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Background: Midazolam is used commonly for sedation in
the surgical intensive care unit. A suboptimal dosing regimen
may lead to relative overdosing, which could result in delayed
extubation and increased cost. This multicenter trial character-
ized midazolam pharmacodynamics in patients recovering
from coronary artery bypass grafting.

Methods: Three centers enrolled 90 patients undergoing coro-
nary artery bypass grafting. All patients received sufentanil and
midazolam via target-controlled infusion. After surgery, midazo-
lam was titrated to a Ramsay sedation score of 5 for 2 h and then
decreased to maintain a sedation score of 3 or 4 for at least another
4 h. Pharmacodynamic parameters were derived using NONMEM.
The model was cross-validated to test performance.
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Results: The probability of a given level of sedation was re2
lated to the midazolam concentration by this equation: P(Seda-

tion = ss) = C"/(C" + Cg, ..n), where ss is the sedation score, Cf;}
D
is the sum of the midazolam concentration and a term reflect-3

ing the dissipating effect of anesthesia: C = [midazolam] + 6 X§

X, where 0 = 256 ng/ml and K = 0.19 h™ Cs s Values forg
Ramsay scores of 2 to 6 were 5.7, 71, 171, 260, and 659 ng/ml £y
respectively. The model predicted 57% of the data points cor-S
rectly and 88% within one sedation score.

Conclusions: Despite previous reports of high mtenndnvndua
variability in midazolam pharmacodynamics in patients in th
surgical intensive care unit, these cross-validation results sug
gest that, when midazolam is administered using a target-con-2
trolled infusion device, the level of sedation can be predicted
within 1 sedation score in 88% of patients based on the target
midazolam concentration and the time since the conclusion of
the anesthetic. (Key words: Anxiolytics; continuous infusion:
midazolam; nonlinear regression; population modeling; seda-
tion.)
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SEDATION is often necessary during the period of con-
trolled ventilation after coronary artery bypass grdrtmg,
(CABG). Inadequate sedation during controlled ventila-g
tion may lead to increased cardiopulmonary and meta-
bolic demands, resulting in hypertension, tachycardia,
arrhythmia, myocardial ischemia, tachypnea, and hyper-
ventilation.' The principal goal of postoperative sedation
is to minimize these physiologic and psychologic re-
sponses to stressful stimuli.
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Midazolam is a commonly
used benzodiazepine for short-term sedation in critically
ill patients.” It is a water-soluble benzodiazepine follow-
ing a single intravenous bolus injection, midazolam rap-
idly crosses the blood-brain barrier with an onset of
drug effect within 2 to 2.5 min after typical sedative
doses.” The principal active metabolite of midazolam,
I-hydroxymidazolam, is nearly as potent as the parent
compound.” Previous studies suggested that long-term
midazolam infusions result in accumulation of 1-hy-
droxymidazolam glucuronide in patients in the intensive
care unit (ICU) who have renal insufficiency.’
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PHARMACODYNAMICS OF MIDAZOLAM IN CABG PATIENTS

Midazolam pharmacodynamics have been studied
widely using tools such as the electroencephalography,
Digit Symbol Substitution Test, and saccadic eye move-
ment,” """ but clinical measures of drug effect have not
been applied to patients in the ICU who are sedated with
midazolam.

Although midazolam infusions are used commonly to
sedate patients who require mechanical ventilation,
there are no well-established dosing recommendations.
Wide ranges of midazolam plasma concentrations have
been associated with adequate sedation,'” and experi-
enced clinicians can make empiric adjustments effec-
tively. Nonetheless, suboptimal dosing may lead to inad-
equate or excessive sedation.

This study was designed to develop rational dosing
guidelines for midazolam administration in patients re-
quiring mechanical ventilation after CABG. The ap-
proach was to develop detailed pharmacokinetic and
pharmacodynamic models for midazolam and to inte-
grate the results in dosing guidelines. The study used a
multicenter design to assess the typical pharmacokinet-
ics and their variability. The pharmacokinetic analysis
can be found in a companion article in this issue.'® This
article describes the pharmacodynamic analysis of mida-
zolam in this population and integrates the pharmacody-
namic and pharmacokinetic models to derive dosing
guidelines for patients requiring mechanical ventilation
after elective CABG.

Materials and Methods

Study Design

After we received institutional review board approval,
we obtained written informed consent from 90 adult
patients who required mechanical ventilation in the sur-
gical ICU for a minimum of 6 h after elective CABG
surgery. The methods are presented in detail in another
article in this issue.'® For brevity, only those methods
relevant to the pharmacodynamic analysis are repeated.

Equal numbers of patients were recruited at three
centers: Duke University Medical Center (Duke), Emory
University Medical Center (Emory), and the VA Palo Alto
Health Care System (PAVA). Patients with neurologic
disorders, severe liver or renal disease, intraoperative
complications, a history of recent drug abuse or long-
term benzodiazepine use, and a history of allergy to
benzodiazepine were excluded.

Midazolam (Versed; Roche Pharmaceuticals, Nutley,
NJ) and sufentanil (Sufenta; Janssen, Titusville, NJ) were
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Table 1. The Ramsay Sedation Score

Score Description

Patient paralyzed, unable to assess level of sedation

Patient anxious, agitated, or restless

Patient cooperative, oriented, and tranquil

Patient sedated but responds to commands

Patient asleep but responds to glabellar tap

Patient asleep but responds to nail bed pressure (no
response to glabellar tap)

6 Patient asleep, no response to nail bed pressure

O WOWN 2O

administered intravenously to all patients during and
after operation using a target-controlled infusion (TCI)
device. Midazolam and sufentanil were infused based on
pharmacokinetic models reported by Biihrer et al® and
Hudson et al.,'* respectively.

All patients followed a standardized perioperative an-
esthetic and invasive monitoring protocol. They were
administered 0.5 to 2 mg lorazepam orally and 5-10 mg
methadone orally 1 h before surgery. Midazolam was
administered using the TCI device to provide sedation
when invasive monitors were inserted. Anesthesia was
induced with midazolam and sufentanil infusions at tar-
get plasma concentrations of 150 and 1-2 ng/ml, respec-
tively. Supplemental anesthesia was provided using
isoflurane or enflurane to a maximum of 1%, as neces-
sary. The sufentanil and midazolam infusions were sus-
pended during transport from the operating room to the
ICU.

At arrival in the ICU, the sufentanil infusion was re-
started at a target concentration of 0.15 ng/ml. Addi-
tional analgesia was provided, as necessary, by adminis-
tration of 0.25 ug/kg sufentanil with the TCI device.
Patients were allowed to regain consciousness, and se-
dation scores were evaluated using a modified version of
the Ramsay sedation scale (table 1).'> When patients
emerged from anesthesia with a sedation score of 5 or
less, the midazolam TCI infusion was restarted. The
target concentration of midazolam was then titrated up
every 15 min as necessary to reach and maintain a seda-
tion score of 5. If the sedation score was 0, the target
concentration was decreased by 25-50 ng/ml every 30
min until a sedation score of 5 was achieved again.
Patients were titrated to a midazolam target concentra-
tion that maintained a sedation score of 5 for at least 2 h.
Subsequently, the target concentration was decreased
every 30 min as clinically indicated to maintain a seda-
tion score of 3 or 4. Midazolam infusions were continued
after operation for a minimum of 6 h in all patients. The
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midazolam and sufentanil infusions were discontinued
before tracheal extubation.

Pharmacodynamic Analysis

Data Used for the Analysis. As described previously,
plasma samples were assayed for midazolam and its main
metabolite, 1-hydroxymidazolam.'® Sufentanil was not
assayed. Computer files generated by the CACI 11'® and
STANPUMPtT programs provided detailed descriptions
of the drug infusions. These computer files were used to
provide precise predictions of the midazolam and sufen-
tanil concentrations for this analysis.

The pharmacodynamic models were based on model-
predicted plasma midazolam and sufentanil concentra-
tions instead of the concentrations actually measured.
For midazolam, the concentrations were calculated from
cach patient’s post hoc Bayesian pharmacokinetic esti-
mates, based on the pharmacokinetic model reported in
our companion article.'? If the models are accurate, post
hoc Bayesian predictions of concentration can filter out
much of the intraindividual measurement noise. Thus,
the post hoc Bayesian prediction is likely to be closer to
the “true” (and unknowable) concentrations than the
actual measured concentrations. For sufentanil, the con-
centrations were calculated from the pharmacokinetics
reported by Gepts et al.'” and were not adjusted for this
clinical setting or individualized for each patient. The
Gepts model of sufentanil was not available when this
study was performed, therefore, the sufentanil delivery
was based on the pharmacokinetics reported by Hudson
et al."* Subsequently, Gepts et al.'” published sufentanil
pharmacokinetics based on 2,880 min of blood sam-
pling. The extended sampling in the study by Gepts et
al.'” makes it more appropriate for our current study,
therefore we chose it for the sufentanil simulations.

Pharmacodynamic Models. The pharmacodynamic
model related the probability of a particular level of
sedation to plasma drug concentrations. This relation
followed a sigmoidal form:

TTSTANPUMP source and object code are freely available via the
World Wide Web at the URL http://pkpd.icon.palo-alto.med.va.gov

The pharmacokinetic and pharmacodynamic data from this study, in-
cluding the NONMEM control files, can be found on the World Wide Web
at pkpd.icon.palo-alto.med.va.gov in the directory /data.dir/midazolam
icu.dir. The version of STANPUMP in the directory /stanpump.dir incor-
porates the ICU midazolam pharmacokinetics described by Zomorodi et
als

++Beal SL, Sheiner LB: NONMEM User's Guide. San Francisco, Uni-
versity of California, San Francisco, 1979
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Cn
P(Sedation=ss) = ——————

n a
C + “50,58 )

where P(Sedation = ss) is the probability that the
sedation score would be equal to or more than (Z.e.,
“deeper than”) a given sedation score, C is the drug
concentration, Cs, is the concentration associated
with 50% probability, and 7 is the steepness of the
concentration-probability relation, also called the
“Hill coefficient.” The pharmacodynamic model actu-
ally consisted of five related curves, one each for
sedation scores of 2, 3, 4, 5, or 6.

Equation 1 does not predict a sedation score directly,
but rather a probability of being at or deeper than a
particular level. At any given concentration there is a
finite probability of being at sedation scores 1, 2, 3, 4, 5,
and 6 when the sum of those probabilities is 1. At any
given concentration, it is possible to calculate the prob-
ability of a particular sedation score (ss) from the family
of curves for sedation scores equal to 1, 2, 3, 4, 5, and 6:

P(sedation = ss) = P(sedation = ss)

— REcekhion = &8 2 1) (@)

For example, in equation 2, the probability of being at
a sedation score of 3 is the probability of being at a
sedation score =3 (equation 1) minus the probability of
being at a sedation score =4 (equation 1). We defined
the actual sedation score “predicted” by the model for
any concentration as the sedation score with the highest
probability.

The likelihood of the model is the product of the
probability of each observed sedation score. The objec-
tive function (Obj, —2 times the logarithm of the likeli-
hood) was minimized using the nonlinear regression
program NONMEM Version IV (University of California,
San Francisco, CA).1f The treatment of interindividual
variability is described in appendix 1.

The simplest interpretation of the concentration term,
C, in equation 1 is that it represents the plasma midazo-
lam concentration. However, other representations of C
are possible, including that “concentration” represents
midazolam plus sufentanil, midazolam plus the residual
anesthetic effects, and so on. The underlying hypothesis
is that sedation is caused by a drug, a combination of
drugs, or some perioperative physiology (e.g., cooling)
that can be modeled as if it were a drug. Table 2 sum-
marizes several different interpretations of concentra-
tion, C. In the simplest model (model A in table 2), C is
the post hoc Bayesian estimate of midazolam concentra-

—
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Table 2. Models Tested

General form:
o
C"+

50,88

P(Sedation = ss) =

Models for C (concentration)
Model A: C = [midazolam]

Model B: C = [midazolam] + 65 X [sufentanil]

Model C: C = [midazolam] + 65 X [sufentanil] + 6,5 %
[midazolam] X [sufentanil]

Model D: C = [midazolam] + [virtual drug]

[virtual drug] = 6, x e "
Model E: C = [midazolam] + [virtual drug] + 65 X [sufentanil]

C = drug concentration; ss = Ramsay sedation score; s = potency of
sufentanil relative to midazolam; 6,5 = potency of the interaction between
sufentanil and midazolam; Virtual drug = residual effect of anesthesia, pos-
sibly including rewarming and other nondrug effects; 6, = concentration of
virtual drug at t = 0, relative to midazolam; K = time constant of the residual
effect of anesthesia; t = minutes since arrival in the ICU.

tion. An alternate model is to represent concentration as
some combination of midazolam and sufentanil (models
B and C in table 2). Another choice is to assume that
there is a residual anesthetic effect, which might include
sufentanil, isoflurane, or enflurane; rewarming; the resid-
ual effects of the anesthetic; premedication; and perhaps
even acute tolerance. These can be grouped together as
a “virtual drug” that is present in its highest concentra-
tion when the patient arrives in the ICU and washes out
over time, as shown in model D in table 2. The last
model in table 2 (model E) represents drug concentra-
tion as a combination of midazolam, sufentanil, and the
residual anesthetic effect (the virtual drug).

In addition to exploring a series of models for concen-
tration, we investigated the role of the covariates age and
study center. These covariates were evaluated by ex-
tending the models shown in table 2 to include age and
center as covariates of Cs, and evaluating the improve-
ment in the NONMEM objective function. The role of
1-hydroxymidazolam was investigated by including addi-
tive and synergistic interaction models (similar to that
described in table 2 for sufentanil) and evaluating the
improvement in the NONMEM objective function.

Assessing the Goodness of Fit. As noted, the phar-
macodynamic fits were obtained using midazolam con-
centrations based on individual post hoc Bayesian pre-
dictions of individual pharmacokinetics. However, the
clinician treating the postsurgical patient will not have
individualized pharmacokinetic estimates on which to
make therapeutic decisions. Therefore, we assessed the
goodness of our model fit using the typical values of the
midazolam pharmacokinetics, as reported by Zomorodi
et al.'® in the companion article in this issue, which will
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be available to clinicians using a TCI device. These val-
ues are based on the population prediction of the mida-
zolam concentrations, ignoring interindividual variability
in the pharmacokinetics.

Classic tools'®!?

for assessing the goodness of fit for
pharmacokinetic models (e.g., residual error plots, me-
dian performance error, absolute median performance
Crror, root mean square error) cannot be used to assess
the goodness of a probability model with a polychoto-
mous (multiple discrete) response. Therefore, we as-
sessed goodness of fit using the NONMEM objective
function, the percentage of data points predicted cor-
rectly, and a newly described measure of performance,
the prediction probability (P).”” These measures of
goodness of fit are described in detail in appendix 2.

Graphic Assessment of the Goodness of Fit. Visual
assessment of the goodness of fit is difficult because the
observations are sedation scores, not the probability of
the scores as predicted by the models. The pharmaco-
dynamic models predicted the probability of a particular
observation and not the observation itself.

Therefore, residual errors could not be calculated and
residual plots, a standard pharmacokinetic analysis tool,
could not be constructed. The NONMEM objective func-
tion provides one measure of goodness of fit, but it has
no clinical interpretation.

We created a “measurement” of the probability of each
observation to compare with the probabilities predicted
by the different models. The concentrations were rank
ordered. Each concentration was considered together
with its four lower and four higher neighbors. At each
concentration, the probability of a given observation
(e.g., sedation = 3) was “measured” by calculating the
fraction of the nine concentrations (the concentration of
interest and its eight neighbors) for which the level of
sedation was equal to or deeper than the given level of
sedation. This “measurement” of the probability at each
concentration was then compared with the prediction of
the model. We chose nine concentrations as the basis for
this measurement of probability because it limited the
span of concentrations averaged to produce the mea-
surement. Had we used more concentrations to produce
the measurement, we would have averaged concentra-
tions over a larger range. This would be expected to
introduce a positive bias (with the measured value
greater than the actual probability) for concentrations
less than C,, and a negative bias (with the measured
value less than actual probability) for concentrations
more than Cs,.

To assign a prediction to each concentration, we cal-
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Table 3. Numbers of Data Points per Center and per Sedation Score

Sedation Score

Center 1 2 3 4 5 6 Total
Palo Alto VA 5 105 166 67 99 2 444
Emory il 124 140 94 120 30 509
Duke 2 59 68 87 141 19 376
Total 8 288 374 248 360 51 1,329

culated the probability of each level of sedation accord-
ing to equation 2 as a function of concentration. These
were then plotted against the actual sedation scores,
again as a function of concentration.

Cross-validation. Assessing the quality of a model by
looking at the predictions of those observations used to
create the model is misleading, because the results are
favorably biased. Ideally, the model should be tested
prospectively. Prospectively testing results from a large,
multicenter study is expensive and time consuming.
Cross-validation is a convenient alternative to a prospec-
tive study®"** that should provide a measurement of the
expected performance of the model during identical
experimental circumstances. To perform a cross-valida-
tion, the model is refitted with one subject of the data set
excluded. The new parameters, called jackknife esti-
mates, are used to predict the data in the excluded
subject. Jackknife estimates are obtained for every sub-
ject. This procedure yields a nearly unbiased estimate of
the predictive ability of the model.

Jackknife estimates were used to cross-validate the
percentage of accurately predicted observations and the
graphic analyses of goodness of fit. Models estimated
from mixed-effects modeling (MEM) and “naive pooled
data” (NPD) methods were compared using cross-valida-
tion. The jackknife approach was also used to calculate
the standard error of the pharmacodynamic parameters
from both the NPD and the MEM estimates, as described
by Efron and Tibshirani.””> These were compared with
the NONMEM estimates of the standard errors of the
parameters.

Results

Of the 90 patients enrolled, 27 were excluded from the
pharmacokinetic analysis. This analysis and the reasons
for the exclusions are described by Zomorodi et al'?
From the 63 remaining patients, nine sufentanil infusion
profile data files were either corrupted or unavailable.
The final data set included 1,329 observations of seda-
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tion scores (table 3) from 54 patients (17 from PAVA, 18
from Emory, and 19 from Duke), yielding an average of
25 observations of sedation per patient. Bayesian predic-
tions for midazolam concentrations in the surgical ICU
ranged from 5 to 189 ng/ml. The average was 53 ng/ml.
Ninety-one percent of the predicted midazolam concen-
trations ranged from 10 to 100 ng/ml. Population pre-
dictions for sufentanil concentrations ranged from 0.05
to 2.8 ng/ml. However, only two patients had predicted
sufentanil concentrations more than 1 ng/ml. The aver-
age was 0.24 ng/ml. Ninety-three percent of the pre-
dicted sufentanil concentrations ranged from 0.1 to 0.5
ng/ml. Only 6 of 54 patients had detectable levels of
1-hydroxymidazolam.

The selection of the final model is discussed in appen-
dix 3. The final model was

c’

ss) = — i

C + ¢

“50),s8

P(Sedation =

where C;o, = 5.7, 71, 171, 260, and 659 for sedation
scores = 2, 3, 4, 5, and 6, respectively, and C = mida-
zolam + 256e "' ' where t is the time, measured in
hours, since the patient arrived in the ICU. In other
words, sedation is a function of midazolam concentra-
tion plus a virtual drug with an initial concentration on
arrival in the ICU equivalent to a midazolam concentra-
tion of 256 ng/ml and an elimination half-life of 3.7 h
(table 4).

Figure 1, top graph, shows the predicted probability of
a sedation score = 3 as a function of concentration, as
defined by the final model. It also shows the “measured”
probability at each observation, as described in Materials
and Methods. The final model provided a nearly unbi-
ased prediction of the probability of sedation being = 3
as a function of concentration. The performance for
other sedation scores was similar.

Figure 2 shows the probability of sedation scores 2, 3,
4, 5, and 6 as a function of concentration calculated
using equation 2, and based on the NPD parameter
estimates. Interestingly, at a concentration of approxi-
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“\,'| Table 4. Summary of Model Parameters
ECso.2 ECs0.a ECs0.4 ECs05 ECso6 by
(hg-mi™) (g-ml"") (ng-mi"") (ag-mi ") (ng-mi n K(h™") (hg-mi~")  Obj
Naive pooled
models
Model A 1.30 17.0 46.4 82.3 379 1.78 — = 3,444
Model B 2078 2515 60.7 98.1 352 2815 — — 3,386
Model C 1.58 BilN7 105 201 1150 1.59 — — 3,365
Model D 5.65 70.9 171 260 659 3.03 0.1878 256 2,904
Model E 5.65 70.9 171 261 660 3.03 0.1878 251 2,904
I Mixed-effect
models
Model A 2015 11525 31.8 46.5 1194 82, — — 2,767
Model B T 39.7 72.4 97.6 189 5.16 — — 2,566
Model C 14.1 150 375 592 1600 815 — — 2,523
Model D 7:3 64.5 130 179 352 4.9 0.1644 98.2 2,477
Model E 8.11 60.8 116 157 296 532 0.1512 73.4 2,467

mately 200 ng/ml, the patient has a nearly equal proba-
bility of having sedation scores 3, 4, or 5. A sedation
score of 4 is spread out over such a large concentration
range that it never has the highest probability among all

Model D: naive pooled
1.0 e

Probability (sedation>3)
(=]
W

0.0
10 100 1000
Model D: mixed-effect

X0
o
Al
=}
i
=
o |
2 \
=055
z \ e b Mot el
= Predicted probability
—5 """" Measured probability |
2 » ST

0.0

10 100 1000
Total Concentration (ng/ml)
([midazolam]+[virtual drug])

Fig. 1. Probability (sedation score =3) as a function of concen-
tration.
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sedation scores, and thus it is never the sedation score
predicted for any concentration.

Figure 3 shows all 1,329 sedation scores from the 54
patients (vertical dashes) and the predictions of the
pharmacodynamic model D (solid line), using the mida-
zolam concentrations predicted by the population phar-
macokinetic model.'® The prediction goes through the
central portion of each sedation score. At a concentra-
tion of 200 ng/ml, the prediction increases abruptly from
a sedation score of 3 to 5, which is consistent with the
nearly identical densities of observed sedation scores of
3, 4, and 5 at this concentration.

In the cross-validation, the pharmacodynamic model
estimated using the NPD approach provided 56% correct

——— P(Sedation=2) |

P(Sedation=3)
—— P(Sedation=4)l
—-— P(Sedation=5) |
— — P(Sedation=6) l

=)

=
o0

—

=

=
foN

~
y Probability of sedation

Probability of Sedation Levels

0.4 3.4 and 5 are almost
equal
0.2 ><\/\
//
0.0 =T - ‘ . o8
0 100 200 300 400 500

Total Concentration (ng/ml)
(Midazolam+Virtual Drug)

Fig. 2. Probability of sedation scores as a function of total
concentration for naive pooled data model D.
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predictions and 88% close (within 1 sedation score)
predictions. The pharmacodynamic model estimated us-
ing the MEM approach provided 49% correct predictions
and 83% close predictions. The cross-validation thus con-
firmed the choice of pharmacodynamic model D, esti-
mated using the NPD approach.

Discussion

This study investigated the relation between clinical
effect and the plasma drug concentration in ventilated
patients recovering from CABG surgery. A better under-
standing of this relation should help clinicians to design
rational infusion regimens to provide sedation for their
patients in the surgical ICU.

Study Limitations

The pharmacodynamic analysis was complicated by
several problems with the study design. First, the Ram-
say scale used to assess sedation has limitations. As an
ordered categoric scale, a sedation score of 2 represents
a deeper sedation level than does a sedation score of 1.
However, 1 is agitated, whereas 2 represents calm, pre-
sumably the baseline. There is no provision in the Ram-
say scale for a patient who is sedated yet agitated, al-
though such patients are not uncommon. In addition, a
sedation score of 2 may be the true baseline for no drug
effect, which would clearly be the case if the patients
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were not subjected to noxious stimulation. At the oppog
site end of the scale, the distinction between a scdution%
score of 5 and 6 is the response to a painful stimulusg
such as deep pressure to the nail bed (used as a t()rture§
in medieval times). A high sufentanil concentration mays
blunt the response to this stimulation in an otherwise%
lightly sedated patient. Thus, the Ramsay scale blurs theg
distinction between pain and sedation. Finally, the Ram-§
say sedation scale uses three different types of 5timula-§
tion: verbal, tactile, and painful. We assumed that theseg
are rank ordered, as shown in table 1, and figure
provides evidence that this is the case. However, it is notZ
necessarily the case that these are rank ordered. Theg
good performance of concentration as a predictor ofS
Ramsay score in this study (Px = 0.84) may offer ;1S§

JP$LZ

1]

much evidence for the validity of the Ramsay scale as a

202 |

measure of sedation as it does for our measure of con-®
centration as a predictor of sedation.

A second complication is that mental status naturally
changes in the absence of drugs. Most persons alternate
from a level of 2 (awake) to 3 (sedated) and 4 (asleep)
during the day. Clearly, the level of sedation is not
entirely a function of plasma concentration, as repre-
sented in models A, B, and C. Perhaps the success of
model D, the virtual drug model, was partly due to the
ability of this model to account for the change in alert-
ness during the first postoperative night. Model D in-
cluded a nonspecific drug effect that dissipated progres-
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sively. The dissipation may have represented, in part, the
passage of the first postoperative night when the pa-
tients would have been asleep anyway.

The Ramsay scale is subjective. We did not find a
center effect, suggesting that the scale was consistently
applied among study centers. However, individual cen-
ters reported considerable discussion about distinctions
between levels 3, 4, and 5. This is clear from figure 2,
which shows that at a concentration of approximately
200 ng/ml it was difficult to distinguish among these
three clinical states.

The study was complicated by the correlation between
sufentanil and midazolam concentrations and the clus-
tering of 93% of the sufentanil concentrations between
0.1 and 0.5 ng/ml. The interaction between opioids and
benzodiazepines is well documented.”*** Modeling
such an interaction necessitates that we characterize the
effects of the two drugs administered together and then
model the effect of each drug in the absence of the
other. In this study, the drugs were administered con-
currently to all patients. At arrival in the surgical ICU, the
sufentanil and midazolam concentrations were initially
high, both of which decreased progressively. In addi-
tion, the narrow span of sufentanil concentrations did
not permit exploration of the response surface. Because
opioids and benzodiazepines are known to interact syn-
ergistically, it is likely that part of the drug effect attrib-
uted to midazolam in our results is actually the contri-
bution of sufentanil, just as part of the effect of the
virtual drug is probably sufentanil.

Only six patients had detectable plasma levels of 1-hy-
droxymidazolam, and the levels were very low. This may
account for the lack of effect for 1-hydroxymidazolam in
our models. 1-Hydroxymidazolam has been shown
clearly to have benzodiazepine properties when admin-
istered intravenously.” The lack of effect seen in our
study indicates a lack of power to detect a subtle effect
with this study design and is not a reflection on the
potency of 1-hydroxymidazolam.

Measures of Goodness of Fit

We tried to “measure” the probability of each obser-
vation, as shown in figure 1. Even with this approach it
was not possible to compute meaningful residuals from
this figure, because the precision of each measured
probability depends on the number of data points com-
bined to produce the measurement. Increasing the num-
ber of data points will produce less apparent variability,
at the expense of increased bias. Thus, figure 1 over-
states the variability in the concentration-versus-re-
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sponse relation, because only nine points are combined
at each measured probability.

Dosing Implications

The final model included the residual effect of anes-
thesia as a simple monoexponential decay without in-
corporating likely covariates such as body temperature,
anesthetic duration, or models of the individual drugs
administered during operation. Because all three centers
followed a uniform study protocol, the model for anes-
thetic wash-out developed for this study may not de-
scribe the time course for different anesthetic and sur-
gical practices. In addition, the pharmacokinetic model
of midazolam reported by Zomorodi et al.'? is based on
data collected primarily during the first 24 h. Therefore,
extrapolation of the results beyond 24 h may be unreli-
able. However, we note that the final model predicted
that the patient arrived in the surgical ICU showing the
effects of both midazolam and a virtual drug. At arrival in
the surgical ICU, the effect of the virtual drug was the
equivalent of 256 ng/ml midazolam. The halflife of this
virtual drug was 3.7 h.

It is still possible to derive insight from this model. The
midazolam concentration necessary to maintain a partic-
ular sedation score will vary over time as the residual
effect of anesthesia dissipates. With the anesthetic regi-
men outlined in this protocol, the halflife of the residual
effect was 3.7 h. Figure 4 shows how the probability of
sedation score versus midazolam concentration varies
with time. Figure 5 depicts the midazolam plasma con-
centrations (top) and the corresponding midazolam in-
fusion rates (bottom) needed to achieve a desired seda-
tion score as a function of time.

Table 5 illustrates midazolam dosing regimens neces-
sary to maintain sedation scores of 3 (C5, 5 = 71 ng/ml)
and 5 (Cs, 5 = 260 ng/ml) after CABG surgery. Table 5 is
based on simulations performed with STANPUMP. Three
midazolam infusion rates are calculated: (1) the rate to
achieve a sedation score of 3 in half of the patients
(Csp3), (2) the rate to achieve a sedation score of 5 in
half of the patients (Cs, 5), and (3) the rate to achieve a
sedation score of 5 in the most sensitive patient (the
lowest midazolam concentration associated with a seda-
tion score of 5 in figure 3). The midazolam infusion rates
were calculated to obtain the concentrations predicted
by the model of midazolam that included a virtual drug
wash out after anesthesia (model D: midazolam + virtual
drug). Table 5 shows the recovery times for these three
cases. For a sedation score of 3, we calculated the time
for a 50% reduction in plasma drug concentration after
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Fig. 4. The probability of sedation scores as a function of mida-
zolam concentration at different times. Time = 0 represents the
patient’s arrival in the intensive care unit.

discontinuing the infusion (the “context-sensitive half-
time”).*” We computed the context-sensitive half-time
instead of the time necessary to reach Cs, , after discon-
tinuing the infusion, because we believe the estimate of
Cs » is unreliable as a result of the small number of data
points for a sedation score of 1 (table 3) and the large
standard error of Cs,, (table 6). For the two regimens
based on a sedation score of 5, we calculated the time
necessary to reach a sedation score of 3 after discontinu-
ing the infusion on the basis that a mental status of 3 was
suitable for tracheal extubation.

Based on table 5, to maintain a sedation score of 3, the
midazolam infusion should be started at 2 mg/h approx-
imately 6 h after arrival in the surgical ICU. The 6-h delay
is necessary to permit the patient to awaken from anes-
thesia and to reach a sedation level of 3. After starting the
infusion, the accumulation of midazolam is balanced by
the decrease in the anesthetic effect, eliminating the
need for further adjustment of the infusion rate, except
for the dosage adjustment necessary because of interin-
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dividual variability. After the infusion is discontinued,
the time for the concentration to decrease by 50% (the
context-sensitive half-life) increases from 1.5 h after a
12-hour infusion to 4.2 h after a 72-hour infusion.
Based on table 5, to maintain a sedation score of 5, the
midazolam infusion at arrival in the surgical ICU should
be started at a rate of 3 mg/h. During the ensuing 3 h, the,
rate is increased to 8 mg/h to compensate for the loss of
residual virtual drug effect (e.g., wash out of ancsthcsiag
patient rewarming, and so forth). During the next 3 dayss
the rate needs to be decreased gradually to 6 mg/h. Thi€
is the rate to maintain Cs,, the concentration ussociatecg
with sedation scores of 5 or higher in half of the popu$,
lation. Although the infusion rate may seem high, this i€
readily understood in light of the Ramsay sedation scale
By definition, patients with a score of 5 are unrcsp(msivc*.’;
to glabellar tap, and patients with a score of 6 ar(g
unresponsive to nail bed pressure. These are noxious
stimulations, particularly the nail bed pressure. To mzlin§
tain a score of 5 or 6 with midazolam means maintaininggs
a concentration that is high enough to block the rcﬁi
sponse to a noxious stimulation. Usual clinical practiccg
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Fig. 5. The target midazolam concentrations (upper graph) and
corresponding midazolam infusion rates (lower graph) neces-
sary to achieve a desired sedation score as a function of time.
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Table 5. Dosing Guidelines to Achieve Sedation Scores of 3 and 5
0h 1h 3h 6 h i2eh 24 h 48 h 72 h
Sedation score of 3 (targeting C5 5)
Infusion rate (mg - h™ ") 0 0 0 2 2 2 2
Context-sensitive half-life (h) NA NA NA NA 1.5 2.5 4 4.2
Sedation score of 5 (targeting Cs, 5)
Infusion rate (mg - h ") 3 6 8 8 7 7 7 6
Time to reach sedation score = 3 (h) 5 4 4 4 6 9 14 16
Sedation score of 5 (targeting
minimum concentration)
Infusion rate (mg - h™") 3 3 6 6 6 6 6
Time to reach sedation score = 3 (h) 5 4 4 4 245 6.5 15125 14

would be to use an analgesic, rather than to administer a
high dose of a benzodiazepine, to blunt any response to
pain. Thus, the infusion rate shown in table 5 would
likely need to be reduced if opioids were administered
concurrently. Individual adjustments will be necessary
based on pharmacodynamic variability, as indicated by
the spread of concentrations in figure 3, and the addi-
tional use of opioids, as noted before. For the first 12 h,
the model predicts that it will take 4 -
sedation to decrease from a sedation score of 5 to a
sedation score of 3 after the infusion is discontinued.
Beyond 24 h, the model predicts that 9-16 h will be
necessary for the level of sedation to decrease to a
sedation score of 3.

Using a conservative dosing regimen to maintain the
lowest midazolam concentration at which the predicted
sedation score was 5 (210 ng/ml in figure 3), the mida-
zolam infusion on entry to the surgical ICU is still started
at 3 mg/h but only increases to 6 mg/h. During the first
day, the model predicts that it will take 4-6 h for the
sedation score to decrease to 3 after the infusion is
discontinued. After the first day it will take approxi-

Table 6. Estimated Standard Error (CV) for Model D

Nonmem Jackknife

Naive Pool Mixed-effect Naive Pool Mixed-effect
Cs02 3.18 (0.56) 19.9 (2.7) 4.66 (0.83) 61.8 (8.4)
Cso,3 26.6 (0.38) 113 (1.8) 41.4 (0.58) 180 (2.78)
Cs0.4 38.0 (0.45) 130 (1.0) 58.3 (0.34) 192 (1.48)
Csos 50.7 (0.20) 114 (0.64) 70.9 (0.27) 182 (1.02)
Cso 206 (0.31) 50.3 (0.14) 269 (0.41) 141 (0.40)
n 0.76 (0.25) 5.48 (1.1) 1.01 (0.33) 8.67 (1.78)
K 0.001 (0.35) 0.008 (2.7) 0.0017 (0.54) 0.005 (1.81)
Oyc 69.8 (0.27) 132 (1.3) 95.9 (0.37) 183 (1.86)

(CV) = standard error expressed as coefficient of variation (e.g., standard
error divided by the parameter estimate).
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6 h for the level of

mately 12 h for the sedation score to decrease from 5 to
3 after the infusion is discontinued.

We noted this before but now repeat it for emphasis:
The dosing guidelines and predicted time course of drug
effect are based on a specific anesthetic protocol, de-
scribed in the materials and methods section, and a
pharmacokinetic model developed from only 24 h of
samples in most patients. The predictability of the model
may be very different when it is used with different
anesthetic regimens. In addition, the extrapolation to
infusions more than 24 h shown in table 5 is included to
provide a plausible pharmacokinetic and pharmacody-
namic explanation for the slow emergence sometimes
observed after long-duration midazolam infusions in the
surgical ICU and is not intended to suggest that these
model predictions serve as a substitute for titration to
individual patient responses.

In conclusion, the pharmacokinetics and pharmacody-
namics of midazolam after CABG surgery can be used to
predict the time course of sedation and the infusion rates
necessary to maintain a given mental status. Modeling
sedation necessitates modeling the dissipation of other
anesthetic effects, which can be accomplished with a
monoexponential model of dissipating anesthetic drug
effect. Future studies may provide more complete mod-
els of dissipating anesthetic effect to account for differ-
ences in anesthetic drugs, patient temperature, age, and
other covariates. Despite considerable intersubject vari-
ability in pharmacodynamic response, and the use of a
subjective clinical assessment of sedation, it is possible
to accurately predict the level of sedation in more than
half of the observations, based solely on the infusion
rates of midazolam and the time since arrival in the
surgical intensive care unit. Population pharmacokinetic
and pharmacodynamic models can be extended to clin-
ical practice, by using target-controlled infusion devices,
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as in this study, or through dosing nomograms devel-
oped from the study results.

Appendix 1: Mixed-Effects versus Naive
Pooled Data Modeling Approaches

Interindividual variability in C5, was modeled as a log-normal distri-
bution about the typical estimates of C., for individuals for each
sedation score (SS):

((:f.n\\)| o ((:Rnw)]\cm (%)

where (C5, ), is the estimate of the concentration associated with 50%
probability of a given sedation score, ss, in the jth individual, (C5, ()1
is the typical value (TV) of the estimate of the concentration associated
with 50% probability of a given sedation score in the population, e is
the base of natural logarithms, and 7, is the value 7 in the jth patient,
where 7 is a random variable with a mean of 0 and a variance of w”.
The same 7 was applied to each value of C.,, so only a single »” term
was estimated by NONMEM. Interindividual variability was not mod-
eled on 7, the steepness factor in equation 1. In addition, the same 7
was applied to the equation for the probability of each sedation score,
forcing the family of curves (i.e., P(Sedation = 2), P(Sedation = 3), and
SO on) to be parallel.

Modeling interindividual variability as O is the NPD approach that
treats the observations as though they arose from a single person.
Modeling the interindividual variability as a distribution is the method
typically taken in the MEM approach.”® The MEM is computationally
intensive but has the advantage of estimating both the interindividual
and the intraindividual variability. It also depends more closely on
modeling assumptions.

In several pharmacokinetic analyses, the NPD approach has been
compared with the MEM approach.'®'?31=3% These comparisons sug-
gested settings in which the NPD approach offered some advantages.
However, pharmacokinetic models are linear with respect to dose, and
it is not surprising that the NPD approach might work well with linear
models when the data have not been systematically censored (such as
by having many observations below the limits of detection of the
assay). Pharmacodynamic models are intrinsically nonlinear: Doubling
the dose may produce far more, or less, than a doubling of effect,
depending on where the patient is along the concentration-response
curve. With nonlinear models, the MEM approach is expected to
produce the shape of the concentration-response curve in the typical
person, whereas the NPD approach is expected to produce an average
concentration-response curve in the population. The NPD approach
would be expected to estimate a more shallow slope (smaller n in
equation 1) than the MEM approach. With nonlinear models, the MEM
model better predicts the typical individual, at the cost of less accu-
rately predicting the observations in most individuals. The NPD ap-
proach better predicts the observations in most individuals, at a cost of
estimating a concentration-response relation that is not representative
of any individual.

In this case, the MEM and NPD models were not very different (fig.
1 and table 4). Because of the bias evident in figure 1 and the better
predictive ability of the NPD model (table 4), we preferred the NPD
results. In theory, we could have used the structural and variance
parameters from the MEM approach to simulate a series of curves for
many individuals and from this calculated the average response in the
population. However, the interindividual variability was so great that
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we had little confidence that this approach would work better than
estimating the average concentration-response relation directly from
the data.

Readers should not interpret these results as a recommendation for
the general use of NPD models for nonlinear pharmacodynamic mod-
els. The model estimated by the NPD approach will not resemble any
individual. The MEM approach is preferable if the response in the
typical individual is more important than the average response of the
population, if estimates of interindividual variability are needed, or if &
the data are censored systematically. We try both approaches and then 2
choose between them in light of the study goals and measures ()f:%’
model performance. The relative merits of mixed-effect, NPD, standardg{»
two-stage, and other population modeling approaches have been re-3
cently reviewed.*"

Appendix 2: Measures of Goodness of Fit

NONMEM Objective Function

The NONMEM objective function was used to compare full models
with reduced models. Reduced models were identical to full models,
except that one or more parameters of full models are fixed to zero.
For example, model A (table 2) is a reduced model for models B, C, D,
and E. It has been suggested that full models may be better if the
objective function decreases by 4,'®'? because this exceeds the value
of the chi-squared distribution for one degree of freedom at a = 0.05
(—X 0 9s[1]). This assumes that in 5% of cases the more complex model
will be chosen even though it is not actually better. It is necessary to
apply a correction when many models are tested to prevent more
complex models from being chosen by chance. We evaluated 20
models (19 comparisons with the simplest model). Were we to choose
a = 0.05 for each comparison, the likelihood of inappropriately se-
lecting a more complex model by chance would be 100% — (95%)"? =
62%. To prevent our selecting a better model by chance, we selected
a value of 11 (—x?, o9o[1]) as the criterion for significant improvement
of the objective function. There is only a 2.5% chance that in 19
comparisons any model will be selected as better by chance with an
improvement in the objective function by 11 (e.g., @ = 0.025 for all 19
comparisons taken together).

It is expected that the objective function with the MEM approach
will be less than with the NPD approach because of the inclusion of
additional parameters to describe the interindividual variance. Al-
though the NPD model is a reduced form of the MEM model, the
interpretation of the decreased objective function with the MEM ap-
proach is unclear. Therefore, we used other means to compare the
results of the MEM and NPD approaches.
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The Percentage of Correct Predictions

Ideally, we would like to predict every sedation score exactly.
However, uncertainty is inevitable considering both the diversity of the
patient population and the subjective nature of the sedation scores
(table 1). Targeting a sedation score of 3 and observing a score of 2 or
4 is, in most circumstances, acceptable. For each model, we calculated
the actual prediction at each observation using equation 2 and then
computed the percentage of correct predictions (observed sedation
score = predicted sedation score) and close predictions (observed
sedation score = predicted sedation score * 1).

Table 7 summarizes the measures of goodness of fit. As noted before,
these measures of goodness of fit were based on the typical value of
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Table 7. Summary of Data Assessing Goodness of Fit

% Correct % Close
Predictions Predictions Pk P«SE
NPD
Model A 44 76 0.7566 0.00954
Model B 45 76 0.7569 0.00974
Model C 45 76 0.7615 0.00963
Model D 57 88 0.8364 0.00730
Model E 57 88 0.8364 0.00731
MEM
Model A 39 74 0.7566 0.00954
Model B 41 76 0.7528 0.00984
Model C 41 76 0.7558 0.00978
Model D 47 81 0.8364 0.00754
Model E 49 82 0.8235 0.00800

the population pharmacokinetic model for midazolam,"® rather than
post boc Bayesian estimates used to estimate the pharmacodynamics.
This was done because the prediction from the typical value of the
pharmacokinetic model is available to the clinician administering mi-
dazolam using a TCI device.

Prediction Probability

Smith et al*° recently described a performance measure, Py, to
assess anesthetic depth indicators. The measure of anesthetic depth
was described as a monotonically nondecreasing function of an indi-
cator x. In our study, we wanted to evaluate the performance of
“concentration” based on the midazolam pharmacokinetic model re-
ported by Zomorodi et al.,'* the sufentanil pharmacodynamic models
reported by Gepts et al.,'” and the possible interactions proposed in
table 2, as a predictor of the sedation score. Using the definition of
Smith er al*® for Py, it is possible to determine nonparametrically
which of the possible measures of concentration provides the best
prediction of sedation score.

The relation between concentration, C, and sedation score is de-
scribed in terms of rank ordering for pairs of data points. A concor-
dance occurs when C and sedation score for a pair of data points are
rank ordered in the same direction. A discordance occurs when they
are rank ordered in opposite directions. An “x-only” tie occurs when
two data points have the same C and different sedation scores.

Let P, P4, and P be the probabilities that two data points are in
concordance (have the proper order), in discordance (have the wrong
order), or represent an x-only tie, respectively. Then Py is defined as:

12, ar

c

P(\
2

[ = 4

Kol “PE iRyt Py 5

In this study, concentrations were reported with four significant

digits, resulting in no identical concentrations. Therefore, there were
no “ties” in x. Because P,, = 0, equation 4 can be simplified as

e

Py = ——— 5

= PPy ®

Py will range from O to 1. An ideal indicator will yield a P, = 1. The

best model will have the highest Py.. We calculated Py for each model

of concentration in table 2 (table 7). The standard error for P, was

estimated using the jackknife method suggested by Smith ef al.*° (table
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7). These values were computed using Excel for Windows 95 (Mi-
crosoft, Redmond, WA).

There are limitations to using Py to assess goodness of fit. Py
measures the ability of changes in one measurement to predict the
direction of changes in a second measurement. If, for example, in-
creases in concentration always lead to no change or to an increase in
the sedation score, then Py for concentration as a predictor of sedation
score will be 1. In theory, one could obtain a perfect P, = 1 for a
model that has the wrong shape (for example, modeling a sigmoid
model with a linear model) or a strong bias. Thus, P, does not measure
how well the model actually predicts the observations. It is not a
measure of the ability of the model of concentration to actually predict
the sedation score and thus does not directly assess goodness of fit. Py
is a measure of association, and it answers the question “Does the
observed sedation score tend to increase as C,, increases?” The Py is
not sensitive to the accuracy of the prediction. Indeed, the Py does not
even consider the predicted score but only reports the extent to which
the observed sedation score increases (or at least does not decrease) as
C, increases.

Appendix 3: Model Selection

Table 4 shows the pharmacodynamic parameters estimated by NPD
and MEM approaches. The NPD and MEM approaches both show a
benefit in adding predicted sufentanil concentrations to the model for
concentration (model B), which decreased the NPD and MEM objec-
tive functions by 58 and 201 points, respectively. Both approaches also
suggested a synergistic interaction between sufentanil and midazolam,
which decreased the objective function from the additive midazolam-
sufentanil model by 21 and 43 points for the NPD and MEM ap-
proaches, respectively. The NPD and MEM approaches strongly pre-
ferred the “virtual drug” model of concentration (model D;
exponentially decreasing the model of residual “anesthetic” effect) to
the other models of concentration. The virtual drug model decreased
the MEM and NPD objective functions by 540 and 290 points, respec-
tively, from the simple model. The addition of sufentanil to the virtual
drug model of concentration (model E) produced a negligible improve-
ment in the fit using the NPD approach and an improvement of 10 with
the MEM approach. The latter improvement in objective function did
not meet criteria for significant improvement as described in appendix
2. On this basis, model D, the model of concentration based on post
hoc Bayesian estimates of midazolam concentration and a model for
dissipation of the residual effects of anesthesia, was selected as the
preferred model of the sedative concentration after CABG surgery.

The inclusion of 1-hydroxymidazolam, using additive and synergistic
models both, did not improve the quality of the models. There was no
evidence of a study-center effect or an age effect in the covariate
analysis.

Table 6 indicates the standard errors of the model estimates for
model D from both the NPD and the MEM approaches, as calculated by
NONMEM and by using the jackknife approach. Standard errors calcu-
lated using the jackknife approach typically were approximately 40%
more than those calculated by NONMEM using the NPD approach, and
approximately 60% more than those calculated using the MEM ap-
proach.

Table 7 summarizes the measures of goodness of fit. Using both the
NPD and the MEM approaches, model D (concentration defined as
predicted midazolam concentration plus a dissipating anesthetic ef-
fect) provided the most accurate predictions of sedation score (57%
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and 47% with the NPD and MEM approaches, respectively). Model D
was able to predict the observed level of sedation within 1 sedation
score in 88% of cases using the NPD approach and 81% of cases using
the MEM approach. As suggested by the analysis of objective functions
(table 4), the inclusion of sufentanil concentration (model E) did not
further enhance the predictive ability of model D. For all models
tested, the pharmacodynamic model estimated using the NPD ap-
proach more accurately predicted the observed sedation scores than
did the model estimated using the MEM approach.

Given the limitations of the sedation assessment described in our
discussion, the 57% exact predictions and 88% close predictions (with-
in 1 unit) suggested reasonable predictive ability of the final model.
With the data clustered from sedation scores of 2 to 5, it is not difficult
to be within 1 unit of the correct prediction. A model that predicted a
sedation score of 4 at all concentrations would be within 1 sedation
score 74% of the time ([374 + 248 + 3060]/1,329, from table 3).
However, a model that predicted a sedation score of 4 at all concen-
trations would be off by more than 1 sedation unit 26% of the time,
whereas the proposed model missed the prediction by more than 1
sedation unit only 12% of the time. The cross-validation result suggests
that a similar performance can be expected prospectively during sim-
ilar clinical circumstances.

The nonparametric analysis of P, confirmed the usefulness of con-
centration, as defined for model D, as a predictor of sedation score
(table 7). The Py for model D was greater than the Py for models A, B,
and C; and the addition of sufentanil concentrations to model D (model
E) did not further enhance the usefulness of concentration as a pre-
dictor of sedation scale. The MEM and NPD approaches both yielded
similar descriptions for the dissipating anesthetic effect included in
model D. As a result, the Py results from the MEM and NPD approaches
were identical. However, figure 1 shows an obviously better fit with
NPD. For MEM model A, B, and C, it is interesting that as the objective
function improved, the P, became worse. This could be explained by
the finding that Py is a nonparametric assessment of the general trend
of the pooled data, whereas MEM is a parametric method that accounts
for the interindividual variability. Overall, the P, helped to assess the
validity of model D. But the other tools, such as visual inspection of
figure 1, computation of the number of good predictions, and objec-
tive function have proved to be the most useful

Figure 1 shows that the probability estimated using the NPD ap-
proach provides a nearly unbiased estimate of the measured probabil-
ity. The probability predicted by the MEM approach was steeper (an
expected result) and the prediction was biased at concentrations -
Cs,. The results were also similar for models of sedation score = 2, 4,
5, and 6. Based on the goodness-of-fit results shown in table 7, and the
graphic results illustrated in figure 1, pharmacodynamic model D
estimated with the NPD approach was selected as the preferred model
for calculating dosage regimens and predicting sedation scores of
patients requiring ventilation after CABG surgery
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