Anesthesiology 1998; 89:1042

© 1998 American Society of Anesthesiologists, Inc Lippincott Williams & Wilkins

Temperature Correction of the Calculated Alveolar Oxygen Tension

To the Editor:—Determination of partial pressure of alveolar oxygen (PA_{O_2}) is necessary in several pathophysiologic conditions, including evaluation of alveolar–arterial oxygen gradient $(\Delta_{(\mathrm{A}-\mathrm{a})}\mathrm{O}_2)$ and calculation of shunt fraction. The equation by which the PA_{O_2} is calculated, the alveolar air equation, 1 is

$$P_{A_{O_2}} = F_{I_{O_2}}(P_B - P_{H_2O}^*) - \frac{P_{A_{CO_2}}}{R} + P_{A_{CO_2}} \cdot F_{I_{O_2}} \cdot \frac{1 - R}{R} \tag{1}$$

where, $F_{I_{O_2}}$ is the inspiratory oxygen fraction, P_B is the inspiratory air pressure, P_{H_2O} is the alveolar saturated water vapor pressure, $P_{A_{CO_2}}$ is the alveolar carbon dioxide tension, and R is the respiratory exchange ratio $(\dot{V}_{CO_2}/\dot{V}_{O_2})$, normally 0.8).

The alveolar air equation (equation 1) necessitates a knowledge of $P_{\rm H_2O}^*$. In most texts of physiology, $P_{\rm H_2O}^*$ is designated to be 47 mmHg. This value, however, is a function of alveolar (body) temperature and varies markedly from approximately 13 mmHg at 15°C to approximately 72 mmHg at 45°C. The values for $P_{\rm H_2O}^*$ at different temperatures are readily available in handbooks of physical chemistry and in texts of anesthesia and respiratory physiology. At a particular absolute temperature T, $P_{\rm H_2O}^*$ may also be calculated by the following empirical equation:

$$P_{H_2O}^* = e^{\left(18.3036 - \frac{3816.44}{T - 46.13}\right)}$$
 (2)

To facilitate the calculation of $P_{\rm H_2O}^*$, based on equation 2, we developed a simple nomogram by which derivation of $P_{\rm H_2O}^*$ at different temperatures can be performed easily within a few seconds. The accuracy of this nomogram (fig. 1) is sufficient for routine clinical practice. The corresponding $P_{\rm H_2O}^*$ can be found easily at any particular temperature, which ranges from 15 to 45°C. As an example, to find out the $P_{\rm H_2O}^*$ at 30°C, the corresponding point to the 30°C on the temperature axis (left side values) should be located first. Then, at the same ordinate, the value for the desired $P_{\rm H_2O}^*$ can be read from the $P_{\rm H_2O}^*$ axis (right side values), which, in this case, is approximately 31.6 mmHg. Assuming the following scenario, the importance of this simple correction could be evident.

Assume a body temperature of 30°C, the $P_{\rm H_2O}$, as was found out earlier, is therefore 31.6 mmHg. Now assume $P_{\rm B}=760$ mmHg, ${\rm FI_{O_2}}=21\%,\, {\rm PA_{CO_2}}={\rm Pa_{CO_2}}=40$ mmHg, ${\rm Pa_{O_2}}=103$ mmHg, and ${\rm R}=0.8$. Using equation 1, then ${\rm PA_{O_2}}=105.06$ mmHg, and, as a consequence, $\Delta_{\rm (A-a)}O_2=2.06$ mmHg.

If instead of using the correct value of 31.6 mmHg for $P_{\rm H_2O}$, the usual value of 47 mmHg is utilized, the result then becomes $PA_{O_2} = 101.83$ mmHg, and, subsequently, $\Delta_{\rm (A-a)}O_2 = -1.17$ mmHg < 0.

Arterial $P_{\rm O_2}$ could never be higher than that of the alveolar pressure, therefore, a zero or a negative $\Delta_{(A-a)}O_2$, in any case, reflects an error. In the aforementioned case, although the calculated value of $P_{A_{\rm O_2}}$ differs by only 3% from its actual value, the resultant $\Delta_{(A-a)}O_2$ became negative and, therefore, meaningless.

Fig. 1. A nomogram for temperature correction of saturated water vapor pressure.

Farrokh Habibzadeh, M.D. Mahboobeh Yadollahie, M.D.

National Iranian Oil Company Outpatient Polyclinics Shiraz, Iran habibzaf@pearl.sums.ac.ir

References

- 1. West JB: Best and Taylor's Physiological Basis of Medical Practice. 12th edition. Baltimore, Williams & Wilkins, 1990, pp 558-9
- 2. Himmelblau DM: Appendix C, Basic Principles and Calculations in Chemical Engineering. 4th edition. New Jersey, Prentice-Hall, 1982, pp 568-72
- 3. Himmelblau DM: Appendix G, Basic Principles and Calculations in Chemical Engineering. 4th edition. New Jersey. Prentice-Hall, 1982, pp 591

(Accepted for publication May 22, 1998.)