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A Primer for EEG Signal Processing in Anesthesia
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Introduction—The Rationale for Monitoring

THE electroencephalogram (EEG) is enjoying a renais-
sance of interest as a clinical monitoring tool during
anesthesia and sedation. This revival is the result of two
recent events: first, retargeting the use of EEG from
confirming deep surgical anesthesia to the assessment of
lighter or sedative levels, and second, new technologic
developments that have produced tangible progress in
the creation of a monitor of “anesthetic depth.” This
article is intended to review the technical bases of these
developments as well as provide a synopsis of the rele-
vant physiology involved in the generation and modula-
tion of the EEG. A comprehensive examination of the
clinical applications of EEG monitoring is, however, out-
side the scope of this review. A survey of EEG monitor-
ing applications in anesthesiology has recently been pub-
lished."

The EEG was first described in 1875 by Richard Ca-
ton,” a physician in Liverpool, who noted electrical os-
cillations on the exposed cortical surface of animals. In
1929, Hans Berger, a psychiatrist in Jena, began a series
of reports® that are commonly accepted as the first
systematic description of human EEG." Within 10 years
Gibbs and Gibbs noted that the EEG was sensitive to
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presence of anesthetic agents.” The next 50 years
brought significant improvement in the equipment that
transduces, amplifies, and displays EEG. In the past 20
years some progress has been made in understanding the
electrophysiology of the brain as it relates to the genesis
of the EEG waveforms.

At present, EEG monitoring is used to assess, in real-
time, either the state of “well-being” of the higher cen-
tral nervous system (CNS) or the pharmacodynamic ef-
fect of an anesthetic drug. The EEG is widely accepted as
being a highly sensitive, moderately specific indicator of
CNS ischemia or hypoxia; thus EEG monitoring has been
commonly used for this purpose during carotid sur-
gery.® ® EEG monitoring for drug effect has three appli-
cations: a quantitative tool for the pharmacologic study
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of CNS-active agents; the assessment of metabolic

suppressive effect (e.g., dose control of thiopental for
EEG burst suppression'®"'?
ment of CNS functional suppression (depth of sedation
or anesthesia'*'?).

The choice of physiologic end-point agairist which to
correlate or test the EEG has proven critical. The first
reported relationship compared EEG with changes in
blood pressure after noxious stimulation. The degree of
EEG depression before laryngoscopy correlated with
magnitude of hemodynamic change after intubation.'®"’
However, later attempts to correlate EEG with gross

); and recently, the assess-

purposeful movement in response to surgical incision
have not uniformly reported positive results.'® > These
inconsistent results may be the result of the anatomic
and possible pharmacodynamic separation of the neural
circuitry responsible for movement responses (spinal
cord) from those responsible for the generation of the
EEG signal (cerebrum).?’ EEG, as will be discussed, is a
phenomenon of the rostral structures, particularly the
cerebral cortex. Anesthetic-induced suppression of spi-
nal function, 7.e., surgical immobility, may be observable
by monitoring spinal reflexes like F-waves.>**® When
EEG is correlated with neural functions linked to the
cortex such as awareness or memory, more reliable,
clinically relevant results are obtained.***>
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AN EEG SIGNAL PROCESSING PRIMER

The Genesis of the EEG

All bioelectric potentials observed on the skin are
caused by the flow of ion-based electrical currents
within the volume of the body. As in the case of the
electrocardiogram (ECG), these macroscopic currents
are the net summation of microscopic currents contrib-
uted by large populations of individual, electrically ac-
tive cells.

The electrical activity of neurons may be divided into
two categories: regenerative action potentials (AP) and
postsynaptic potentials (PSP). PSPs occur when neuro-
transmitters released by a presynaptic neuron alter the
permeability of ion channels in the postsynaptic neu-
ron’s cell membrane, altering its transmembrane ionic
concentration gradients and thus its transmembrane
voltage. The magnitude of an isolated PSP is proportional
to the number of postsynaptic receptors that have
bound agonist. Because neurotransmitter release is a
localized phenomenon, the resulting changes in resting
membrane potential also tend to be focal, with the
magnitude of the voltage change decreasing exponen-
tially with distance from the synapse and a membrane
constant known as A. The “length constant”, A, is anal-
0ogous to a time constant in describing the exponential
decay of a perturbation. In this case, A depends on the
characteristics of the cell membrane and describes the
distance along the membrane at which the voltage dis-
turbance has decayed to 37% of AV,,. The value of A is
often in the range of 0.1-1.0 mm, thus rendering PSPs a
localized phenomenon. The direction of the change in
membrane potential can be either positive (depolariz-
ing) or negative (hyperpolarizing) depending on which
ionic species has its membrane permeability altered by
the neurotransmitter. Synaptic activity thus creates focal
patches of altered membrane potential, and ionic cur-
rent flow occurs between these disturbances. PSPs
slowly decay over time, bringing the membrane poten-
tial back to its resting value. The mechanism of decay is
a combination of cessation of ligand-triggered channel
activity, either resulting from removal of the neurotrans-
mitter on inactivation of the ion channels or the PSP-
induced currents that redistribute ionic charge to coun-
teract the PSP. Decay times of PSPs range in 10s of
milliseconds to seconds.

If the membrane potential of a neuron is depolarized
beyond its intrinsic threshold value, an AP is initiated.
APs propagate rapidly along the membrane without dim-
inution in amplitude, sustained by voltage-sensitive so-
dium and potassium channels and the transmembrane
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concentration gradients of these species. Typically at a
given point on the membrane, the excursion in potential
caused by an AP lasts for about 2 ms and may reach
approximately 100 mV in amplitude.

Cytoarchitecture

It is the relatively slowly changing currents from PSPs
that are the basis of the macroscopic EEG. In isolation,
the local current loops from a single neuron would be
difficult to detect at the distance of the scalp. Fortu-
itously, the anatomy of the cerebral cortex provides a
means of generating relatively robust signals. Cortical
neurons are classified by their morphology.”® A preva-
lent type is the pyramidal cell that has a long straight
apical dendrite extending up through the cortical layers
from the cell body directly toward the pial surface of its
gyrus. Neighboring pyramidal cells therefore have
roughly parallel dendrites. These pyramidal dendrites
receive thousands of synaptic connections from other
neurons, and neighboring dendrites tend to receive in-
puts from many of the same presynaptic sources and at
homologous locations on the dendrite. Physical separa-
tion of inhibitory and excitatory PSPs on an individual
apical dendrite creates bridging current loops between
the PSPs, which are far larger than might be predicted
from the length constants of dendrites (fig. 1). When
neighboring pyramidal cells have similar and synchro-
nous areas of altered membrane potentials, their current
loops combine additively in the extracellular fluid to
create a much larger regional current flow, one that can
be detected by the voltage it creates on the scalp.

Control of Rbhythm

As PSPs occur and decay, the EEG scalp voltage
changes over time. Under ordinary circumstances, mil-
lions of PSPs are asynchronously firing all over the cor-
tex, summing to create a complicated composite signal
that cannot be decomposed back into component PSPs.
Therefore, unlike the ECG, normal EEG has no obvious,
repetitive patterns, nor does the shape of the EEG wave-
form correlate with specific underlying events. On the
contrary, the EEG is a random-appearing signal. Decades
of empirical observation indicate, however, that some
statistical attributes derived from the EEG reflect and
track the underlying state of the brain. Thus, there are
some characteristics of the EEG that may be measured to
provide a quantitative, if indirect, monitoring of some
aspect of brain function. EEG monitoring for anesthesia-
related purposes relies on this statistical approach. For
example, the degree of PSP synchrony in pyramidal cells
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Fig. 1. Formation of current loops in the extracellular space
between pyramidal cell dendrites. Dendrites receive many si-
multaneous synaptically transmitted signals and will initiate an
action potential when the net balance of the afferent excitatory
traffic exceeds the inhibitory traffic by a margin that allows a
localized patch of its membrane to depolarize to the critical
value. If the excitatory activity is somewhat separated physi-
cally from the inhibitory activity, the resulting difference in
membrane potential will cause a current to flow both inside and
outside the membrane acting. The extracellular component of
this current, when magnified by summation with the currents
from neighboring parallel pyramidal dendrites, creates voltages
that are detectable on the scalp as the EEG.

determines the net magnitude and frequency resulting
from contributions of individual neurons. Higher cortical
function is usually associated with desynchronization as
neurons act more independently in the creation of con-
scious human behavior. Anesthesia and other mecha-
nisms that depress consciousness are associated with
increasing cortical synchrony. Anatomically, synchrony
and level of consciousness are strongly influenced by
neuronal circuit loops involving cortical connection
with the brainstem and thalamus.”” These circuits are
sometimes called the EEG pacemaker.

Under some conditions the EEG may contain special
stereotypic waveforms that can be used diagnostically.
For example, “spikes” or “sharp waves” are sharply fea-
tured excursions in the EEG that are created by massive
but usually transient synchrony. The presence of repet-
itive spikes is used in the diagnosis of epilepsy. Another
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example is burst suppression phenomenon (intermittent
electrical activity interspersed with silence), which indi-
cates a nonspecific (e.g., trauma, drugs, hypothermia,
and so on) reduction in cerebral metabolic activity.

Once generated, the aggregate postsynaptic current
flows must traverse the cerebrospinal fluid (CSF), the
skull, and the scalp to be detected by skin surface elec-
trodes. The CSF and scalp are relatively conductive com-
pared with the skull, and the overall effect of transmis-
sion through these layers is a substantial spatial smearing
of regional voltage differences. This means that the sig-
nal from an EEG electrode reflects activity over a wide
area, not just directly under the electrode.

Signal Acquisition

Metal needle or gel electrodes are required to act as
transducers, converting EEG (physiologic) ionic current
into electronic current that may then be further pro-
cessed by the EEG monitoring equipment.

Voltage signals, like the EEG, are always measured as a
difference in potential between two points; thus a bio-
electric amplifier has two signal inputs: a plus and a
minus. Bioelectric amplifiers also have a third input for a
reference electrode, which will be discussed. Because
the electrical activity of the cortex is topographically
heterogeneous, it is generally advantageous to measure
this activity at several locations on the scaip. In diagnos-
tic neurology, several systems of nomenclature for elec-
trode placement have evolved; the most commonly used
at present is the International 10-20 System.*® The 10-20
system is based on meridians crossing the scalp based on
key landmarks (the nasion, the inion, and the left and
right aural tragus) with additional lines drawn over the
midfrontal lobes and the midparietal lobes. The nomen-
clature uses a letter prefix designating brain site (i.e.,
C = central, F = frontal, P = parietal, T = temporal), and
a number indicating the relative distance from the mid-
line (nasion to inion), where right-sided electrodes are
given even numbers and left-sided placements receive
odd numbers. Electrodes on the midline are designated
“Z”, i.e, FZ is a site overlying the falx between the
frontal lobes, and P3 is a left parietal site.

Diagnostic EEG as performed in the Neurology clinic is
seldom recorded with fewer than 16 channels (plus-
minus pairs of electrodes) to localize abnormal activity.
Monitoring 8 or 16 channels intraoperatively during ca-
rotid surgery is often recommended, although there is a
paucity of data demonstrating increased sensitivity for
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the detection of cerebral ischemia compared with the
two- or four-channel computerized systems more com-
monly available to anesthesia personnel. Although re-
gional changes in EEG occur during anesthesia,*” there is
little evidence that these topographic features are useful
markers of clinically important changes in anesthetic or

sedation levels.*°

Amplifiers

The EEG signal is but one of several voltage waveforms
present on the scalp. In awake subjects, there are at least
three other signals generated by physiologic processes:
ECG (from the R-wave vector sweeping through the
neck), electromyogram (EMG, from electromechanical
activity of scalp muscle), and the electrooculogram
(EOG, generated by movement of the electrical dipoles
within the globes as the eyes move). In addition, the
body acts as an antenna that picks up the powerline
signal radiated by the cables in nearby walls and ceilings.

Although all these signals may contain interesting in-
formation, 1 if present, they distort and interfere with the
EEG signal. An understanding of the essential character-
istics of specific artifacts can be used to mitigate them. A
well-designed bioelectric amplifier can remove or atten-
uate some of these signals as the first step in signal
processing. The largest source of artifact is the power-
line pickup. This artifact possesses two useful character-
istics: it is the same over the entire body surface, and it
is a single characteristic frequency. Because EEG voltage
is measured as the potential difference between two
clectrodes placed on the scalp, both electrodes will have
the same powerline artifact (i.e., it is a common mode
signal). Common mode signals can be nearly eliminated
in the electronics stage of an EEG machine by using a
differential amplifier that has connections for three elec-
trodes: “+.” “— " and a reference. This type of amplifier
detects two signals: the voltage between + and refer-
ence, and between — and reference, then subtracts the
second signal from the first. The contribution of the
reference electrode is common to both signals and thus
cancels out. Attenuation of common mode artifact sig-
nals will be complete only if each the + and — elec-
trodes are attached to the skin with identical contact
impedance. If the electrodes do not have equal contact
impedances, the amplitude of the common mode signal
will differ, and they will not cancel exactly. Most com-

fEven the 50 or 60 Hz powerline signal has potential value: it may be
analyzed to assess the quality of the electrode connections.
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monly, the EEG is measured (indirectly) between two
points on the scalp with a reference electrode on the ear
or forehead. If the reference electrode is applied far from
the scalp, ie., the thorax or leg, there is always a chance
that large common mode signals like the ECG will not be
ideally canceled out, leaving some degree of a contami-
nating artifact.

Some artifacts, like the EMG, characteristically have
most of their energy in a frequency range different from
that of the EEG. Hence, the amplifier can band-pass filter
the signal, passing the EEG and attenuating the EMG.
Some EEG machines quantify and separately report EMG
activity on the screen before filtering it from the EEG.

Signal Processing

Signal processing of an EEG is done to enhance and aid
the recognition of some aspect of the EEG that correlates
with the physiology and pharmacology of interest. Met-
aphorically, the goal is to separate this “needle” from an
electrical haystack. The problem in EEG-based assess-
ment of anesthetic state is that the characteristics of this
needle are unknown, and because our fundamental
knowledge of the CNS remains relatively limited, our
needle-like constructs will, for the foreseeable future, be
based on empirical observation. Assuming a useful quan-
titative EEG parameter (QEEG) is identified, it must be
measured. The motivation for quantitation is threefold:
to reduce the clinician’s workload in analyzing intraop-
erative EEG, to reduce the level of specialized training to
take advantage of EEG, and finally to develop a parame-
ter that might, in the future, be used in an automated
closed-loop titration of anesthetic or sedative drugs. This
section will introduce some of the mechanics and math-
ematics behind signal processing.

Although it is possible to perform various types of
signal enhancement on analog signals, the speed, flexi-
bility, and economy of digital circuits have produced
revolutionary changes in the field of signal processing.
To use digital circuits, it is, however, necessary to trans-
late an analog signal into its digital counterpart.

Analog signals are continuous and smooth. They can
be measured or displayed with any degree of precision at
any moment in time. The EEG is an analog signal; the
scalp voltage varies smoothly over time.

Digital signals are fundamentally different because they
represent discrete points in time and their values are
quantitated to a fixed resolution rather than continuous.
The binary world of computers and digital signal proces-
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Fig. 2. Analog to digital conversion translates a smoothly con-
tinuous waveform into a table of finite resolution numbers,
x(k), representing the value of the original waveform at discrete
points in time (in this example, the index k happens to equal
integer seconds). This example illustrates sampling at 1.0 Hz
with a resolution of four decimal digits.

sors operates on binary numbers, which are sets of bits.
A bit is quantal; it contains the smallest possible chunk of
information: a single ON or OFF signal. More useful
binary numbers are created by aggregating between 8
and 80 bits. The accuracy or resolution (q) of binary
numbers is determined by the number of bits they con-
tain: an 8-bit binary number can represent 2% or 1 of 256
possible states at any given time; a 16-bit number 2'° or
65,5306 possible states. If one were using an 8-bit number
to represent an analog signal, the binary number would
have, at best, a resolution of approximately 0.4% (1/256)
over its range of measurement. Assuming, for example,
the converter was designed to measure voltages in the
range from —1.0 to +1.0 V, the step size of an 8-bit
converter would be about 7.8 mV, and a 16-bit converter
would be about about 30 wV. EEG monitoring systems
usually use 12-16 bits of resolution.

Digital signals are also quantized in time, unlike analog
signals, which vary smoothly from moment to moment.
When translation from analog to digital occurs, it occurs
at specific points in time, and strictly speaking, the value
of the resultant digital signal at all other points in time is
indeterminate (fig. 2). Translation from the analog to
digital world is known as sampling or digitizing, and in
most applications it is set to occur at regular intervals.
The reciprocal of the sampling interval is known as the
sampling rate (f)) and is expressed in hertz (Hz or sam-
ples per second). A signal that has been digitized is
commonly written as a function of a sample number, 7,
instead of analog time, £. For example, an analog voltage
signal might be written at v(¢), but after digitizing it

Anesthesiology, V 89, No 4, Oct 1998

would be referred to as v(i). Taken together, the set of
sequential samples representing a finite block of time is
referred to as an epoch or a realization. In statistical
theory, the collection of all possible epochs produced
from a given EEG state would be known as an ensemble.

The process of analog to digital translation inevitably
leads to a loss of fidelity in the resulting digital signal.
The resulting digital signal, x(i), can be thought of as the
sum of (an impossibly) perfect digital copy of the true
signal x,(i) plus an error term, e(i). The quantization
error, e(i), is the difference between the sampled voltage
and the true analog voltage. Quantization error can be
reduced by increasing the number of bits used to repre-
sent the digitized sample. The signal processing designer
must trade off increased accuracy against the increased
cost of higher resolution hardware (including the A-to-D
converter itself as well as a wider data path in the
computing circuits (i.e., the computer arithmetic unit
must be expanded to handle numbers with more bits)
and more memory to hold the added bits.

When sampling is performed too infrequently, the
fastest sine waves in the epoch will not be identified
correctly. When this situation occurs, aliasing distorts
the resulting digital data. Aliasing results from the re-
quirement for a minimum of two points within a single
cycle to identify a sinusoid. If sampling is not fast enough
to place at least two sample points within a single cycle,
the sampled wave will appear to be slower (longer cycle
time) than the original. Aliasing is familiar to observers of
the visual sampled-data system known as cinema. In a
movie, where frames of a scene are captured at rate of
approximate 24 Hz, rapidly moving objects like wagon
wheel spokes often appear to rotate slowly or even
backward. Aliasing in a digitized waveform is illustrated
in figure 3.

It is essential to always sample at a rate more than
twice the highest expected frequency in the incoming
signal (Shannon’s sampling theorem™"). Conservative de-
sign actually calls for sampling at a rate 4-10 times
higher than the highest expected signal and to also use
a low-pass filter before sampling to eliminate signals that
have frequency components that are higher than ex-
pected. Low-pass filtering reduces high-frequency con-
tent in a signal, just like turning down the treble control
on a stereo system. In monitoring work, EEG signals
have long been considered to have a maximal frequency
of 30 or 40 Hz, although 70 Hz is a more realistic limit.
In addition, other signals present on the scalp include
powerline interference at 60 Hz and the electromyo-
gram, which, if present, may extend above 100 Hz. To

L E——
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Fig. 3. Aliasing is a distortion caused by an insufficient sampling
rate that erroneously converts a fast analog wave into a slow
digitized wave. This figure begins with a complex wave with a
dominant frequency of approximately 0.43 Hz (i.e., approxi-
mately eight cycles in 20 s) and some smaller waves of even
higher frequency. In this example, the signal is sampled at 0.25
Hz, which is less than one third the minimum rate needed to
follow the changing waveform. The resulting digitized wave-
form, drawn with linear interpolation in between the sample
points, has a frequency of approximately 0.05 Hz, clearly a poor
representation of the original signal. Sampling at 1.0 Hz or
faster would produce a digital waveform with useful fidelity.
Note that linear interpolation (drawing a straight line between
samples) used in the figure is usually an unjustified assumption
about how the analog signal changes between digitized sam-
ples.

prevent aliasing distortion in the EEG from these other
signals, many digital EEG systems sample at a rate above
250 Hz (i.e., a digital sample every 4 ms).

Artifact Recognition

The problem of artifactual contamination must always
be considered in EEG analysis. Artifact is particularly
insidious in EEG analysis because even to the trained
observer, much of true EEG resembles noise. Common
artifacts include signals that have exceeded the dynamic
range of the amplifier (voltage too big because of im-
proper amplifier settings or movement of the electrodes
on the skin). These artifacts are easy to recognize, but
the epoch containing this artifact must be excluded from
analysis because the original data cannot be recon-
structed. Another common type of artifact, as noted
previously, is caused by the presence of an additional
signal that is outside the frequency range of the EEG.
This type of signal might include electromyogram activ-
ity or powerline pickup. If the sampling rate is fast
enough to avoid aliasing, these kinds of artifacts may be
filtered out, leaving a still usable EEG signal. Other types

Anesthesiology, V 89, No 4, Oct 1998

of artifact, including the electrocardiogram and roller
pump artifact (during cardiopulmonary bypass), occur
within the frequency range of interest for EEG and may
be recognized by their regularity. Anesthesia equipment,
such as a train-of-four twitch stimulator or an evoked
potential stimulator, may also create a patterned artifact
in the EEG. In awake or lightly sedated subjects, eye
blinks and rotation of the orbital globes create large,
transient slow wave activity, which may be recognized
based on the pattern of signal amplitude changes. A
compendium of techniques for EEG artifact detection
and mitigation is provided by Barlow.*” In commercially
available EEG monitors, epochs with artifact may be
tagged but still processed or identified and excluded
from further processing.

Time Domain Methods

The EEG is an alternating voltage composed of many
wavelets (simple sine waves) superimposed on each
other. Analysis of the EEG can be accomplished by ex-
amining how its voltage changes over time. This ap-
proach, known as time domain analysis, may use either
a strict statistical calculation (7.e., the mean and variance
of the sampled waveform or the median power fre-
quency) or may use some ad hoc measurement based on
the morphology of the waveform. Most of the commonly
used time-domain methods are grounded in probabilistic
analysis of “random” signals, and therefore some back-
ground on statistical approaches to signals is useful. Of
necessity, the definitions of probability functions, ex-
pected values, and correlation are given mathematically
and descriptively. However, the reader needs not feel
compelled to attain a deep understanding of the equa-
tions presented here to continue. A more detailed re-
view of the statistical approach to signal processing may
be obtained from one of the standard texts.” > Only
one class of ad hoc time-domain methods, burst suppres-
sion quantitation, is in current use in perioperative mon-
itoring systems, and it will be described below.

A few definitions related to the statistical approach to
time-related data are required. The EEG is not a deter-
ministic signal, which means that it is not possible to
exactly predict future values of the EEG. Even if the
exact future values of a signal cannot be predicted, some
statistical characteristics of certain types of signals are
predictable in a general sense. These roughly predictable
signals are termed stochastic. The EEG is such a nonde-
terministic, stochastic signal because its future values

¥202 Yol €1 uo 3sanb Aq jpd'£2000-00001 866 L -27S0000/256¥6€/086/1/68/4Pd-al01E/ABOjOISBYISBUE/LOD JIBYDISA|IS ZESE//:d]Y WOl PapES|UMOq




9806

IRA J. RAMPIL

can only be predicted in terms of a probability distribu-
tion of amplitudes already observed in the signal. This
probability distribution, p(x), can be determined exper-
imentally for a particular signal, x(t), by simply forming
a histogram of all the observed values over time. A signal
such as may be obtained by rolling dice has a probability
distribution that is rectangular or uniform (Z.e., the like-
lihood of all face values of a throw are equal, and in the
case of a single die, p(x) = 1/6 for each possible value);
a signal with a bell-shaped or normal probability distri-
bution is termed gaussian. As illustrated in figure 4, EEG
amplitude histograms may have a nearly gaussian distri-
bution. The concept of statistics, like the mean, standard
deviation, skewness, and so on, used to describe a prob-
ability distribution will be familiar to many readers.

In statistical parlance, these measurements of a distribution
belong to family of statistical parameters known as moments or
expected values E*. For any given probability distribution, p(x), a
number of different descriptive moments can be calculated where
cach moment is identified by its order number, k. For an EEG
signal (consisting of a sequential collection of digitized amplitude
values x(i)), the family of moments is defined as:

EX(x) = >, (x*(i) - p(x))

(la)

The first order moment (e.g., substituting k = 1 in Eqn 1a) is
mathematically the arithmetic mean of signal (). Consider the
example of the rolling die again; the mean, u, is simply the sum of
each possible face value, x(i), each multiplied by its probability,
) =
preferable to calculate the central moment (moment of the signal

1/6 in a fair die. Above the first order moment, it is

after the mean value of the epoch, u, has been subtracted out), as
defined in equation 1b.

EX(x) = O ((x(i) = w)** p(x))

(1b)

The second order central moment (k = 2) is the variance (i.e.,
the square of the standard deviation), the third central moment
(k = 3) is the skewness, and the fourth is the kurtosis of the
probability function.

If the probability function, p(x), of a stochastic signal,
X(i), does not change over time, that process is station-
ary. The EEG is not strictly stationary as its statistical
moments may change significantly within seconds (fig.
4), or it may be stable for 10s of minutes (quasistation-
ary).>>37 If the EEG is at least quasistationary, then it may
be reasonable to check it for the presence of rhythmic-
ity, where rhythmicity is defined as repetition of patterns
in the signal. Patterns can be identified mathematically
using the concept of correlation. Correlation between
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two signals measures the likelihood of change in one
signal leading to a consistent change in the other. In
assessing the presence of rhythms, autocorrelation is
used, which tests the match of the original signal against
different starting time points of the same signal. If
rhythm is present, then at a particular offset time (equal
to the interval of the rhythm), the correlation statistic
increases, suggesting a repetition of the original signal
voltage. The autocorrelation of signal x (Z.e., correlation
of x vs. x) is denoted as vy, (1) where 7 is the offset time
interval or lag.

Empirically it is known that the EEG has a mean
voltage of zero, over time: it is positive as often as it is
negative. However, the EEG and its derived statistical
measurements seldom have a true gaussian probability
distribution. This observation complicates the task of
a researcher or of some future automated EEG alarm
system that seeks to identify changes in EEG over
time. Strictly speaking, non-gaussian signals should
not be compared using the common statistical tests,
such as ¢ tests or analysis of variance, that are appro-
priate for normally distributed data. Instead, there are
three options: non-parametric statistical tests, a trans-
form to convert non-gaussian EEG data to a normal
(gaussian) distribution, or higher order spectral statis-
tics (see below). Transforming non-gaussian data by
taking their logarithm is frequently all that is required
to allow analysis of the EEG as a normal distribution.*®
For example, a brain ischemia detection system may
try to identify when slow-wave activity has signifi-
cantly increased. A variable like “delta” power (de-
scribed below), which measures slow-wave activity,
has a highly non-gaussian distribution; thus, directly
comparing this activity at different times requires the
non-parametric Kruskal-Wallis test.
However, the logarithm of delta power may produce a
nearly normal p(x) curve; therefore the more power-
ful analysis of variance with repeated measures could
be used appropriately to detect changes in log(delta
power) over time. Log transformation is not a pana-
cea, however, and whenever statistical comparisons
of QEEG are to be made, the data should be examined
to verify the assumption of normal distribution.

or Friedman’s

Clinical Applications of Time Domain Methods

Historically the first intraoperative application of
EEG analysis used time domain-based methods. In
1950, Falconer and Bickford noted that the electrical
power in the EEG (power = voltage - current =
voltage”/resistance) was associated with changes in
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Fig. 4. Probability density functions are
simply histograms of the amplitude val-
ues versus the number of samples at each
value in the sampled signal. The wave-
forms illustrated previously are four se-
quential 4-s epochs comprising 16 s of
EEG in an awake subject. The voltage
scale on the left is after amplification by a
factor of 500,000. The signal was sampled

Original EEG Waveform 45 - Probability Density Function

at 128 Hz after anti-alias filtering with a
bandpass of 0.3-30 Hz. The histograms
on the right demonstrate that these ex-
amples of EEG are approximately gauss-
ian, and because the probability curves
are mildly dissimilar, the EEG is not
strictly stationary. Nonetheless, this fig-
ure illustrates the point that different ap-
pearing waveform data may produce sta-
tistical descriptions that are relatively
constant between epochs.
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the rate of thiopental or ethyl ether administration.

Using analog technology, they computed a power

parameter as (essentially) a moving average of the
square of EEG voltage and used it to control the flow
of diethyl ether to a vaporizer. This system was re-
ported to successfully control depth of anesthesia in

50 patients undergoing laparotomy.”’

Digital total
power (TP = sum of the squared values of all the EEG
samples in an epoch) was later used by several inves-
tigators, but it is known have several problems, includ-
ing its sensitivity to electrode location and its insensi-
tivity to important changes in frequency distribution.

Anesthesiology, V 89, No 4, Oct 1998

Arom"” reported that a decrease in TP may predict
ncurologic injury after cardiac surgery.

Hjorth"' created a trio of combinations of conventional
(time domain-based) descriptive statistics parameters:
activity, mobility, and complexity. Activity is defined as
the variance of the signal amplitude within an epoch,
i.e., the square of the standard deviation of the digitized
data points, and provides a measure of the mean power
of the signal. Mobility can be considered an approxima-
tion of the average frequency of the EEG. It is defined as
the standard deviation of the first derivative of the EEG
signal (Z.e., the intersample slope of the waveform) di-
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vided by the standard deviation of the original signal.
Complexity is a variable to quantify the degree of curve
complexity beyond a baseline sine wave. These param-
eters of Hjorth are frequently used in the related appli-
cation of sleep staging*>** but have not directly been
tested in perioperative monitoring.

A time domain-based approach to analysis of the fre-
quency information within the EEG was reported by
Burch** and by Klein and Davis,”” who estimated an
“average” frequency by detecting the number of times
the EEG voltage crosses the zero voltage level per sec-
ond. Investigators have not reported strong clinical cor-
relations with zero crossing frequency (ZXF). Although
simple to calculate in the era before inexpensive com-
puter chips, the ZXF parameter is not simply related to
frequency domain estimates of frequency content as
demonstrated in figure 5 because not all waves in the
signal will cross the zero point. Demetrescu’® refined
the zero crossing concept to produce what he termed
aperiodic analysis. This method simply splits the EEG
into two frequency bands (0.5-7.9, 8-29.9 Hz), and the
filtered waveforms from the high and low frequency
bands are each separately sent to a relative minima
detector. Here, a wavelet is defined as a voltage fluctu-
ation between adjacent minima, and its frequency is
defined as the reciprocal of the time between the waves.
Wavelet amplitude is defined as difference between the
intervening maxima and the average of the two minima
voltages. Aperiodic analysis produces a spectrum-like
display called a glass box (fig. 6), which plots a sampling
of detected wavelets as an array of “telephone poles”
whose height represents measured wave amplitude, dis-
tance from the left edge frequency (in a logarithmic
scale), and distance from the lower edge time since
occurrence. The Lifescan Monitor (Diatek, San Diego,
CA) was an implementation of aperiodic analysis; it is
not commercially available at present, but the algorithms
are described in detail in an article by Gregory and
Pettus.*®

Burst Suppression Quantitation

During deep anesthesia, the EEG may develop a pecu-
liar pattern of activity, which is evident in the time
domain signal. This pattern, known as burst suppression,
is characterized by alternating periods of normal to high
voltage activity changing to low voltage or even isoelec-
tricity rendering the EEG inactive in appearance. After
head trauma or brain ischemia, this pattern carries a
grave prognosis; however, it may also be induced by
large doses of general anesthetics, in which case, burst
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Zero Crossing Frequency
and its limitations
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Fig. 5. The zero crossing algorithm measures the intervals be-
tween sequential crossings of the zero voltage axis. This tech-
nique is simple to implement and is an accurate measure of
mean frequency when the EEG signal consists of waves that are
similar in frequency and amplitude to each other, as in part A.
The zero crossing algorithm has poor accuracy when the EEG
contains a range of wave amplitudes and frequencies. As illus-
trated in part B, small fast waves riding on a larger slow wave do
not cross the zero axis and are ignored.

T3—=e—T4—

suppression has been associated with reduced cerebral
metabolic demand and possible brain “protection” from
ischemia. Titration to a specific degree of burst suppres-
sion has been recommended as a surrogate endpoint
against which to titrate barbiturate coma therapy. The
burst suppression ratio (BSR) is a time domain EEG
parameter developed to quantitate this phenome-
non.*”*® To calculate this parameter, suppression is rec-
ognized as those periods longer than 0.50 s, during
which the EEG voltage does not exceed approxi-
mately £ 5.0 mV. The time in a suppressed state is
measured, and the BSR is report as the fraction of the
epoch length where the EEG is suppressed (fig. 7).
The random character of the EEG dictates that QEEG
parameters extracted will exhibit a moment-to-moment
variation without discernible change in the patient’s
state. Thus, output parameters are often smoothed by a

L
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Fig. 6. Aperiodic display as implemented on the Lifescan® (Di-
atek, San Diego, CA). This time domain display depicts a 4-min
trend where the newest information is drawn at the bottom of
the near face of the “glass box.” Wavelets are depicted as vertical
bars whose height is proportional to the wavelet amplitude and
whose position along the x axis is proportional to its frequency
band (roughly log,(frequency) horizontally) and recedes in
depth with passing time. Frequency band definitions are given
in table 1. In this example, there was activity in both the delta
and alpha bands until 2 min before the current time, when the
alpha activity ceased.

moving average before display. Because of the particu-
larly variable (non-stationary) nature of burst suppres-
sion, the BSR should be averaged over at least 15 epochs
(60 s).

Frequency Domain Methods

An important alternative approach to time domain
analysis examines signal activity as a function of fre-

|

* | ‘U(“a M]\N‘“ I‘N ’“ﬂ ]

-50 ‘ ' f

uVolts

0 2 4 6 8 10 1 14 16
Time (s)
Fig. 7. The burst suppression ratio algorithm is a time domain
analysis technique that quantifies the degree of burst suppres-
sion. In this case, the threshold for suppression is = 5.0 pV. The
BSR is calculated as the sum of intervals of suppression each at
least 0.5 s long divided by the epoch length.
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Fig. 8. A rotating vector or spoke describes a sinusoid over time.
In this example, image a wheel, rotating counterclockwise, with
a light source in its rim adjacent to the marked spoke. As the
wheel turns, a graph of the vertical position of the light versus
time will produce the indicated sine wave. The rotational speed
of the wheel determines the frequency of the resulting sine
wave. The initial angle of the spoke is the phase angle of the
sine wave as used in equation 2. In this illustration, the wheel
starts at three different phase angles. Note that the sine fre-
quency is independent of the phase angle.

quency. So-called frequency domain analysis has evolved
from the study of simple sine waves. A simple sine (or
cosine) wave is a function of time, ¢, that can be com-
pletely described by equation 2 with three parameters:
amplitude, frequency, and phase angle.

x(t) = amplitude - sin(phase angle
St e qUeCY i) M (@2)

Amplitude is one half the peak-to-peak voltage; fre-
quency is number of complete cycles per second; and
phase angle is the way to describe the starting point of
the waveform. The phase angle can be understood by
considering a sine wave as the vertical displacement of a
spoke on a spinning wheel, as illustrated in figure 8. The
convention is that the spoke starts in the horizontal
position (0%), starting the sine at the midpoint of its
vertical excursion. If upright, the spoke would be con-
sidered at 90° phase. In this model of a sine wave
generator, the radius of the wheel is the sine amplitude,
and the number of revolutions per second is the sine
wave frequency.

Returning to EEG signals, it can be demonstrated (Fou-
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rier’'s theorem) that any arbitrarily complicated time-
varying waveshape, x(t), can be decomposed into the
sum of simple sine or cosine waves. Formally this is true
as long as the original waveform was repetitive (e.g.,
x(t + 1) = x(t), where 7 is the period of repetition) and
of infinite length. The value of 7 is important because it

determines the fundamental frequency, (f, = 2m/7), of

the signal. Informally, nonrepetitive signals are com-
monly decomposed with little error if the following
caveats are noted. In practice, waveforms are finite and
may not be truly repetitive. Nonperiodic signals can be
treated as though the period of repetition has become
infinitely long (7—). The fundamental frequency then
becomes infinitely small as does the separation of spec-
tral components; thus the spectrum of nonperiodic sig-
nal is a continuous function.

The Fourier Equation (equation 3) states that a periodic signal,
x(1), consists of discrete components: a DC (zero frequency)
amplitude, A,, plus sinusoids at the fundamental frequency, f,
and at an infinite number of integer multiples of the fundamental
frequency, mf,, (7Z.e., harmonics).

Aq _ )
x(0) = = + > (Aysin(mfyt + 6,) + Bycos(mfyt + 6,)) (3)
b m=1

This rule applies whether the signal is in an analog or digital
form. Figure 9 demonstrates this process with the synthesis of a
square wave from sinusoidal harmonics. The series of coefficients,
A, and B_,
signal, x(t), and the 6, coefficients form the phase spectrum.

comprise the amplitude spectrum of the original

A Fourier analysis generates a frequency spectrum,
which is simply a histogram of amplitudes or phase
angles as a function of frequency. The concept is well
illustrated by the effect of passing a white light through
a glass prism, creating a rainbow (or spectrum). Each
color of light represents a unique frequency photon, and
the relative brightness among the colors is a measure of
the energy amplitude at each frequency. Any measured
signal transformed by the Fourier technique into the
frequency domain will have both an amplitude and a
phase component for each harmonic frequency. Mathe-
matically it is usually expedient to describe both com-
ponents with a single complex number.

To review, regular (real) numbers can be considered as
describing a point on a2 number line. A new number line drawn
at right angles to the real number line defines the “imaginary”
number line, and the plane defined by the intersecting number
lines is known as “complex” number space. A complex num-
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Fig. 9. An example of the Fourier theorem that any repetitive
waveform can be constructed from, or deconstructed to, a series
of simple sine wave harmonics. Harmonics are sine waves
whose frequencies are integer multiples of the slowest compo-
nent wave. In this case, a square wave is constructed by sequen-
tially adding odd harmonics. As more harmonics are added, the
reconstructed wave becomes closer to an ideal square wave. The
final square wave, x(t), can be written as:

an

x(t)'= E ()L

sin(kf,t) )

k=1,3,5

where f, is the fundamental frequency of the square wave and
a, is its amplitude. In the case of a square wave, all the harmonic
phase angles are zero.

ber, z, is a vector describing a point on the complex plane. The
vector has two components, x, which is the projection of the
vector on the real number axis, and jy, which is the projection
on the imaginary axis (7 is the right angle vector for an imagi-
nary number, and it is defined as the square root of —1). An
operation frequently performed in signal processing is complex
conjugation where the sign of the imaginary component is
inverted, i.e., if z = x + jy, then the conjugate z* = x — jy. The
complex number vector can also be described as a magnitude
(i.e., vector length |z = \/x* + y®) and a phase (angle sub-
tended to the real number axis ¢ = atan). This complex vector
format provides the basis for interchangeability between com-
plex numbers and the “spinning” wheel model as described
previously for the phases of sinusoids. The Fourier equation
(equation 3) is thus written using the compact notation of
complex exponentials:
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== 27m
x(t) = l G el (4)

In equation 4, m, again is the harmonic number, and c,
complex Fourier coefficient that contains amplitude and phase

Misia

information for each harmonic

The conversion of a time domain waveform, x(t), into
its sine wave frequency components, X(/), is known as a
Fourier transformation. This transformation, under ideal
conditions, does not alter or reduce the information
content within the waveform, and an inverse Fourier
transformation will reconstitute the original waveform
(i.e., the transformation is symmetric). Performing the
Fourier transformation is then just computing the series
of amplitude coefficients, A, and B, and the harmonic
phase angles, 6, from equation 3, or the series of com-
plex coefficients, ¢, per equation 4.

The complex number version of the Fourier equation
(equation 4) defines a time domain signal to be a sum of
complex harmonics. One may easily separate the ampli-
tude components of the spectrum by taking the magni-
tude of each of the complex magnitudes, Ic, |, which
provides a set of values that comprise the amplitude
spectrum. Squaring the values of amplitude spectrum
creates the power spectrum. The phase spectrum is the
set of ¢, coefficients. Recall that m is the harmonic, a
function of frequency expressed as multiple of the fun-
damental frequency.

The conversion of an analog signal to a sampled digital
signal further modifies the signal spectrum. If a set of N
digital samples from an analog waveform creates an
epoch that is one complete period of a periodic wave-
form, then the discrete Fourier transform (DFT) spec-
trum will consist of N spectral components:

N—-1
n
7 — Ay T « o j2mnk/N
,\(NT) %,X(k” P (5)
wheren = 0, 1,2, . . ., N-1 for all harmonics, and k is the

sample index.

Equation 5 is the digital version of the Fourier trans-
form and uses the signal processing convention that time
domain signals are written in lower case, x(t) or x(kT),
and the equivalent complex frequency domain spectrum
in upper case, X(f).

Increasing the duration of the sampling epoch in-
creases the number of digital samples of time domain
data, which in turn, increases the number of resulting
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frequency domain spectral components. The frequency
resolution of the DFT is the reciprocal of the epoch
duration, e.g., the Fourier spectrum produced by a 4-s
epoch has a frequency resolution of 0.25 Hz.

The arbitrary slicing of a continuous signal stream into
finite epochs (an epoch consists of a sequential set of
samples) can introduce contamination in the form of
artifactual frequencies created by the abrupt transitions
at the ends of the epoch. For example, a digitized epoch
of a sine wave starting and ending at a phase angle of 0°
would have zero-valued samples at either end of the
epoch, and the computed spectrum would be an accu-
rate representation of the true frequency content of the
signal, in this case, a single non-zero value at the fre-
quency of the sine wave. In the case of a sampled sine
wave starting and ending at 90° phase, the sampled
values abruptly start and end at a non-zero value. The
non-zero start and finish points cause the frequency
domain to artifactually add high frequency components
to the spectrum to match the abrupt, step-like transitions
in the time domain signal.

This type of distortion is minimized by multiplying
cach time domain amplitude point within the epoch
against the corresponding value of a window function. A
window function is a numerical series containing the
same number of elements as the number of signal sam-
ples in the epoch. Window element values tend toward
zero at both ends and toward unity in the middle. A
variety of window functions have been described, in-
cluding the rectangle, the triangle, the Hanning, and the
Blackman functions.” The effect of windowing is illus-
trated in figure 10A. Until recently, commercial EEG
analyzers did not perform windowing on sampled data.
An illustration of Fourier transform-based EEG analysis is
provided in figure 10B.

Fast Fourier Transform

The original integral-based approach to computing a
Fourier transform is computationally laborious, even for
a computer. In 1965, Cooley and Tukey published an
algorithm for efficient computation of Fourier series
from digitized data.’” This algorithm is known as the fast
Fourier transform (FFT). More information about the
implementation of FFT algorithms may be found in the
text by Brigham.”' Whereas the DFT of a sequence of N
data points requires N* complex multiplications (a rela-
tively time-consuming operation for a microprocessor),
the FFT requires only N+ (log,N)/2 complex multiplica-
tions. When the number of points is large, the difference
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Fig. 10. (A) An illustration of time domain-based EEG processing. The top waveform is the original signal (after analog anti-alias
filtering with a bandpass of 0.3-30 Hz) digitized at 256 Hz. The middle tracing demonstrates the effect of windowing on the original
signal. Windowing is a technique used to reduce distortion from epoch end artifacts in subsequent frequency domain processing.
A window consists of a set of digital values with the same number of members as the data epoch. In this case, a Blackman window
was used. The Blackman window is defined as:

2 i 4mi
w(i) = 0.42-0.5 cos( 777) 3 (0.3 u)s( — )
=1l =1l
where i is the sample number and n is the number of samples in the epoch. The window operation multiplies each data sample value
against its corresponding window value, i.e., the resulting waveform z(i) = x(7) - w(7) for each value ofi in the epoch. The bottom
tracing is the autocorrelation function of this epoch of EEG. The autocorrelation provides much of the same information as a
frequency spectrum because it can identify rhythmicities in the data. In this case, the strongest autocorrelation is at time = 0 as might
be anticipated, and there are some weak rhythmicities that taper off as the lag increases above 1 s. (B) Continuing with the same
epoch of digitized EEG, the top two tracings are the real and imaginary component spectra, respectively, resulting from the Fourier
transform. The middle trace is the phase spectrum, which is usually discarded because of the present lack of known clinically useful
correlation. The bottom tracing is the power spectrum. It is calculated as the sum of the squared real and imaginary components at
each frequency (i.e., measuring the squared magnitude for each frequency value of the complex spectrum, X(f)). Recall that power
equals squared voltage. Note that the power spectrum, by reflecting only spectral magnitude, has explicitly removed whatever phase
versus frequency information present in the original complex spectrum. From the power spectrum, the QEEG and relative band
powers are calculated as described in the text and in table 1.

in computation time is significant; for example, if N =
1,024, the FFT is faster by a factor of about 200.

In clinical monitoring applications, the results of a EEG
Fourier transform are graphically displayed as a power
versus frequency histogram, and the phase spectrum has
been traditionally discarded as uninteresting. Whereas
the frequency spectrum is relatively independent of the
start point of an epoch (relative to the waveforms con-
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tained), the Fourier phase spectrum is highly dependent
on the start point of sampling and thus very variable.
Spectral array data from sequential epochs are plotted
together in stack (like pancakes) so that changes in
frequency distribution over time are readily apparent.
Raw EEG waveforms, because they are stochastic, can-
not be usefully stacked together because the results
would be a random superposition of waves. However,
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Fig. 11. The creation of a spectral array display involves the transformation of time domain raw EEG signal into the frequency
domain via the fast Fourier transform. The resulting spectral histograms are smoothed and plotted in perspective with hidden-line
suppression for CSA displays (on left) or by converting each histogram value into a gray value for the creation of a DSA display (on

right).

the EEG’s quasistationarity creates spectral data that are
relatively consistent from epoch to epoch, allowing
enormous visual compression of spectral data by stack-
ing and thus simplified recognition of time-related
changes in the EEG. Consider that raw EEG is usually
plotted at a rate of 30 mm/s or 300 pages per hour,
whereas the same hour of EEG plotted as a spectral array
could be examined on a single page.

There are two types of spectral array displays avail-
able in commercial instruments: the compressed spec-
tral array (CSA) and the density spectral array (DSA).
The CSA presents the array of power versus frequency
versus time data as a pseudo-three-dimensional topo-
graphic perspective plot (fig. 11), and the DSA pre-
sents the same data as a gray scale-shaded or colored
two-dimensional contour plot. Although both convey
the same information, the DSA is more compact,
whereas the CSA permits better resolution of the
power or amplitude data.

Anesthesiology, V 89, No 4, Oct 1998

Bispectrum

The effort to glean useful information from the EEG
has led from first order (mean and variance of the am-
plitude of the signal waveform) to second order (power
spectrum, or its time domain analog, autocorrelation)
statistics and now to higher order statistics. Higher order
statistics include the bispectrum and trispectrum (third
and fourth order statistics, respectively). Little work has
been published to date on trispectral applications in
biology, but there have been more than 100 papers and
abstracts to date related to bispectral analysis of the EEG.
Whereas the phase spectrum produced by Fourier anal-
ysis measures the phase of component frequencies rela-
tive to the start of the epoch, the bispectrum measures
the correlation of phase between different frequency
components as described below. What exactly these
phase relationships mean physiologically is uncertain;
one simplistic model holds that strong phase relation-
ships relate inversely to the number of independent EEG
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pacemaker elements. Bispectral analysis has several ad-
ditional characteristics that may be advantageous for
processing EEG signals: gaussian sources of noise are
suppressed, thus enhancing the signal-to-noise ratio for
the non-gaussian EEG, and bispectral analysis can iden-
tify non-linearities, which may be important in the signal
generation process. A complete treatment of higher or-
der spectra may be found in the text by Proakis et al’>’

As noted previously, the bispectrum quantifies the
relationship among the underlying sinusoidal compo-
nents of the EEG. Specifically, bispectral analysis exam-
ines the relationship between the sinusoids at two pri-
mary frequencies, f; and f, modulation
component at the frequency f; + f,. This set of three
frequency components is known as a triplet (f;, /5, and f;
+ f>). For each triplet, the bispectrum, B(f}, /), a quan-
tity incorporating both phase and power information,
can be calculated as described below. The bispectrum
can be decomposed to separate out the phase informa-
tion as the bicoherence, BIC(f,, f,), and the joint magni-
tude of the members of the triplet, as the real triple
product, RTP(f,, f>). The defining equations for bispec-
tral analysis are described in detail below.

A high bicoherence value at (f, f,) indicates that there
is a phase coupling within the triplet of frequencies f;,
f>, and f; + f,. Strong phase coupling implies that the
sinusoidal components at f; and f, may have a common
generator, or that the neural circuitry they drive may,
although some nonlinear interaction, synthesize a new,
dependent component at the modulation frequency, f,
+ f,. An example of such phase relationships and the
bispectrum is illustrated in figure 12.

and a

Calculation of the bispectrum of a digitized epoch, x(i), begins
with an FFT to generate complex spectral values, X(/f). For each
possible triplet, the complex conjugate of the spectral value at the
modulation frequency X*(f; + f,) is multiplied against the spectral
values of the primary frequencies of the triplet (equation 6). This
multiplication is the heart of the bispectral determination: if at
cach frequency in the triplet, there is a large spectral amplitude
(i.e., a sinusoid exists for that frequency) and if the phase angles
for each are aligned, then the resulting product will be large; if
one of the component sinusoids is small or absent or if the phase
angles are not aligned, the product will be small. Finally, the
complex bispectrum is converted to a real number by computing
the magnitude of the complex product.

B(fy, f5) = | X(£) - X(£) X*(f; + £) | (6)

If one starts by sampling EEG at 128 Hz into 4-s
epochs, then the resulting Fourier spectrum will ex-
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Fig. 12. The bispectrum is calculated in a two- dimensional
space of frequency, versus frequency, as represented by the
coarsely cross-hatched area. Because of the symmetric redun-
dancy noted in the text and the limit imposed by the sampling
rate, the bispectrum need only be calculated for the limited
subset of frequency combinations illustrated by the darkly
shaded triangular wedge. A strong phase relationship between
S [ and f, ., creates a large bispectral value B(f,, f,) repre-
sented as a vertical spike rising out of the frequency versus
frequency plane. In panel A, three waves having no phase
relationship are mixed together producing the waveform
shown in the upper right. The bispectrum of this signal is
everywhere equal to zero. In panel B, two independent waves at
3 and 10 Hz are combined in a non-linear fashion, creating a
new waveform that contains the sum of the originals plus a
wave at 13 Hz, which is phase-locked to the 3- and 10-Hz com-
ponents. In this case, computation of the bispectrum reveals a
point of high bispectral energy at f, = 3 and f, = 10 Hz.

tend from O to 64 Hz at 0.25 Hz resolution, or a total
of 256 spectral points. If all triplets were to be calcu-
lated, there would be 65,536 (256 - 256) points. For-
tunately, it is unnecessary to calculate the bispectrum
for all possible frequency combinations. The unique
set of frequency combinations to calculate a bispec-
trum can be visualized as a wedge of frequency versus
frequency space (fig. 12). The combinations outside
this wedge need not be calculated because of symme-
try (Z.e., B(f}, f5) = B(f5, f1)) and because the range of
allowable modulation frequencies, f, + f, is limited to
frequencies less than or equal to half the sampling
rate. Still, because this calculation must be performed,
using complex number arithmetic, for at least several
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Fig. 13. Examples of bispectral analysis. (4) An epoch of raw EEG that has been anti-alias filtered and sampled at 125 Hz. (B) The
power spectrum resulting from Fourier analysis of the epoch in part A. In this epoch, the large contribution from frequencies
around 1 Hz overwhelms the contributions from higher frequencies. (C) The same data as part B are plotted with a logarithmic
power scale, allowing the contribution from faster waves to be identified despite the presence of large slow waves. (D) After
computing the complex spectrum X(f) for this epoch of data, the bispectrum may be calculated. As described in equation 5, the
bispectrum is computed as a function of two frequencies f, and f,. Part D of this figure illustrates the resulting two-dimensional
contour plot of the bispectrum of the same epoch. The largest bispectral features here are in the upper left corner, relating pairs of
delta-range frequency pairs. The amplitude scale is again logarithmic with the heavy lines indicating powers of 10. (E) The same
bispectral data as part C plotted in three-dimensional perspective. The frequency scales are the same as part C. A plot of the real triple
product function does not appear to be significantly different than this plot. The amplitude scale here and in panel E is linear. (F)
However, when the bicoherence, BIC, is plotted here, phase coherence features are visible in a wide distribution of frequency.

thousand triplets, it is easy to see that it is a major RITP (£ £ )0 | XU [F e [ ()N o [yt o) 2 @)

computational burden.
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The square root of the RTP yields the joint amplitude of the
triplet, the factor that is used to normalize the bispectrum into the

bicoherence. The bicoherence, BIC(f,, f,), (equation 8) is a num-

As noted previously, computation of the bispectrum itself is

only the beginning for complete higher order spectral analysis. If

one is interested in isolating and examining solely the phase
relationships, as noted previously, the bispectrum must have the
existing variations in signal amplitude normalized. Recall that the
amplitude of a particular Fourier spectral element X(f) is deter-
mined by the magnitude or the length of its complex number

ber that varies from 0-1 in proportion to the degree of phase
coupling in the frequency triplet:
B(f,, f;)

BIC(F,, f,)
hoR TR £) ®

Figure 13 illustrates some representative data during
bispectral analysis. Computing the bispectrum of a sto-
chastic biological signal, like the EEG, generally requires

vector. The RTP (equation 7) is formed from the multiplied prod-
uct of the squared magnitudes of the three spectral values in the
triplet
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Table 1. Classical EEG Frequency Band Definitions

Band Designation Range (Hz)
Delta () 0.5-3.5
Theta (6) 3.5-7.0
Alpha (a) 7.0-13.0
Beta (B) 13.0-30.0
Beta, (8.) 30.0-50.0

that the signal be divided into relatively short epochs for
calculation of bispectrum and bicoherence, which are
then averaged over a number of epochs to provide a
relatively stable estimate of the true bispectral values.

Clinical Applications of Frequency Domain

Methods

Early in his survey of human EEG, Hans Berger identi-
fied several generic EEG patterns that were loosely cor-
related with psychophysiologic state. These types of
activity, such as the alpha rhythms seen during awake
periods with eyes closed, occurred within a stereotypic
range of frequencies that came to be known as the alpha
band. Eventually, five such distinct bands came to be
widely accepted (table 1).

Using an FFT it is a simple matter to divide the result-
ing power spectrum from an epoch of EEG into these
band segments, then summate all power values for the
individual frequencies within each band to determine
the band power. Relative band power is simply band
power divided by power over the entire frequency spec-
trum in the epoch of interest.

In the realm of anesthesia-related applications, tra-
ditional band power analysis is of limited utility be-
cause the bands were defined for the activity of the
awake or natural sleep-related EEG without regard for
the altered nature of activity during anesthesia. Drug-
related EEG activity can often be observed to pass
smoothly between bands as the dose changes. Famil-
iarity with band analysis is still necessary because of
the extensive literature using it.

In an effort to improve the stability of band-related
changes, Volgyesi introduced the augmented delta quo-
tient (ADQ).”>® This value is approximately the ratio of
power in the band 0.5-3.0 Hz to the power in the
0.5-30.0 Hz range. This definition is an approximation
because the author used analog bandpass filters with
unspecified but gentle roll-off characteristics that al-
lowed them to pass frequencies outside the specified
band limits with relatively little attenuation.

John’* applied a normalizing transformation®® to ren-
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der the probability distribution of power estimates of the
delta frequency range close to a normal distribution in
the CIMON EEG analysis system (Cadwell Laboratories,
Kennewick, WA). After recording a baseline “self-norm”
period of EEG, increases in delta band power, which are
larger than three standard deviations from the self norm,
were considered to represent an ischemic EEG change.>”
Other investigators have concluded this indicator may
be non-specific.’®

Another approach to simplifying the results of a power
spectral analysis is to find a parameter that describes a
characteristic of the spectrum. The first of these descrip-
tors was the peak power frequency (PPF), which is
simply the frequency in a spectrum at which occurs the
highest power in that epoch. The median power fre-
quency (MPF) is that frequency which bisects the spec-

Start
Process

r Data Collection
Result
Artifact-Cleared EEG
& Clinical Endpoints
Spectral
Calculation ]
Subparameters
Statistical
Ranking v
"Best"
4 subparameters
Multivariate /
Statistical Model 1
Bispectral
/ Index
Prospective e
Testing vk’ i i
Real-time
Validation
- % 9,

Fig. 14. The development of the BIS by Aspect Medical Systems,
Inc., proceeded in a stepwise fashion. First, a library of artifact-
free EEG (with concurrent behavioral correlates) was accumu-
lated. A range of prospective subparameters were calculated,
and their correlation with behavior was tested. The parameters
with the best performance were entered into a multivariate
analysis for the creation of a final composite parameter, the BIS.
The performance of the BIS has been enhanced by an iterative
process that involved at least three major passes of new data
collection, modeling, and progressive refinement.
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Fig. 15. Flowchart for the calculation of the bispectral index
(BIS).

trum: half the power is above, half below. The spectral
edge frequency (SEF) is the highest frequency in the
EEG, i.e., the high frequency edge of the spectral distri-
bution. The original SEF algorithm used a form of pattern
detection on the power spectrum to emulate mechani-
cally visual recognition of the “edge.” Beginning at 32
Hz, the power spectrum is scanned downward to detect
the highest frequency where four sequential spectral
frequencies all contain above a predetermined threshold
of power. This approach provides more noise immunity
than the alternative computation, SEF95 (unpublished
results, Rampil IJ, Sasse FJ, 1977). SEF95 is the frequency
below which 95% of the power in the spectrum resides.
Clearly either approach to SEF calculation provides a
monitor that is only sensitive to changes in the width of
the spectral distribution (there is always some energy in

the low-frequency range). Many commonly used general
anesthetics produce burst suppression EEG patterns
without slowing the waves present during the remaining
bursts; thus the SEF of the epoch would not reflect the
anesthetic-induced depression. Combining the SEF with
the BSR parameter to form the burst-compensated SEF
(BCSEF; equation 9) creates a parameter that appears to
smoothly track changes in the EEG because of either
slowing or suppression from isoflurane or desflu-

rane.! 148

- i BSR !
BcbhF—SEF'(l- 100) (©)]
Spectral QEEG parameters like MPF or SEF compress
into a single variable the 60 or more spectral power
estimates that constitute the typical EEG spectrum. As
Levy pointed out,’” a single feature may not be sensitive
to all possible changes in spectral distribution. However,
there is no evidence, at present, suggesting that addi-
tional parameters (describing a complex spectrum) im-
prove the clinical utility of simple univariate parameters.
Frequency domain-based QEEG parameters, like their
time domain-based relatives, are generally averaged over
time before display. The author uses non-linear smooth-
ing when computing SEF that strongly filters small vari-
ations but passes large changes with little filtering. This
approach decreases noise, but briskly displays major
changes, such as may occur secondary to ischemia or
after bolus injection of anesthetics.

The quantitative EEG variables described to this point
were all created to measure patterns apparent by visual
inspection in the raw waveform or the power spectrum
of the EEG. Although many of these QEEG variables
detect changes in the EEG caused by anesthetic drugs, all
suffer from the inability to be calibrated to behavioral
endpoints. Their performance as anesthetic monitors
also suffers because of their sensitivity to the different
EEG patterns induced by different drugs.

Table 2. Subparameters Used in the Calculation of Bispectral Index BIS

Time Domain

Frequency Domain

Bispectral Domain

Burst suppression ratio

QUAZI suppression

Relative 3 ratio
|Og (Pfi() 47 Hz/PH 20 H/)

SynchFastSlow
log (Bo.5-47.0 Hz/Bao.o-47.0 12)

P,., = the sum of the spectral power in the band extending from x to y Hz;

B, , = the sum of the Bispectrum activity in the area subtended from frequency x to y on both axes in the frequency versus frequency bispectral space. Only

a triangular area need to be calculated due to symmetry considerations.
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Bispectral Index

The recently introduced bispectral index (BIS, Aspect
Medical Systems, Natick, MA) is a complex parameter,
composed of a combination of time domain, frequency

domain, and high order spectral subparameters (de-
scribed as features of the EEG in previous literature). It is
unique among the QEEG parameters reviewed here be-
cause it integrates several disparate descriptors of the
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EEG into a single variable based on a large volume of
clinical data to synthesize a combination that correlates
behavioral assessments of sedation and hypnosis yet is
insensitive to the specific anesthetic or sedative agents
chosen. Further, devices that implement BIS are the only
ones currently approved by the Food and Drug Admin-
istration for marketing as monitors of anesthetic effect
on the brain. The particular (proprietary) mixture of
subparameters in BIS version 3 was derived empiri-
cally’®>? from a prospectively collected database of EEG
and behavioral scales (fig. 14), representing approxi-
mately 1,500 anesthetic administrations (= 5,000 h of
recordings) that used a variety of anesthetic protocols.
BIS was then tested prospectively in other populations.
As noted, BIS has been empirically demonstrated to
correlate with behavioral measures of sedation and light
anesthesia'*!>12:2425.%0 hecause of a variety of anesthet-
ics, and some have suggested that close titration of
anesthetic effect may improve some measures of patient
outcome or operating suite efficiency.®’

The calculation of BIS (fig. 15) begins with sampled
EEG that is filtered to exclude high- and low-frequency
artifacts and divided into epochs of 2-s duration. A series
of algorithms next detect and attempt to remove or
ignore artifacts. The first phase of artifact handling uses
a crosscorrelation of the EEG epoch with a template
pattern of an ECG waveform. If ECG or pacer spikes are
detected, they are removed from the epoch, and the
missing data are estimated by interpolation. Epochs re-
paired in this phase are still considered viable for further
processing. Next eyeblink events are detected, again
relying on their stereotypical shape to match a template
with crosscorrelation. Epochs with blink artifact are con-
sidered to have unrepairable noise and are not processed
further. Surviving epochs are checked for wandering
baseline (low-frequency electrode noise), and if this state
is detected, additional filtering to reject low frequencies
is applied. In addition, the variance (i.e., the second
central moment) of the EEG waveform for each epoch is
calculated. If the variance of an epoch of raw EEG
changes markedly from an average of recent previous
epochs, the new epoch is marked as “noisy” and not
processed further; however, the new variance is incor-
porated into an updated average. If the variance of new
incoming epochs continues to be different from the
previous baseline, the system will slowly adapt as the
previous average changes to the new variance. Presum-
ing the incoming EEG epoch is artifact-free or is deemed
repaired, the time domain version of the epoch is used to
calculate the degree of burst suppression with two sep-
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arate algorithms: BSR and “QUAZI” (table 2). The BSR
algorithm used by the BIS calculation is similar to that
described in the previous section. The QUAZI suppres-
sion index was designed to detect burst suppression in
the presence of wandering baseline voltage. QUAZI in-
corporates slow wave (< 1.0 Hz) information derived
from the frequency domain to detect burst activity su-
perimposed on these slow waves, which would “fool”
the original BSR algorithm by exceeding the voltage
criteria for electrical “silence.” The waveform data in the
current epoch are prepared for conversion to the fre-
quency domain by a Blackman window function, as
illustrated in figure 10A; then the FFT and the bispec-
trum of the current EEG epoch are calculated. The re-
sulting spectrum and bispectrum are smoothed using a
running average against those calculated in the previous
minute; then the frequency domain-based subparam-
eters “SynchFastSlow” and “BetaRatio” are computed.
The BetaRatio subparameter is the log ratio of power in
two empirically derived frequency bands: 1og((Ps,_ 4~ y1,)/
(P11 _50 1))- The SynchFastSlow subparameter is the con-
tribution from bispectral analysis. SynchFastSlow is de-
fined as another log ratio. Here the log of the ratio of the
sum of all bispectrum peaks in the area from 0.5 to 47 Hz
over the sum of the bispectrum in the area 40-47 Hz.
The resulting BIS is defined as a proprietary combination
of these QEEG subparameters. Each of the component
subparameters was chosen to have a specific range of
anesthetic effect where they perform best, ie., the Syn-
chFastSlow (HOS) parameter is well correlated with be-
havioral responses during moderate sedation or light
anesthesia. The combination algorithm that determines
BIS therefore weights the Beta Ratio (FFT) most heavily
when the EEG has the characteristics of light sedation.
The SynchFastSlow (bispectral component) predomi-
nates during the phenomenon of EEG activation (excite-
ment phase) and during surgical levels of hypnosis, and
the BSR and QUAZI detects deep anesthesia. The subpa-
rameters are combined using a nonlinear function whose
coefficients were determined by the process described
in figure 14. Representative data illustrating the com-
plete process of BIS determination are shown in figure
16. Two key features of the Aspect multivariate model
are that it accounts for the nonlinear stages of EEG
activity by allowing different subparameters to dominate
the resulting BIS as the EEG changes its character with
increasing anesthesia; and second, the model framework
is extensible, so new subparameters can be added to
improve performance, if needed, in the presence of new
anesthetic regimens. The combination of the four sub-

—
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parameters produces a single number, BIS, which de-
creases continuously with decreasing level of conscious-
ness (hypnosis). As described previously, computation
of bispectral parameter requires averaging several ep-
ochs; therefore, the BIS value reported on the front
panel of the A-1050 monitor represent an average value
derived from the previous 60 s of useable data.

Divining the anesthetic effect message within the EEG
has long been sought. The recent availability of a device
that claims to do just that is a step forward in this
endeavor. Although there is currently no theoretical or
mechanistic link proposed between neural network
physiology in the cerebral cortex and the intrafrequency
coupling notion of the BIS, the empirical correlation
appears to exist. The exact role and limitations of this
new technology will be determined by additional clinical
experience. With the attainment of this present bench-
mark level of clinical correlation, further refinements in
signal processing can now be reasonably expected to
create increasingly useful tools for a range of clinical
settings.

The author thanks J. Sigl, Ph.D., of Aspect Medical Systems, Inc., for
his thoughtful comments on the manuscript and for providing figure
16.
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