NEW PIPERIDINE DERIVATIVES AS LOCAL ANESTHETICS •

C. L. Rose, A.B., T. P. Carney, Ph.D., K. K. Chen, M.D.

Indianapolis, Ind.

AND

S. M. McElvain, Ph.D.

Madison, Wis.

Received for publication June 11, 1947

In 1924, McElvain (1) elucidated the structural relationship between cocaine and substituted piperidine derivatives. He considered the latter as a portion of the ecgonine molecule, thus explaining in part the local anesthetic action of the substituted piperidines. Further work on this subject led to the introduction of 'Metycaine' [7-(2-methyl-piperidino)-propyl Benzoate Hydrochloride, Lilly] to medicine (2). It has been used successfully in topical, (3) infiltration, and continuous caudal anesthesia (4). McElvain and Carney (5) recently extended their investigation by synthesizing 89 additional compounds, all derivatives of 'Metycaine,' differing from it by substitutions on the piperidine and the benzene rings, and by changes in the chain connecting the two rings. The present communication deals with the pharmacological comparisons of 95 substances, 5 of which were not included in McElvain and Carney's recent paper (5).

METHODS

In order to avoid unnecessary testing only a few methods were adopted for the estimation of relative anesthetic potency, irritation and toxicity of various compounds. The duration of anesthesia was determined by instillation of the solutions in the rabbit's eye, and by intracutaneous injection in the guinea pig. The minimal concentration which paralyzed the rabbit's sciatic nerve was established with several compounds. These three procedures, roughly, gave information on surface, infiltration and nerve block anesthesia, respectively. In every instance the degree of irritation was observed after intracutaneous injection in the rabbit, and the acute toxicity was determined in mice by both intravenous and subcutaneous injections. One compound which showed marked activity on the rabbit's sciatic nerve was tested further

^{*} From the Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Ind., and the Department of Organic Chemistry, University of Wisconsin, Madison.

by intrathecal injections in dogs by the method of Dvorak and Manson (6). A minimum of 30 animals each was employed for toxicity tests, and a minimum of 3 animals each for other tests. All compounds were used as hydrochlorides in aqueous solution.

In the evaluation of corneal anesthesia of the rabbit, the precautions enumerated by Schmitz and Loevenhart (7) were observed. The technic of measuring skin anesthesia following intracutaneous injection in the guinea pig was previously described by one of us (C.L.R.) (8). The sciatic nerve block of the rabbit was judged by the criteria set forth by Schmitz and Loevenhart (9). The degree of irritation which developed after intracutaneous injection of each solution in white rabbits was classified arbitrarily as follows:

- negligible: indistinguishable from surrounding tissue;
+ slight: a trace of hyperemia or ischemia, a point of elevation;

++ mild: hyperemia or ischemia, fibrosis;

+++ moderate: hyperemia or ischemia extending to more than one centimeter, fibrosis with extension; edema; ++++ severe: necrosis, sloughing, induration, or marked

edema.

The median lethal dose ($LD_{50} \pm Standard$ Error) following intravenous or subcutaneous injection in white mice was computed by the formula of Bliss (10).

RESULTS

Table 1 lists results of tests of 34 compounds which are substituted benzoates of 3-(2-methylpiperidino) propyl alcohol. The first member. 'Metycaine,' serves as a standard of comparison. It can be observed readily that substitution of the p-position of the benzene ring by halogens does not appreciably improve the corneal anesthetic action but results in marked irritation to the rabbit's skin. Alkoxy radicals at the same position are apparently more desirable than alkyl substituents. The lengthening of the alkoxy chain is attended frequently by prolonged activity on the cornea, and not necessarily accompanied by increased toxicity and irritation. The most outstanding products of this series are Nos. 12 and 26. They are devoid of irritation in a 0.05 per cent solution. The benzovl benzoate (No. 34) is appreciably active. but highly toxic. Three pairs of iodo-methoxy and n-butoxy benzoates (Nos. 4, 5, 8, 9, 12, and 13) illustrate the difference of p- and o-substitutions. It appears that the p-isomers are slightly more active on the rabbit's cornea than the o-isomers. This is most pronounced with the *n*-butoxy derivatives. Also, *p*-iodo, and *p-n*-butoxy benzoates are less toxic to mice by intravenous injection than their o-isomers. Of special interest are the hydroxybenzoates (Nos. 27, 28, 29, 30). Both the oand m-substituents are active, free from irritation, and not particularly toxic—the o-form being commonly known as a salicylate. Substitution by hydroxyl groups at p- and at both p- and m-positions, results in a loss of corneal anesthesia. The presence of a sulfhydryl group at o-position, too, nullifies the local anesthetic action (No. 33). Replacement of a p-propoxy group by p-allyloxy offers no special advantage as exemplified by compound No. 15.

TABLE 1
Substituted Benzoates of 3-(2-Methylpiperidino)propyl Alcohol: $\begin{array}{c|c} CH_1 & R_1 & R_1 \\ \hline & N \cdot (CH_1)_1 \cdot OCO \\ \hline & R \end{array}$

No. R ₂		R	Solu- tion	Dura Ane	tion of thesia	Irrita-	Sci-	LDm±S. E. in Mice		
	Rı			Rab- bit's Eye	Guinea Piga Skin	Rabbit's Skin	atic Nerve Block	Intra- venous	Subcuta- neous	
				%	min.	min.	degree	Solu- tion	mg. per Kg.	mg. per Kg.
6 7 8 9 10 11 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25 26 26 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	H H H H I I I I I I I I I I I I I I I I		H GH	1 1 1 1 1 1 1 1 0.5 0.1 0.05 0.1 0.1 0.25 0.1 0.1 0.05 0.1 0.1 0.05 0.1 0.1 0.05	10 10 115 12 9 9 13 8 6 10 14 12 20 10 15 17 15 25 25 12	32 14 37*	-+++++++++++++-+-+-+-+-+-+	0.75 6+ 3 3 3 3 3 3+	22.5±1.0 25.4±1.8 26.2±2.5 48.2±1.4 43.0±1.4 27.0±1.2 29.5±1.2 21.0±0.7 15.7±1.2 21.0±0.7 12.1±0.4 22.0±1.3 12.4±0.4 24.4±0	120 ± 6.1 115 ± 2.6 117 ± 11.3 202 ± 26.2 217 ± 7.6 161 ± 23.0 222 ± 17.3 309 ± 48.0 272 ± 28.9 235 ± 14.0 447 ± 22.8
28 29 30	H OH OH	H OH II	OH H OH	1 0.5 0.5 1	0 4 12 0	25† 8	++	2 0.25 2	17.8 ±0.5 32.0 ±1.7 34.3 ±1.1 15.2 ±1.6	
32 33	H OH SH CO-CaHa	HHHH	OC ₄ H ₄ O(CH ₁) ₂ CH ₄ H	0.125 1 1 0.1	25 22 0 20	15	‡‡‡‡	3+	35.0 ±2.4 30.7 ±1.9 42.0 ±2.8 9.0 ±0.5	156±17.0 230±23.0 155±24.0

^{*} A 0.1% solution was used.

Table 2 summarizes data on 21 compounds consisting of 15 esters other than benzoates, 2 carbamates, 3 ethers, and one ketone, all containing the 3-(2-methylpiperidino)propyl radical. It will be noted that the majority of them are inactive. The 7 compounds (Nos. 36, 39, 44, 45, 47, 48, 55) which show evidence of corneal anesthesia are irritating to the rabbit's skin, following intracutaneous injection. The group as a whole is inferior to that in table 1.

[†] A 0.5% solution was used.

Included in table 3 are the results obtained with 14 benzoates, 5 salicylates, 1 thiosalicylate, 3 alkoxy benzoates, 2 phenylacetates, 1 phenoxy benzoate, 1 cyclohexyloxy benzoate, and 1 nicotinate of substituted piperidino propyl alcohols. There is a suggestion that as the alkyl chain is lengthened, irritation is augmented. It is interesting to

TABLE 2

Derivatives Other than Benzoates Containing the 3-(2-Methylpiperidino)propyl. Radical:

CH.

N · (CH.) . · R

		_		(0112)3	-16					
No.	o. R			ation of athesia	Irrita-	Sci-	LDu±S. E. in Mice			
No.	, R	tion	Rab- bit's Eye	Guinea Pig's Skin	Rabbit's Skin	Nerve Block	Intravenous	Subcutaneous		
		%	min.	min.	degree	% Solu- tion	mg. per Kg.	mg. per Kg.		
35	OCO-C:CH-CH:CH-N:CH	1	0	8	+		100.0±8.8	500 ± 11.3		
36	OCO-C:CH-CH:CHS	1	5		+		26.5 ± 1.4	730± 43		
37	OCO · CH ₂ · C ₄ H ₄	1	0	10*	_	0.25	51.8±2.0	800± 6.4		
38	OCO-CH2-OC4H4	1	0	22	-	2+	36.7 ± 2.1			
39	OCO-CH:CH-C ₆ H ₆	1	5		+++	ļ	23.5 ± 1.0			
40	OCO-CH ₂ CH ₂ -C ₆ H ₆	1	0	23		3+	59.0 ± 2.5	690±117		
41	OCO · CH ₂ · CH(CH ₂) ₄ · CH ₂	1	0	50	++++		31.5 ± 4.5	290± 39		
42	OCO · CH ₂ · C ₆ H ₄ OH(p)	1	lol	28		3+	74.0±3.9	1550±185		
43	OCO · CH ₂ C ₆ H ₄ OCH ₄ (p)	1	l o	7	+ 1		42.6 ± 3.9	235± 15		
44	OCO · NH · C · H ·	i i	10		++		39.9 ± 1.5	206± 13.2		
45	$OCO \cdot NH \cdot C_{10}H_7(\alpha)$	0.5	12		++		24.4±1.0	109± 8.8		
46	OCO · CH (C ₂ H ₄) · C ₆ H ₅	1	0	34	++		18.0±1.0	305 ± 30		
47	$OCO \cdot CH_2 \cdot C_6H_4 \cdot O(CH_2)_4 \cdot CH_2(p)$	0.25					29.0±5.5	275 ± 21		
48	OCO · CH (C ₆ H ₅) ₂	1	18		++		27.5 ± 1.4			
49	OCO · (CH ₂) ₁₂ · CH ₂	1	0	0	++++		117.0 ± 2.7			
50	OCO·CH(CH ₂) ₄ ·CH ₂	1	0	25	_	3+	40.0 ± 2.0	570± 56		
51	осо с:сн сн:сно	1	0	5	-	3	36.0±2.0	420± 19		
52	O(CH ₂) ₂ ·CH ₂	1	0	16	++++		17.8±0.4			
53	OC ₆ H ₅	1	0	16	++		25.2 ± 1.1			
54	OCH ₂ ·C ₆ H ₆	1 .	0	14	++		18.4±1.2			
55	CO·C ₆ H ₅	1	15		++		32.5 ± 5.5			
			, ,	ı						

^{*} A 0.05% solution was used.

observe that the phenyl derivative (No. 69) has a reasonable degree of activity, comparatively low toxicity in mice by intravenous injection, and negligible irritation. Of the 5 salicylates the 2,6-dimethylpiperidino derivative (No. 73) is the most potent, and devoid of irritation. The thiosalicylate of the same configuration (No. 80), on the other hand, is inactive on rabbit's cornea and very irritating. With the exception of No. 73, none of these compounds in table 3 is outstanding.

			011
LDs±8. E. in Mioe	Bubeutaneous	1600 ± 60 1600 ± 60 1600 ± 60 1600 ± 60 1600 ± 60 1600 ± 16 1600 ± 16 16 16 16 16 16 16 16 16 16 16 16 16 1	630 ± 39.4
LD*±8.	Intravenous	## bar Ng. 32.0 ± 1.3 32.0 ± 1.3 32.0 ± 1.3 32.0 ± 1.3 32.0 ± 1.3 32.0 ± 1.3 32.0 ± 1.3 32.0 ± 1.3 32.0 ± 1.3 32.0 ± 1.3 33.0 ± 1.3 33.0 ± 2.3 33.0 ±	37.0±3.2
Seintio	Nerve Block	% 88lu- Lion 0.5 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 6 5 5 6 6 7 7 8 3 8 4 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	_
Irritation.	Rabbit's Skin	\$ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	+
Duration of Anosthesia	Guinea Pig'e Skin	45 45 30,0 0 0 11 31	က
Dura	Rab bits Eye	### ### ### ### ######################	0
- 5	ton.	12	1
	×	COCHECULAR	CH,C,H,OCII,(p)
	7.	=======================================	CH,
	ā _	=======================================	Ξ
:	ž.	H H H H H H H H H H H H H H H H H H H	Н
	ž .		Ħ
;		######################################	CH,
;	ģ	828232323232323232323232323232323232323	8

* A 1% solution was used.

Downloaded from http://asa2.silverchair.com/anesthesiology/article-pdf/9/4/373/330355/0000542-194807000-00003.pdf by guest on 18 April 2024

Downloaded from http://asa2.silverchair.com/anesthesiology/article-pdf/9/4/373/330355/0000542-194807000-00003.pdf by guest on 18 April 2024

TABLE 4 Substituted Piperiding Alkul Bryzgafes and p-Butoxy Bryzgafes:

	in Mico	Subcuta- neous	mg. per Kg.					350±40			ca 1500	ca 1500		ca 800		
$\frac{X_{1}-X_{2}}{X_{2}-X_{3}}$ X_{2} X_{3} X_{4} X_{5}	LDs±S. E. in Mice	Intravenous	mg. per Kg.	20.5 ± 0.6	17.5 ± 0.9	28.0 ± 1.5	28.0 ± 0.6	18.0 ± 1.6	24.0 ± 1.3	27.4 ± 1.9	20.7 ± 5.2	35.8 ± 2.3	31.5±1.7	141.2 ± 2.0	36.0±1.7	
	Scintic	" Solution					0.1	63	3+	_						
	Irritation,	degree	+	+	+	+	ı	+ +	+++	++	++	+	+	+		
	Duration of Anesthesia	Guinea Pig's Skin	igli.					ន		,	12	0		0		
	Duration o	Rabbit's Eye	nin.	~ !	12	~ 1		17	12	20	8	es ;	17	o •	•	
		į,	-	→ \$	0.0	:: 		0.5	-	- ,	. .		- .	-		
	:		= =	==	= =	=:	=:	= :	=:	=:	H	000000000000000000000000000000000000000	110.6(110)0	U(CIII)). CIII		
	,	1	(110)	(H)	(CH).	(110)110/110 [110 (110)110	CILCUINCINAL CILCUIN	Cu Cucali, outon			(113)13(113)	Custom Custom			CHI C(CHI)I CHI	
	į,	- z			:=	: =	: 5	35	35	; ;	:=	==	==	: 5	1	
	<u>ن</u> و		=	:=	=	: =	==	==	::	==	:=	: 5	=	1 =	:	
	<u> </u>		ž	5	5	Ē	:	1 =	12	: 5	5	; ;	ë:	:		
	ź	2	5 %	3 5	20	5 8	8 8	8	3 2	3 8	3 5	3	5	3	•	

Unable to determine because the eye was continuously closed due to severe irritation,

The last series of compounds, as shown in table 4, is composed of those which have varying lengths of the chain linking the piperidine nucleus and the benzoate radical. Variation of substitution by a methyl group in the piperidine ring also takes place. One compound (No. 94) was inactive by both local application to the eye and intracutaneous injection. The remaining products with one exception show various degrees of activity but are irritating. The exception is 4-(4-methyl-piperidino)-2-butyl benzoate hydrochloride (No. 88). Although it has a low degree of activity on the rabbit's cornea and guinea pig skin, it is very effective when applied to the exposed sciatic nerve of the rabbit. Intrathecal injections of this compound in dogs showed it to be active in doses of 0.225 mg. per kg. as compared to a 1.5 mg. per kg. dose of 'Metycaine.' The last substance (No. 95) is characterized by its local irritation to the rabbit's eve.

Three compounds (Nos. 12, 26, and 73), because of their desirable properties as local anesthetics, were tested in 6 human subjects by intracutaneous injection on the volar surface of the forearm according to the technic of Sollmann (11). A 0.2 per cent solution of Nos. 12 and 26 each, and a 1 per cent solution of No. 73 were employed. The duration of anesthesia was determined by stroking the injected area with a wisp of cotton. It was found that No. 12 caused complete anesthesia for an average of 31 minutes; No. 26, 58 minutes; and No. 73, 45 minutes.

One compound, No. 26, was tried on human eyes. A 0.05 per cent solution when instilled in the eye was hardly effective. A 1 per cent solution caused definite corneal anesthesia for an average of 20 minutes in 5 subjects, but was irritating.

Conclusion

A total of 94 compounds, related to 'Metycaine' has been studied. By comparison of corneal and sciatic nerve anesthesia in rabbits, cutaneous anesthesia in guinea pigs, spinal anesthesia in dogs, intracutaneous irritation in rabbits, and toxicity in mice, 4 compounds appear to be outstanding. They are: 3-(2-methylpiperidino)propyl p-butoxybenzoate, 3-(2-methylpiperidino)propyl p-cyclohexyloxy benzoate, 3-(2,6-dimethylpiperidino)propyl salicylate, and 4-(4-methylpiperidino)-2-butyl benzoate.

ACKNOWLEDGMENTS

We are indebted to Dr. C. C. Scott for the experiments on human subjects and to Mr. Davis Rawlings for his assistance in numerous animal experiments.

REFERENCES

- McElvain, S. M.: J. Amer. Chem. Soc. 46: 1721-1727, 1924.
- 2. McElvain, S. M.: J. Amer. Chem. Soc. 49: 2835-2840, 1927.
- 3. Dietrich, W. C., and Beutner, R.: Anesthesiology 7: 255-259, 1946.
- 4. Edwards, W. B., and Hingson, R. A.: Amer. J. Surg. 57: 459-464, 1942.
- 5. McElvain, S. M., and Carney, T. P.: J. Amer. Chem. Soc. 68: 2592-2602, 1946.
- Dvorak, H. S., and Manson, M. H.: Proc. Soc. Exper. Biol. & Med. 28: 344-347, 1930-31.
- Schmitz, H. L., and Loevenhart, A. S.: J. Pharmacol. & Exper. Therap. 24: 159-166, 1924.
 Rose, C. L.: J. Lab. & Clin. Med. 15: 128-131, 1929.
- 9. Schmitz, H. L., and Loevenhart, A. S.: J. Pharmacol. & Exper. Therap. 24: 167-177, 1924.
- 10. Bliss, C. I.: Quart. J. Pharm. & Pharmacol. 11: 192-216, 1938.
- 11. Sollmann, T.: J. Pharmacol. & Exper. Therap. 11: 69-80, 1918.

(Continued from page 357)

- 6. The Aspiration of Gastric Contents during General Anesthesia, William A. Weiss, M.D.
- 8:30 p.m. to 10:00 p.m. Open Forum on Current Problems.
 - 1. Public Relations, R. J. Whitacre, M.D.
 - 2. The Provisions of Personnel for the Practice of Anesthesiology, Edward B. Tuohy, M.D.
 - 3. The Addition of Vasopressor Drugs to Spinal Anesthetic Agents, Paul Dunphy, M.D.
 - 4. The Physical Hazards of Anesthesia, Curtiss B. Hickcox, M.D.

FRIDAY, OCTOBER S. 1948

- 9:30 a.m. to 12:00 p.m. Panel Discussions.
 - 1. Obstetrical Anesthesia, R. J. Whitacre, M.D., Moderator.

Participants: Bert B. Hershenson, M.D.

Robert Hingson, M.D. Newlin F. Paxson, M.D.

Perry P. Volpitto, M.D.

2. Controlled Respiration, Robert D. Dripps, M.D., Moderator.

Participants: D. Dwight Grove, M.D. Stevens J. Martin, M.D. Robert L. Patterson, M.D.

- John W. Shuman, Jr., M.D. 2:00 p.m. to 4:00 p.m. Formal Papers-Chairman, George J. Thomas, M.D.
 - 1. The Effect of Low Blood Pressure on Coronary Blood Flow, James E. Eckenhoff, M.D.
 - 2. Morphine Sensitivity, William T. Salter, M.D.

(Continued on page 390)