by modification of adhe-
sion molecule expression and inhibition of the adher-
ence of stimulated neutrophils to the endothelium and
their migration through endothelial cell layers. In vitro
studies report that expression of a variety of endothelial
and neutrophil adhesion molecules in response to in-
flammatory stimuli or ischemia–reperfusion injury is
modified by molecular NO, NO donor drugs, or the
inhibition of endogenous NO synthesis.213–217 NO also
scavenges O22 released from migrating neutrophils and
thereby reduces neutrophil oxidant activity after adher-
ence.218,219 Recent in vitro data showed a dose-depen-
dent effect of NO on neutrophils: exposure of isolated
human neutrophils to an environment of 80% oxygen
and 20 ppm NO increased cell death by DNA inhibition,
whereas 5 ppm NO did not induce significant DNA
fragmentation.220 Whether this apoptotic effect is signif-
icant in vivo is unknown.

High-altitude Pulmonary Edema
Severe (hypoxic) pulmonary vasoconstriction and hy-

pertension characterize high-altitude pulmonary edema
(HAPE). Scherrer et al.140 hypothesized that inhalation of
NO would reduce MPAP and thus the severity of HAPE.
NO (40 ppm), inhaled at high altitude (4,559 m), de-
creased MPAP both in subjects prone to HAPE and those
with HAPE, but not in HAPE-resistant control subjects. In
subjects with HAPE, perfusion scintigraphy showed that
inhaled NO redistributed pulmonary blood flow from
edematous to nonedematous lung regions. This was as-
sociated with an improved PaO2

.

Models of Prolonged Hypoxia
Prolonged exposure to hypoxia induces PAH, pulmo-

nary vascular wall remodeling with neomuscularization,
and right ventricular hypertrophy.221,222 Inhaled NO
(10–20 ppm), added while breathing at FIO2

0.1 for 2–3
weeks, effectively prevented PAH, pulmonary vascular
remodeling, and right ventricular hypertrophy in adult
rats,223,224 in newborn rats,225 and in wild-type and
eNOS-deficient mice.129 These salutary effects of inhaled
NO may be mediated by direct vasodilatory mechanisms
in the pulmonary vasculature and antiproliferative ef-
fects of NO on smooth muscle cells.226

Models of Pulmonary Embolism and Thrombosis
Because inhaled NO can reduce reactivity and adhe-

sion of circulating blood cells (e.g., leukocytes, throm-
bocytes), it has been hypothesized that thrombus forma-
tion may be decreased by inhaled NO. In a rat model of
collagen-induced pulmonary thrombosis, inhalation of
80 ppm NO reduced the MPAP increase associated with
collagen injection and inhibited ex vivo collagen-in-
duced platelet aggregation. Rats treated with inhaled NO
showed fewer platelet thrombi in small pulmonary ves-
sels and a higher residual circulating platelet count.11 In
an in vivo porcine model of microsphere-induced pul-
monary embolism, inhaled NO (5–80 ppm) reduced the
increase of MPAP and increased the end-tidal carbon
dioxide concentration. Platelet aggregation was in-
creased with pulmonary embolism in control animals.
Inhaled NO decreased the initial and maximum platelet
aggregation.227

Experimental Models of Lung Transplantation
A beneficial effect of NO inhalation on ischemia–reper-

fusion injury, graft function, PAH, and oxygenation after
lung transplantation has been reported in various exper-
imental studies.228–232 The shortage of suitable donor
lungs allows only a small percentage of potential recip-
ients to receive a lung transplant.233,234 It has been
suggested to harvest donor lungs from non–heart-beat-
ing donors to increase the number of lungs available for
transplantation.235,236 Bacha et al. studied whether NO
inhalation can improve the function of lungs harvested
after cardiac arrest in the donor. In pig and rat models,
they treated the donor (after cardiac arrest) and recipi-
ent with inhaled NO (30 ppm) and demonstrated a
significant improvement of oxygenation and short-term
graft survival after transplantation, as well as reduction
of PAH and decreased pulmonary neutrophil accumula-
tion.237,238

Systemic Effects of Nitric Oxide Inhalation

Bleeding Time
Nitric oxide stimulates cGMP formation in platelets

and, thus, NO inhalation may inhibit platelet function
and augment a bleeding tendency in some species. Hög-
man et al.239 reported that the bleeding time increased
after rabbits inhaled NO. They noted that breathing 30
ppm NO for 15 min increased the bleeding time from
51 6 5 to 72 6 7 s (mean 6 SE), and breathing 300 ppm
NO for 15 min increased the bleeding time from 48 6 12
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to 78 6 17 s. However, bleeding time was not altered in
rats breathing 80 ppm NO for 1 h240 or in dogs breathing
20–200 ppm NO for 45 min.10 The reason for these
differences among species is unknown.

Vascular Injury in the Systemic Circulation
Inhaled NO may affect the systemic vasculature and

cells circulating within the systemic circulation, possibly
by reversibly binding to hemoglobin57 or other proteins,
with subsequent transport and release of NO at distant
sites, or by modification of leukocytes and platelets dur-
ing their transit through the lung. In a rat model of
carotid injury, which is associated with migration and
proliferation of smooth muscle cells in the arterial in-
tima, inhalation of 80 ppm for 2 weeks decreased the
degree of neointimal formation.240 In a canine model of
coronary artery thrombosis and lysis, NO inhalation de-
creased the cyclic flow variation frequency and in-
creased the duration of periods of coronary artery pa-
tency. In the latter model, inhaled NO had no
vasodilatory effects on the pharmacologically precon-
stricted coronary artery segment and did not change the
bleeding time. Therefore, coronary patency after throm-
bolysis was increased by NO inhalation, independent of
direct vasodilatory activity or increased bleeding time.10

In contrast to pulmonary vasodilation, these actions of
inhaled NO cannot be mediated by any direct effects of
gaseous NO on smooth muscle cell relaxation.

Further insights into the mechanisms of the systemic
effects of NO inhalation were recently provided by Fox-
Robichaub et al.9 In a cat model of intestinal ischemia
and reperfusion, inhalation of 80 ppm attenuated the

reduction of perfusion, increase of leukocyte rolling,
adhesion and migration, and endothelial dysfunction.
Changes in leukocyte activity and vessel size were di-
rectly visualized by in vivo microscopy and were in-
duced by inhalation of 80 ppm but not 20 ppm NO.
These effects were independent of intrapulmonary mod-
ification of leukocyte adhesion molecules, suggesting
that inhaled NO was bound to transport molecules and
was released in the peripheral circulation.9

Sickle Cell Hemoglobin
Homozygous sickle cell anemia is a genetic disease

characterized by severe hemolytic anemia, frequent va-
soocclusive events, and a reduced life expectancy. A
single amino acid substitution from valine to glutamic
acid of the hemoglobin b chain results in hemoglobin S
(HbS) formation. At deoxygenation, an erythrocyte con-
taining HbS changes its shape from a biconcave disk to a
crescent sickle cell because of intracellular hemoglobin
polymerization. Sickle cells can occlude the microcircu-
lation.241–243

Hemoglobin S has a markedly decreased oxygen affin-
ity, measured as a markedly increased P50 (partial pres-
sure of oxygen at half saturation of hemoglobin), com-
pared with adult hemoglobin. In studies by Head et al.,12

inhalation of 80 ppm NO for 45 min by patients with
homozygous sickle cell disease shifted the oxygen disso-
ciation curve of their erythrocytes 4.6 6 2.0 mmHg to
the left, significantly decreasing the P50 (fig. 4). Methe-
moglobin concentrations did not increase substantially.
In five of seven volunteers with sickle cell disease, the
effect persisted for at least 60 min after discontinuing

Fig. 4. Effects of nitric oxide (NO) on oxygen affinity of erythrocytes. Exposure to NO (80 ppm for 15 min) shifted the oxygen
dissociation curve of hemoglobin S erythrocytes to the left (left). The effect of NO exposure on P50 of hemoglobin S erythrocytes was
dose-dependent (right). Values are mean 6 SE. Reprinted with permission from Head et al.12 by copyright permission of The
American Society for Clinical Investigation.
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NO.12 In normal volunteers, the P50 was not affected by
breathing NO.12 Precisely how inhaled NO alters sickle
hemoglobin is unknown. One hypothesis is that the
Cysb93 residue of HbS is modified by NO, increasing
HbS solubility and decreasing the tendency to polymer-
ize during deoxygenation.244,245

Clinical Studies of Nitric Oxide Inhalation

The first clinical studies of inhaled NO focused on
whether the physiologic effects measured in animal
models were reproducible in patients. Acute respiratory
distress syndrome (ARDS) and persistent PPHN have
been the most commonly studied clinical syndromes.
The results of large multicenter studies of NO inhalation
in the treatment of critically ill newborns and adults
recently have been reported. Inhaled NO also has been
tested clinically in other conditions, including chronic
PAH, chronic obstructive pulmonary disease (COPD),
and lung transplantation and heart surgery.

Respiratory Failure of the Newborn
PPHN and Hypoxic Respiratory Failure. Persistent

pulmonary hypertension of the newborn is a clinical
syndrome characterized by sustained pulmonary hyper-
tension and severe hypoxemia, resulting in cyanosis un-
responsive to oxygen therapy. Persistent pulmonary hy-
pertension of the newborn may be caused by a variety of
etiologies (e.g., aspiration) or can be idiopathic.246 Diag-
nostic confirmation of PPHN includes echocardio-
graphic observation of a right-to-left shunt through the
ductus arteriosus or foramen ovale, caused by increased
PVR, in the absence of congenital heart disease. Conven-
tional treatment strategies include breathing high in-
spired concentrations of oxygen, hyperventilation, and
infusion of bicarbonate to produce alkalosis, inhalation
treatments with bovine surfactant, and intravenous va-
sodilator therapy. ECMO may be used to treat hypox-
emia. However, the anticoagulation and cannulation of
large vessels required for ECMO is associated with hem-
orrhagic complications.

Table 1. Multicenter Trials of Inhaled Nitric Oxide in Patients With PPHN

Reference Year
No. of

Patients Inclusion Criteria Treatment Protocol Length Outcome

6 1997 58 PPHN (by echo)
PaO2

, 55 mmHg on
2 consecutive
measurements

80 ppm at FIO2
0.9 vs.

FIO2
0.9 (control)

Up to 14 days Responders: 53% in NO
group; 7% in control
group

Need for ECMO: 40% NO
group; 70% control
group

Survival: 93% in NO and
control groups

7 1997 235 Hypoxic respiratory
failure, PPHN

Requiring mechanical
ventilation

OI . 25 on 2
consecutive
measurements

20 and 80 ppm NO
vs. control (FIO2

1.0)
Up to 14 days Responders: 51% 20 ppm

NO; 15% (control)
Need for ECMO: 39% NO

group; 55% control
group

Survival: 86% NO group;
84% control group

249 1997 53 Congenital
diaphragmatic
hernia (PPHN in 51
of 53 patients)

OI . 25 on 2
consecutive
measurements

20 and 80 ppm NO
vs. control (FIO2

1.0)
Up to 14 days Responders: 48% 20 ppm

NO; 19% control
Need for ECMO: 80% NO

group; 54% control
group

Survival: 52% NO group;
57% control group

8 1997 205 PPHN (by echo)
PaO2

, 80 mmHg at
FIO2

1.0

NO (20, 40 ppm) vs.
HFOV

Crossover and
combination

24 h reported Overall response rate 60%
All responders survived

72% of nonresponders
treated with ECMO
survived

Overall survival 86%

PPHN 5 persistent pulmonary hypertension of the newborn; OI 5 oxygenation index; NO 5 nitric oxide; HFOV 5 high-frequency oscillatory ventilation; ECMO 5
extracorporeal membrane oxygenation.
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In 1992, Roberts et al.247 and Kinsella et al.248 re-
ported that 80 ppm247 or 6–20 ppm248 inhaled NO
improved oxygenation in patients with PPHN. Several
large controlled, randomized multicenter trials of the
effects of inhaled NO in near-term and term hypoxic
newborn patients were reported in 1997 (tables 1 and
2).6–8,249,250 In the majority of patients with PPHN and
hypoxic respiratory failure (in whom the decision to
initiate ECMO were made by the clinical team on the
basis of center-specific ECMO entry criteria and without
knowledge of assignment of the patient to the treatment
group or placebo), NO improved oxygenation and de-
creased the requirement for ECMO. Kinsella et al. re-
ported that NO inhalation and high-frequency oscillatory
ventilation were an effective combination that may in-
crease the rate of responsiveness to inhaled NO.8 In a 1-
to 2-yr follow-up study of children who received inhaled
NO treatment for PPHN, neurodevelopment scores,
growth rates (growth percentiles for weight, length, and
occipitofrontal circumference), the frequency of airway
disease, and the need for supplemental oxygen were
comparable to conventionally ventilated or ECMO-
treated patients.251 In summary, NO improved oxygen-
ation in many newborns and, although it did not change
overall survival, it reduced the need for ECMO (P ,
0.05).6,7 Inhaled NO therapy did not appear to impart
any benefits, however, to newborns with congenital
diaphragmatic hernia.249

Preterm Neonates with Respiratory Distress Syn-
drome. Respiratory distress syndrome (RDS), or hyaline
membrane disease, of the premature newborn is charac-
terized by deficiency or dysfunction of surfactant and is
often associated with acute PAH.181 After promising pre-
liminary studies of inhaled NO in the premature new-
born with RDS,252,253 Skimming et al.254 studied the
effect of inhaled NO at 5 and 20 ppm in preterm neo-
nates (without systemic hypotension or congenital mal-

formations and mechanically ventilated at FIO2
. 0.5).

They demonstrated that arterial oxygenation improved
and systemic arterial blood pressure was unaffected dur-
ing a 15 min NO inhalation trial. The conclusions of this
study were limited, however, because MPAP was not
measured, and only 7% of the initially evaluated prema-
ture infants were included in the study.

Acute Lung Injury and Acute Respiratory Distress
Syndrome
Selective Pulmonary Vasodilation. In severe ARDS,

PAH augments pulmonary edema and may impede right
ventricular function and decrease cardiac output. Ros-
saint et al.144 demonstrated in patients with severe ARDS
that inhaled NO produced selective pulmonary vasodila-
tion. This was later confirmed by larger studies.142,147

Occasionally, the NO-induced pulmonary vasodilation
has been associated with improved right ventricular per-
formance, as indicated by improvements in right ventric-
ular ejection fraction and decreased right ventricular
end-diastolic and end-systolic volumes.255 In children
with ARDS, inhaled NO (20 ppm) decreased MPAP by
25% and increased cardiac index by 14%.256 Inhaled NO
also effectively decreased MPAP associated with the use
of permissive hypercapnia in patients with ARDS.257

Pulmonary Capillary Pressure. Inhaled NO (40
ppm) has been reported to decrease pulmonary capillary
pressure258 and pulmonary transvascular albumin
flux,259 partly caused by its effect on venous PVR in
patients with acute lung injury.258 Such reductions of
pulmonary venous and pulmonary capillary pressure
should promote resolution of pulmonary edema, an im-
portant component of ARDS.

Arterial Oxygenation. Severe hypoxemia caused by
extensive intrapulmonary right-to-left shunting is charac-
teristic of ARDS. Common current strategies of manage-
ment include lung recruitment by high levels of positive
end-expiratory pressure, prone positioning, and ventila-
tion with a high FIO2

. Therapies that permit lower airway
pressures and FIO2

might reduce the risk of barotrauma
and oxidant injury to the lung. Inhaling 18 ppm NO for
40 min reduced the shunt fraction by 5% and increased
the PaO2

/FIO2
ratio by 30% in patients with ARDS.144 In a

dose-ranging study of ARDS patients breathing NO, the
ED50 (the dose producing 50% of maximal effect) for
increasing PaO2

(10–100 ppb) was markedly less than
the ED50 producing pulmonary vasodilation (1–10 ppm,
fig. 5).260

In a phase 2 multicenter trial, the effects of NO inha-
lation on oxygenation were studied in 177 patients who

Table 2. Short-term Effects of Inhaled Nitric Oxide on
Systemic Oxygenation in Infants with Severe Hypoxemia and
Persistent Pulmonary Hypertension

Control* Nitric Oxide†

Postductal PaO2
(mmHg)

Baseline 38 6 9 41 6 9
Treatment 40 6 8 89 6 70‡

Values are mean 6 SD.

* Nitrogen at FIO2
0.9, n 5 28.

† 80 ppm at FIO2
0.9 for 20 min, n 5 30.

‡ P , 0.001 vs. baseline.

Data reprinted with permission from Roberts et al.6
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met the criteria of ARDS (PaO2
/FIO2

, 200 mmHg within
the last 72 h, bilateral chest infiltrates, pulmonary capil-
lary wedge pressure (PCWP) , 18 mmHg, positive end-
expiratory pressure requirement . 8 cm H2O and FIO2

requirement . 0.5). Sixty-five percent of the patients
who received inhaled NO (pooled results of patients
receiving 1.25, 5, 20, 40, 40, or 80 ppm NO) had a
significant (P 5 0.0002 vs. placebo) improvement in
PaO2

(defined as a 20% increase of PaO2
after 4 h of

therapy). Only 24% of the patients receiving placebo
(nitrogen) responded similarly (fig. 6).142 The improved
oxygenation induced by NO allowed physicians to re-
duce FIO2

and positive end-expiratory pressure and
thereby decreased the oxygenation index (FIO2

3 mean
airway pressure 3 100)/PaO2

) for the first 4 days of
therapy. The MPAP was slightly lower in the inhaled NO
group, compared with placebo, for 2 days. Similar tran-
sient improvements of PaO2

/FIO2
during inhaled NO ther-

apy in patients with ARDS have been shown in prospec-
tive studies conducted by Michael et al.261 and Troncy et
al.262 The reasons for such transient effects remain un-
clear.

Outcome. The phase 2 U.S. multicenter study of the
effects of inhaled NO on ARDS patients (discussed pre-
viously) reported a mortality rate of 30% in NO- (all doses
pooled) and placebo-treated patients both.142 The pa-
tients were assigned randomly to receive 1.25, 5, 20, 40,
or 80 ppm NO or nitrogen placebo. Subgroups receiving
the same dose of NO for the treatment period consisted

of 8–34 patients. Mortality rates in the subgroups were
32% (7 of 22 patients) in the 1.25 ppm group, 24% (8 of
24 patients) in the 5 ppm group, 31% (9 of 29 patients)
in the 20 ppm group, 30% (8 of 27 patients) in the 40
ppm group, and 38% (3 of 8 patients) in the 80 ppm
group. A prospective randomized study reported by
Troncy et al.262 similarly found no significant difference
between ARDS patients receiving inhaled NO and con-
trols with regard to 30-day mortality or days of mechan-
ical ventilation. Several hypotheses should be addressed
in the interpretation of these data and should be kept in
mind for the design of future studies:

1. The beneficial effects of NO inhalation (e.g., improve-
ment of gas exchange) may not alter the overall out-
come because the survival of patients with ARDS may
not be primarily dependent on gas exchange. The
majority of patients dying with ARDS also have severe
sepsis or multiple organ failure. The incidence of
death primarily because of respiratory failure varies
among studies. In a study by Montgomery et al. pub-
lished in 1985, the percentage of ARDS deaths spe-
cifically because of hypoxemia and respiratory failure
was reported to be 16%.263 A study of patients treated
at the LDS Hospital in Salt Lake City reported that 40%
of deaths in ARDS patients were caused by respiratory
failure.264 It is unknown whether this subgroup of
patients would benefit from inhaled NO because such
severely hypoxemic patients have been excluded
from prospective studies.

Fig. 6. Percentage of patients with acute respiratory distress
syndrome who respond with a PaO2

increase of 20% or more
while receiving 0–40 ppm nitric oxide during a 4-h inhalation
period. Bars from left to right within each dose group indicate
progressive exposure periods of 30 min, 1 h, 2 h, and 4 h.
Reprinted with permission from Dellinger et al.142

Fig. 5. Dose–response of inhaled nitric oxide (NO) for PaO2
(upper) and mean pulmonary arterial pressure (lower) in 12
patients with acute respiratory distress syndrome. The esti-
mated ED50 for PaO2

increase was 110 ppb and the estimated
ED50 for mean pulmonary artery pressure (PPA) decrease was
1.2 ppm. Values are mean 6 SD. Reprinted with permission
from Gerlach et al.260
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2. The beneficial effects of NO inhalation are offset by
its toxic effects. As described previously, NO has
several negative effects on biologic molecules and
tissues, especially if 2OONO is formed. This hypoth-
esis needs further testing in patients, e.g., by analyz-
ing lung specimens for evidence of NO or 2OONO
toxicity after NO inhalation.

3. NO inhalation has a narrow therapeutic range. Small
doses, e.g., 1–5 ppm, could be effective and improve
survival, but smaller doses might be not effective, and
larger doses could be toxic. The effective dose may
change over time and vary among different patients
and different disease states.265 It is necessary to es-
tablish improved dosing criteria. Larger patient
groups receiving similar doses are necessary to dis-
cover statistically robust differences. Currently, a
blinded, multicenter phase 3 study is being com-
pleted that investigated the effects of 5 ppm inhaled
NO, compared with placebo, in patients with ARDS.
Such a protocol assumes that the dose–response re-
lation of inhaled NO is similar among ARDS patients
and over time. This may not be true.265

Performing such trials is difficult and expensive. The
incidence of ARDS is relatively low, and the precipitating
events are often multifactorial. Usually a large number of
centers must participate to recruit sufficient numbers of
patients. There may be significant differences in re-
sponse rates and outcomes among different centers, as
reported for PPHN patients by Kinsella et al.8 Different
treatment strategies and the experiences of individual
institutions and caregivers may provide confounding
variables. As a result, conclusive studies evaluating the
effects of a drug such as inhaled NO, which at best has
a modest effect on the survival of a diverse population of
patients with ARDS, may not be economically viable.

Chronic Pulmonary Artery Hypertension
The pathophysiology of chronic PAH includes a par-

tially reversible increase of MPAP in the early stages of
the disease, leading to a nonreactive and irreversibly
remodeled pulmonary vasculature after long-standing
PAH.266 Vascular remodeling is characterized by muscu-
larization of previously nonmuscular small resistance ar-
teries, medial hypertrophy of proximal pulmonary arter-
ies, and a reduced number of arteries within the lung.
Diagnosis and medical treatment of chronic PAH relies
on vasodilator therapy. When medical treatment is no
longer possible (e.g., no vasodilator response) or ineffec-

tive (e.g., tachyphylaxis or tolerance), lung transplanta-
tion remains as the last option to prolong life.

Evaluation. The determination of pulmonary vascular
responsiveness is essential for prognosis and long-term
treatment. Drugs commonly used to assess pulmonary
vasodilatory responses include intravenous prostacyclin
(PGI2), adenosine, and calcium channel blockers.267 Af-
ter studying adult patients with inhaled NO and infused
prostacyclin, Sitbon et al. suggested using inhaled NO as
the “gold-standard” to assess pulmonary vasoreactiv-
ity268 because inhaled NO was reported to selectively
reduce MPAP in patients with pulmonary hypertension.5

A recent survey of long-term vasodilator treatment in
approximately 800 patients with primary pulmonary hy-
pertension reported that inhaled NO was used as the
primary vasodilator to test pulmonary vascular respon-
siveness by 32% of the participating U.S. tertiary hospi-
tals.269

As opposed to commonly used intravenous vasodila-
tors, which can produce systemic hypotension, inhaled
NO does not significantly affect systemic vascular resis-
tance. This permits the rapid and safe evaluation of
changes of biventricular function during a brief trial of
pulmonary vasodilation and, therefore, provides an im-
portant diagnostic tool for the decision to begin medical
treatment or to plan lung transplantation or combined
heart and lung transplantation.270

Treatment. In chronic PAH, a positive response to a
short-term vasodilator trial usually results in long-term
drug treatment that may include a wide spectrum of
systemic vasodilator drugs (e.g., acetylcholine, a-adren-
ergic agonists, direct-acting vasodilators, angiotensin-
converting enzyme inhibitors, calcium channel blockers,
prostaglandins) and permanent anticoagulation.267 The
effectiveness of current vasodilator treatment often is
limited by systemic hypotension. Channick et al.271

tested an ambulatory NO delivery system consisting of
an 80-ppm NO tank, a gas–pulsing device, and a nasal
cannula in eight PAH patients with a pulmonary artery
catheter. They reported that this technique produced
effective pulmonary vasodilation without evidence of
significant nitrogen dioxide formation. One of the eight
patients was discharged from the hospital and treated for
9 months with inhaled NO without any apparent adverse
events. Long-term domiciliary NO inhalation as an alter-
native or a bridge to lung transplantation272 requires
investigation in larger patient groups, after consideration
of the beneficial and toxic effects caused by long-term
NO inhalation.
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Obstructive Airway Disease
Inhaled NO has been tested for use as a pulmonary

vasodilator in COPD and as a bronchodilator in COPD
and asthma. COPD is characterized by irreversible air-
way obstruction and is associated with irregular enlarge-
ment of alveoli and destruction of alveolar walls after
chronic inflammation. Hypoxia produces pulmonary va-
soconstriction, resulting in chronic PAH and right ven-
tricular hypertrophy. Important characteristics of
asthma include inflamed, hyperreactive airways with re-
versible bronchoconstriction.

Bronchodilator Action. Inhaled NO has been re-
ported to be a bronchodilator in many experimental
animal models. Högman et al.169 evaluated inhalation of
80 ppm NO in healthy volunteers, in patients with hy-
perreactive airways, bronchial asthma, and COPD. In-
haled NO caused mild bronchodilation in patients with
asthma but not in patients with COPD. In other studies,
however, the bronchodilator action of NO has been
reported to be much weaker than commonly used in-
haled b2-adrengeric agonists.168,273,274

Pulmonary Vasodilation. Hypoxemia in COPD is
primarily caused by a mismatch and not by intrapulmo-
nary right-to-left shunting (as in ARDS). Hypoxic vaso-
constriction augments blood flow to better ventilated
regions and improves oxygenation. Inhaled NO may op-
pose this physiologically useful mechanism by vasodilat-
ing poorly ventilated areas in the obstructed lung, and
thus increasing blood flow to these areas, as reported by
Hopkins et al.155 Indeed, transcutaneous arterial oxygen
tension,275 PaO2

, and V̇/Q̇ distribution276 were worsened
by NO inhalation in air-breathing COPD patients. How-
ever, when NO was used in combination with modest
oxygen enrichment,277 PaO2

was improved to a greater
extent than with oxygen therapy alone. The combina-
tion also more effectively decreased MPAP. Thus, the
combined use of supplemental oxygen and inhaled NO
(e.g., via an ambulatory inhalation device) may offer a
valuable therapeutic strategy for improving oxygenation
and providing pulmonary vasodilation in selected COPD
patients.

Lung Transplantation
Pulmonary artery hypertension frequently occurs in

the immediate postoperative period after lung transplan-
tation and has been effectively treated with inhaled
NO.278 Inhaled NO has been reported to be effective in
the treatment of post–lung transplant pulmonary dys-
function. In a retrospective study by Date et al.,279 243
patients undergoing lung transplantation over 6 yr were

analyzed. Thirty-two patients had immediate severe graft
dysfunction, as indicated by a PaO2

/FIO2
ratio , 150

mmHg. Comparing patients in whom NO treatment was
not available with patients in whom NO treatment was
begun after graft dysfunction was diagnosed, inhaled NO
reduced MPAP and increased the PaO2

/FIO2
ratio within

the first hour of treatment. The requirement for ECMO
was similar in both patient groups. The rate of airway
complications and hospital mortality (7% in NO group
vs. 24% in control group) was markedly reduced in
patients receiving NO therapy. As in all retrospective
studies using historical controls, changes of treatment
strategies and increased clinical experience over time
must be considered. Although this study suggests that
inhaled NO may decrease post–lung transplant organ
dysfunction, it should be confirmed in prospective con-
trolled studies.

Congenital Heart Disease
The degree and reversibility of the increased PVR de-

termine the various treatment options and outcome in
children with congenital heart disease and PAH.280 Rob-
erts et al.281 demonstrated that inhaled NO (80 ppm for
10 min) decreased MPAP without causing systemic va-
sodilation in children between 3 months and 7 yr of age
with congenital cardiac lesions (e.g., atrioseptal defect,
ventricular septal defect, atrioventricular canal). The
ability of inhaled NO to decrease the PVR of children
with congenital cardiac defects has been confirmed by
others.282,283 In preoperative patients with severe right-
to-left shunting, inhaled NO increased pulmonary blood
flow, decreased extrapulmonary shunt flow and im-
proved oxygenation.284 Inhaled NO, therefore, might
provide a therapeutically useful tool for the acute non-
surgical treatment of these patients.

Cardiac Surgery
Transient PAH is common after repair of congenital

cardiac lesions and has been related to damage to the
pulmonary vascular endothelium, probably induced by
the use of cardiopulmonary bypass.285 Inhaled NO has
been reported to ameliorate the postoperative PAH of
congenital heart disease286–291 and decrease the need
for postoperative ECMO.292

Patients with left ventricular valvular disease may have
preoperative PAH caused by an increased left atrial pres-
sure with retrograde transmission of pressure into the
pulmonary arterial circulation. Pulmonary vascular re-
modeling occurs as a result of chronic pulmonary ve-
nous hypertension and PAH. Pulmonary vascular remod-
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eling and vasoconstriction may persist or slowly
decrease with time after valve replacement. Treatment
with NO after repair of the valvular disease might relieve
the vasoconstrictor component of PAH in these patients.

Fullerton et al.293 reported that 20–40 ppm inhaled
NO produced pulmonary vasodilation in patients after
aortocoronary bypass. In patients after heart transplan-
tation, inhalation of 20 ppm NO caused significant pul-
monary vasodilation but also decreased systemic vascu-
lar resistance.294 The decreased SVR was most likely
secondary to an improved cardiac output because sys-
temic arterial pressure and PCWP remained unchanged.
Intravenous administration of the phosphodiesterase in-
hibitor dipyridamole markedly augmented the pulmo-
nary vasodilatory response to inhaled NO in some pa-
tients after aortic or mitral valve replacement.295

Effectiveness of Nitric Oxide Inhalation
Therapy

Hyporesponsiveness to Inhaled Nitric Oxide
A considerable number of patients who receive in-

haled NO therapy do not respond by either pulmonary
vasodilation or improvement of systemic oxygenation.
The reported rate of hyporesponders ranges from 30% to
45%, depending on the threshold value chosen to define
hyporesponsiveness.142,147 Several hypotheses have
been raised to explain the mechanisms of hyporespon-
siveness. Manktelow et al.147 and Krafft et al.296 re-
ported that ARDS patients with sepsis were less likely to
respond to inhaled NO (60–70% of septic patients were
hyporesponders). The presence of high levels of endog-
enously produced NO and the opposing pulmonary va-
soconstrictor action of catecholamines used for the treat-
ment of septic vasodilation have been suggested as
possible reasons for the decreased response to inhaled
NO. Holzmann et al.297 evaluated the effects of sepsis on
NO responsiveness in an isolated rat lung model. They
reported that hyporesponsiveness was associated with
decreased pulmonary cGMP release (table 3), suggesting
that signal transduction in the NO response pathway is
downregulated in sepsis. This was attributed to in-
creased phosphodiesterase activity and therefore in-
creased cGMP breakdown. Bigatello et al. reported that
hyporesponsive patients with ARDS have a reduced ac-
cumulation of plasma cGMP during NO breathing.298

Increased vascular production of O22, as observed in
systemic nitrate tolerance, also may contribute to hypo-
responsiveness to inhaled NO. Munzel et al. reported

that long-term nitrate treatment of rabbits resulted in
increased O22 production by the aorta and hyporespon-
siveness (tolerance) to acute nitroglycerin administra-
tion, related to an activated membrane-associated oxi-
dase.299,300 Increased O22 production in the pulmonary
vasculature may have similar effects.

Lastly, Weimann et al.301 recently reported a linkage
between ABO blood group distribution and hyporespon-
siveness to inhaled NO, demonstrating that ARDS pa-
tients with the major blood groups A or O had a larger
increase of PaO2

/FIO2
in response to NO inhalation than

patients with blood groups B or AB. The underlying
mechanism of these results is unknown, but they indi-
cate that the pulmonary vascular response to inhaled NO
may be determined or modified by genetic factors.

Strategies to Increase Responsiveness
Phosphodiesterase Inhibition. Because cGMP is hy-

drolyzed by phosphodiesterase, inhibition of phospho-
diesterase may increase the effectiveness and duration of
the action of inhaled NO. In awake lambs with U46619-
induced PAH, intravenous infusion of zaprinast, a phos-
phodiesterase 5–specific inhibitor, increased the dura-
tion of action of inhaled NO and accentuated the NO-
induced reduction of PVR. With administration of
zaprinast, the half-time of pulmonary vasodilation after
discontinuing a 4-min 40-ppm NO inhalation trial was
increased from 1 or 2 min to 10–12 min (fig. 7).302

Potentiation of the effects of NO by another phosphodi-
esterase inhibitor, dipyridamole, has been reported in
the ovine fetal pulmonary circulation.303,304

Inhibition of Vascular Superoxide Production. No
experimental or clinical studies have yet determined
whether inhibition of pulmonary vascular O22 produc-

Table 3. Inhaled Nitric Oxide–stimulated Pulmonary cGMP
Release in Control and Septic Isolated Perfused Rat Lungs
(treated with LPS) before and after Ventilation with 40 ppm
Nitric Oxide

Control LPS

Total perfusate
cGMP (pmol)

Before NO 25 6 5 25 6 3
NO 190 6 67* 52 6 25*†

Values are mean 6 SD. Data reprinted with permission from Holzmann et
al.297

NO 5 nitric oxide; cGMP 5 cyclic guanosine monophosphate; LPS 5 lipo-
polysaccharide.

* P , 0.05 vs. before NO.

† P , 0.05 vs. control NO.
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tion may increase responsiveness to inhaled NO. Inhibi-
tion of the O22-generating membrane-associated oxidase
in rabbit aorta by hydralazine normalized vascular O22

production and restored the vasodilatory activity of ni-
troglycerin.299,300

Almitrine Infusion. Almitrine bismesylate acts as an
agonist at peripheral arterial chemoreceptors and in-

creases discharge of the carotid sinus nerve.305 Intrave-
nous administration of low concentrations of almitrine
has been reported to restore or enhance hypoxic vaso-
constriction in the acutely injured lung. Inequalities and
the PaO2

in ARDS patients usually are improved by almi-
trine administration, which augments hypoxic vasocon-
striction and redistributes pulmonary arterial blood flow
toward better ventilated areas with a higher PAO2

. The
combination of almitrine infusion and NO inhalation,
each having different mechanism, might synergistically
reduce mismatch. Almitrine administration enhanced
the oxygenation beneficial effects of inhaled NO on
oxygenation306 and allowed a further reduction of FIO2

in
patients with ARDS.307 The relatively long in vivo half-
life (mean tissue half-life, 12 h) and possible toxic side
effects of almitrine (including a slowly reversible periph-
eral sensory neuropathy) require careful investigation
before this regimen can be recommended for routine
clinical use.

Partial Liquid Ventilation. Perfluorocarbons are in-
ert liquids that lower surface tension in surfactant-de-
pleted lungs and dissolve large concentrations of respi-
ratory gases. Zobel et al.308 demonstrated that inhaled
NO enhanced the effects of perfluorocarbons on pulmo-
nary gas exchange in a piglet model of acute lung injury
induced by repeated bilateral lung lavage. An additive
effect of inhaled NO and perfluorocarbons on pulmo-
nary gas exchange in acute lung injury has been con-
firmed by others.309,310

Clinical Side Effects of Nitric Oxide
Inhalation

Left Ventricular Function
The risks of inhaled NO should be carefully considered

in patients with markedly impaired left ventricular func-
tion (e.g., heart transplant candidates). Inhalation of NO
may vasodilate the pulmonary circulation and increase
blood flow to the left ventricle, thereby acutely increas-
ing left atrial pressure and PCWP311–313 and promoting
pulmonary edema formation.314 Cardiac output, left
atrial pressure, or PCWP should be monitored if NO is
administered to patients with severe left ventricular dys-
function.

Discontinuation of Nitric Oxide Inhalation
Rebound PAH, an increase of intrapulmonary right-to-

left shunting and a decreased PaO2
after acute NO dis-

continuation is well-described.144 Lavoie et al.315 re-

Fig. 7. Influence of continuous intravenous zaprinast infusion
(0.1 mg z kg21 z min21) on the magnitude of peak decreases of
mean pulmonary arterial pressure (A), percent changes of pul-
monary vascular resistance (B), and half-times of vasodilating
effects (C) in response to nitric oxide inhalation during pulmo-
nary arterial hypertension induced by U46619 in awake lambs.
Values are mean 6 SE. *Significantly different from control
value (P < 0.05). Reprinted with permission from Ichinose et
al.302
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ported four patients with severe acute respiratory failure
in whom NO therapy was discontinued abruptly after a
decision to discontinue life-extending measures. A sus-
tained decrease of arterial oxygen saturation occurred
immediately after NO discontinuation, which was re-
versed by restarting NO therapy. All four patients died
within 24 h after NO discontinuation.

It has been suggested that downregulation of endoge-
nous NO synthesis by NO inhalation is responsible for
rebound PAH.130,316–318 However, recent data obtained
in rats with hypoxic pulmonary hypertension suggest
that inhibition of endogenous NO synthesis plays a mi-
nor role in rebound PAH: no changes of lung eNOS
protein levels, NOS activity, endothelium-dependent and
-independent vasodilation were reported after 3 weeks
inhaling 20 ppm NO. Lung GC activity was transiently
decreased after 1 week of NO inhalation, but GC activity
was normal after 3 weeks of NO inhalation.319

To avoid rebound PAH, a slow stepwise reduction of
the inhaled NO concentration with immediate control of
any adverse effects (e.g., reduced oxygen saturation or
blood gas tensions, increased MPAP144) are important to
safely wean the patient from inhaled NO. In addition,
administration of the phosphodiesterase 5 inhibitor di-
pyridamole has been reported to prevent rebound PAH
in children after cardiac surgery.320

Bleeding Time
Inhaled NO can inhibit platelet function and increased

the bleeding time in rabbits. In ARDS patients receiving
inhaled NO (3–100 ppm), NO decreased platelet aggre-
gation and agglutination in vitro. However, the in vivo
bleeding time (Ivy bleeding time) was not altered.321 In
neonates, a recent study reported that bleeding time
doubled after 30 min of 40-ppm NO inhalation.322 How-
ever, in the multicenter studies in newborns, no differ-
ence in the frequency of bleeding events was observed in
NO-treated compared with placebo-treated patients.6–8,249

Toxicity of Nitric Oxide Inhalation

Nitric oxide inhalation therapy should be instituted
after careful consideration of potential acute and long-
term toxicity. The major concerns are (1) methemoglo-
binemia, (2) NO2 formation, and (3) cellular toxicity.
Acute inhaled NO overdose (. 500–1,000 ppm) leads to
rapid NO2 formation, severe methemoglobinemia, pul-
monary alveolar edema and hemorrhage, hypoxemia,
and death within minutes to hours.323

Blood methemoglobin concentrations and inspired
NO2 concentrations have been regularly monitored in
clinical trials of inhaled NO in adults and neo-
nates.6,8,142,249 In the large number of patients studied in
these trials (n 5 471) receiving inhaled NO therapy at
doses ranging from 1.25 to 80 ppm, significant methe-
moglobinemia or NO2 formation was uncommon (table
4). If methemoglobin or NO2 levels increased above
predetermined limits, the inhaled NO concentration was
decreased. Discontinuation of NO administration be-
cause of NO2 or methemoglobin formation was only
necessary in 3 of 471 patients (0.6%).

The most important requirements for safe NO inhala-
tion therapy are (1) continuous analysis of NO and NO2

concentrations (using chemiluminescence or electro-
chemical analyzers324,325); (2) frequent calibration of the
monitoring equipment; (3) frequent analysis of blood
methemoglobin levels; (4) the use of certified tanks; and
(5) administration of the lowest NO concentration re-
quired.

Little is known about the long-term sequalae of NO
inhalation in humans. In 12 newborns receiving NO
inhalation treatment (, 20 ppm) for up to 4 days, there
were no signs of increased lipid peroxidation product,
impaired surfactant activity, or changed cytokine pro-
file.326 However, in two infants requiring prolonged ven-
tilation with NO, nitrotyrosine residues were detected in
airway specimens.326 The relative contribution of NO
inhalation and endogenous NO formation to nitroty-
rosine formation in the lung is unclear because nitroty-
rosine formation has been demonstrated in acutely in-
jured lungs without the exogenous administration of
NO.33,34 Follow-up studies of adult patients 8 months
after NO treatment for ARDS showed no obvious differ-
ences in pulmonary function compared to ARDS patients
not treated with NO.327

In summary, reported data of clinical NO toxicity are
sparse. Studies appropriately designed to detect long-
lasting or irreversible pathologic effects of NO breathing
will be necessary to predict the long-term effects of
inhaled NO and establish time and dose limits.

Alternatives to Nitric Oxide Inhalation
Therapy

Inhaled Prostacyclin
Prostacyclin is a natural product of the cyclooxygenase

pathway and a potent vasodilator. The initial clinical
studies of NO inhalation in ARDS patients compared the
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pulmonary vasoactive properties of intravenously admin-
istered prostacyclin with inhaled NO.144 Although pros-
tacyclin infusion decreased MPAP to the same degree as
inhaled NO, prostacyclin decreased PaO2

, presumably by
reducing hypoxic pulmonary vasoconstriction and
caused systemic hypotension. Such adverse effects are
commonly observered during intravenous infusion of
commonly used vasodilator drugs.

It was hypothesized that the administration of prosta-
cyclin via aerosol would limit its hemodynamic effects
to the lung. This hypothesis was tested in ARDS patients,
and the effectiveness of prostacyclin when used as a
short-term inhaled aerosol was compared with inhaled
NO.328 Similar effects, namely decreased MPAP, de-
creased intrapulmonary right-to-left shunting, and in-
creased PaO2

/FIO2
were observed. Systemic vasodilation

was not reported with either drug. These effects of
inhaled prostacyclin have been confirmed in other stud-
ies.329,330 A disadvantage of aerosolized prostacyclin
therapy is that systemic absorption can occur, which
makes it difficult to maintain pulmonary vasodilation
without producing systemic vasodilation for periods last-
ing more than a few hours. Larger studies, including
randomized trials studying the effectiveness and respon-
siveness to inhaled prostacyclin for longer time periods,
are necessary to support a useful therapeutic role.

Nitric Oxide Donor Drugs
The use of inhaled NO donor drugs has been proposed

as an alternative to NO inhalation. Administration of
such drugs, which release a defined amount of NO over
a prolonged time period, might permit intermittent NO
dosing. Adrie et al. compared the pulmonary vascular
effects of inhaled sodium 1-(N,N-diethylamino) diazen-1-
ium-1,2-diolate (DEA/NO), which spontaneously gener-
ates NO, with the inhalation of sodium nitroprusside and
NO gas in awake sheep with pharmacologically induced
pulmonary hypertension.331 DEA/NO caused nonselec-
tive vasodilation, and sodium nitroprusside was only
selective for the pulmonary circulation at low inhaled
concentrations, compared with the highly selective ef-
fect of NO gas.331 In a pig model of acute pulmonary
hypertension, Brilli et al. compared the effects of the
aerosolized NO donors ethylputreanine NONOate (EP/
NO) and 2-(dimethylamino) ethylputreanine NONOate
(DMAEP/NO).332 They reported that 3-min DMAEP/NO
aerosolization caused selective pulmonary vasodilation,
which lasted for approximately 30–50 min without ef-
fects on systemic arterial pressure or cardiac output.332

Similarly, tracheal instillation of DMAEP/NO resulted in

prolonged and pulmonary selective vasodilation.333 EP/
NO, aerosolized or instilled, was less effective and the
effects were inconsistent.332,333

The intravenous infusion of ultra–short-acting NO
donor agents might also be an alternative to inhaled
NO for producing selective pulmonary vasodilation. In
awake, healthy sheep with pulmonary hypertension,
the intravenous (systemic) infusion of PROLI/NO
(C5H7N3O4Na2 z CH3OH), an ultra–short-acting nucleo-
phile/NO adduct that generates NO, produced selec-
tive pulmonary vasodilation without affecting the sys-
temic circulation. The selective effect of this
intravenous drug was caused by its short half-life in
vivo, which resulted in complete NO release during
transit of the pulmonary circulation and before reach-
ing the systemic arterial circulation.334 Because such
drugs are intravenously administered, oxygenation
might be adversely affected in the injured lung
through indiscriminant release of hypoxic pulmonary
vasoconstriction. Nevertheless, such newly designed
NO donor drugs appear promising as a selective pul-
monary vasodilator and provide an alternative to NO
inhalation.

Inhaled Phosphodiesterase Inhibitors
The use of inhaled phosphodiesterase inhibitors has

been investigated as an alternative or adjunct to NO
inhalation. Inhalation of nebulized zaprinast induced se-
lective pulmonary vasodilation and enhanced the effects
of inhaled NO in awake lambs.335 However, at a zapri-
nast concentration (50 mg/ml) producing a similar de-
crease of MPAP to 20 ppm NO, significant systemic
vasodilation was observed (fig. 8).

Summary

Nitric oxide is produced by almost every healthy mam-
malian tissue. In health, NO has a myriad of functions
that are essential for life. In disease, NO has many effects
that can be both helpful and deleterious.

Inhaled NO has made a rapid journey from the labora-
tory bench to the bedside because of its unique selective
pulmonary vasodilator activity and its ready availability.
It is the first vasodilator described to provide truly selec-
tive pulmonary vasodilation. A large number of basic and
clinical research studies have made great steps in delin-
eating its physiology, side effects, and clinical efficacy.
Nearly simultaneously, the clinical use of inhaled NO has
become widespread. During the past 8 yr, inhaled NO

1110

STEUDEL ET AL.

Anesthesiology, V 91, No 4, Oct 1999

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/91/4/1090/398065/0000542-199910000-00030.pdf by guest on 13 M
arch 2024



has been used to treat pulmonary hypertension and
hypoxemia in thousands of patients worldwide. Inhaled
NO is an effective pulmonary vasodilator in many disease
states characterized by pulmonary hypertension. In ad-
dition, inhaled NO decreases pulmonary venous admix-
ture in diffuse lung injury, and therefore increases sys-
temic oxygenation in many patients. Most importantly,
randomized multicenter studies of NO inhalation have
shown that this new therapy significantly reduces the
necessity for ECMO in newborns with PPHN or hypoxic
respiratory failure. NO inhalation has many additional
effects that may be clinically beneficial. Inhaled NO has
been reported to decrease pulmonary edema formation
and lung injury. In the systemic circulation, NO inhala-
tion inhibits peripheral vascular restenosis in animal
models of arterial injury, augments the oxygen binding
of sickle erythrocytes, and reduces cyclic coronary oc-
clusion in a model of coronary injury and thrombolysis.
However, important questions remain:

1. Does the reduction of pulmonary artery pressure and
increased PaO2

caused by NO inhalation improve clin-
ical outcome for patients with acute lung injury?
In a relatively uniform and well-defined population of
patients, newborns with hypoxic respiratory failure,
NO inhalation effectively improves oxygenation and
significantly reduces the use of ECMO. Avoiding
ECMO, a complicated and expensive invasive proce-
dure with limited availability, is an important clinical
endpoint and undoubtedly would justify the use of
inhaled NO.6,7 The clinical usefulness of inhaled NO
in adults remains unclear. Clinical studies of ARDS in
adults are complicated by the diverse nature of the
patient population, the precipitating causes of lung

injury, and the common occurrence of sepsis and
multiple organ system failure. Current data from mul-
ticenter trials suggest that the mortality rate in mod-
erate lung injury is not significantly changed by NO
inhalation. Whether this is because of inappropriate
study design, the complex nature and spectrum of
ARDS, inefficacy of NO, inappropriate dosing, or
counterbalancing toxic effects of NO is unknown.

2. If available data suggest that survival is unchanged,
should clinicians continue to study NO inhalation?
Researchers concentrating on the cellular and subcel-
lular effects of NO properly express concerns that
NO inhalation may worsen lung injury and damage
important structures. Initial clinical studies, however,
suggest that toxicity, if present, is extremely low. The
doses of NO now commonly used are less than those
received with cigarette exposure and are nearly
within the atmospheric background range of many
urban areas. Many clinical scientists continue to eval-
uate inhaled NO and find it useful for short-term
symptomatic treatment of hypoxemic respiratory fail-
ure and pulmonary vasoconstriction.

The pharmacologic and toxicologic profiles of NO
inhalation are incomplete. It is necessary to delineate
further (1) proper indications, (2) contraindications, (3)
sound dosing criteria, (4) organ disease from cellular and
subcellular toxicity, and (5) the causes of NO hypore-
sponsiveness. Randomized clinical studies of patients
with carefully defined specific disease states character-
ized by pulmonary hypertension or hypoxemia (e.g.,
pulmonary embolism, severe PAH, postpneumonectomy
pulmonary edema, acute rejection after lung transplan-

Fig. 8. Percentage change of mean pulmo-
nary arterial pressdure and systemic ar-
terial pressure (SAP) during inhalation of
nitric oxide (NO; 5 and 20 ppm), aerosol-
ized zaprinast (ZAP, 10–50 mg/ml), or
both, in awake lambs. *Significantly dif-
ferent from values at pulmonary arterial
hypertension (P < 0.05). #Significantly
different from the value at 5 ppm NO
(P < 0.05) and from 10 mg/ml zaprinast
(P < 0.01). Values are mean 6 SD. Re-
printed with permission from Ichinose et
al.302
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tation) and in premature newborns with respiratory fail-
ure remain to be completed. If such trials are carefully
designed and conducted, we may define additional
groups of patients that may benefit from, or may be
harmed by, inhaled NO. The use of inhaled NO contin-
ues to be a unique and fascinating approach to studying
and treating diseases as diverse as acute rejection of the
transplanted lung and sickle cell crisis. In evaluating this
complex field, it is critical that our view does not be-
come colored by a single study or effectiveness in a
particular disease state. As with most medical advances,
it is the evolution of a wide-ranging body of research that
will properly determine the place for NO inhalation
therapy in our armamentarium.
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Bloch (Cardiovascular Research Center, Massachusetts General Hospi-
tal, Boston), and Dr. Steven Tannenbaum (Massachusetts Institute of
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