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Interaction of Isoflurane and Sevoflurane with
a- and B-adrenoceptor Stimulations in Rat

Myocardium

Jean-Luc Hanouz, M.D.,* Benoit Vivien, M.D.,T Pierre-Yves Gueugniaud, M.D.,+
Yves Lecarpentier, M.D., Ph.D.,§ Pierre Coriat, M.D.,|| Bruno Riou, M.D., Ph.D. #

Background: Halothane potentiates the positive inotropic
effects of a- and B-adrenoceptor stimulations but impairs the
positive lusitropic effect of B-adrenoceptor stimulations. How-
ever, the interactions of isoflurane and sevoflurane with a-
and B-adrenoceptor stimulation have not been entirely de-
fined.

Methods: The effects of 1 minimum alveolar concentration
isoflurane and sevoflurane on the inotropic responses in-
duced by phenylephrine (10 * to 10 * m) or isoproterenol (10 8
to 10 " m) were studied in rat left ventricular papillary muscles
in vitro (Krebs-Henseleit solution, 29°C; PH, 7.4; 0.5 mm cal-
cium; stimulation frequency, 12 pulses/min). The positive lusi-
tropic effects of a- and B-adrenoceptor stimulations were stud-
ied under isotonic and isometric conditions. Data are mean
percentages of baseline + SEM.

Results: In control groups, phenylephrine (134 + 8%; P <
0.05) and isoproterenol (171 + 7%; P < 0.05) induced a posi-
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tive inotropic effect. Isoflurane enhanced the positive inotro-
pic effects of phenylephrine (185 + 10%; P < 0.05) and of
isoproterenol (203 + 11%; P < 0.05). Sevoflurane enhanced
the positive inotropic effects of phenylephrine (187 + 10%; P
< 0.05) and of isoproterenol (228 + 11%; P < 0.05). These
potentiations were similar to those previously reported with
halothane. Isoflurane and sevoflurane did not modify the posi-

tive lusitropic effects under low and high loads of isoprotere-
nol.

Conclusion: Although isoflurane and sevoflurane have mod-
erate negative inotropic effects, they potentiated the positive
inotropic effects of a- and B-adrenoceptor stimulations but did
not modify the positive lusitropic effects of B-adrenoceptor
stimulation. (Key words: Contractility; heart; papillary muscle;
relaxation; volatile anesthesia.)

HALOTHANE enhances the positive inotropic effect of
a- and S-adrenoceptor stimulations in isolated myocar-
dium."? A growing body of evidence suggests that this
potentiation is related to the interaction of halothane
with G proteins coupled to the adrenoceptors.’ > Thus
Schmidt et al.° have shown that halothane inhibits the
function of the inhibitory G proteins probably by in-
terfering with the effects of - or fy-subunits on the
effector. Isoflurane is used more widely than halothane,
and sevoflurane is a new volatile anesthetic that enables
induction by mask in adults and children,” but their
interactions with a- and S-adrenoceptors have not been
entirely defined. Further, an in vitro study recently sug-
gested that sevoflurane may disrupt the relation be-
tween the S-adrenoceptor and a stimulating G-protein,
leading to a decrease in cyclic adenosine monophos-
phate synthesis.” In contrast, it has been reported that
isoflurane potentiates the pulmonary vasodilator re-
sponse to sympathetic f-adrenoceptor activation.’
Compared with a-adrenoceptor stimulation, S-adre-
noceptor stimulation markedly enhances myocardial re-
laxation.'” We have shown that halothane impairs the
positive lusitropic effects of f-adrenoceptor stimulation
in rat myocardium, probably by interfering with sarco-
plasmic reticulum function.” Many studies have indi-
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cated that isoflurane and sevoflurane impair sarcoplas-
mic reticulum less than halothane.”'"'* However, the
interactions of isoflurane and sevoflurane with the posi-
tive lusitropic effects of [-adrenoceptor stimulation
have not been determined.

Therefore, we conducted an 7z vitro study to deter-
mine the interaction of isoflurane and sevoflurane with
the inotropic and lusitropic responses of isolated rat
myocardium to «- and S-adrenoceptor stimulations.

Materials and Methods

The animals were cared for according to the recom-
mendations of the Helsinski Declaration, and the study
was performed according to the regulations of the offi-
cial edict of the French Ministry of Agriculture.

Experimental Protocol

After brief anesthesia with ether, the hearts were
quickly removed from adult male Wistar rats weighing
250-300 g. Left ventricular papillary muscles were care-
fully excised and suspended vertically in a 200-ml jack-
eted reservoir with Krebs-Henseleit bicarbonate buffer
solution containing 118 mm NaCl, 4.7 mm KCI, 1.2 mm
MgSOy, 1.1 mm KH,POy, 25 mm NaHCO;, 2.5 mm CaCl,,
and 4.5 mm glucose. The Krebs-Henseleit solution was
prepared daily with highly purified water. The jacketed
reservoir was maintained at 29°C with a thermostatic
water circulator with continuous monitoring of the so-
lution temperature using a temperature probe. Prepara-
tions were field stimulated at 12 pulses/min by two
platinum electrodes with rectangular wave pulses last-
ing 5 ms just above threshold. The bathing solution
was bubbled with 95% oxygen and 5% carbon dioxide,
resulting in a pH of 7.4. After a 60-min stabilization
period at the initial muscle length at the apex of the
length-active isometric tension curve (L,,.), papillary
muscles recovered their optimal mechanical perfor-
mance, which remained stable for several hours.

Suitable preparations were selected as previously de-
scribed.>"* The control values of each mechanical pa-
rameter were recorded. Then the extracellular concen-
tration of calcium ([Ca®"]o) was decreased from 2.5 to
0.5 mm because rat myocardial contractility is nearly
maximum at 2.5 mm, and thus it is difficult to quantify a
positive inotropic response without decreasing [Ca*"]o.
Thereafter the inotropic response to either a- or [-
adrenoceptor stimulations were studied in separate
groups of papillary muscles in the absence or in the
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presence of isoflurane or sevoflurane at 1 minimum
alveolar concentration (MAC). Because control values
differ from one muscle to another, inotropic responses
were expressed as a percentage of baseline values, as
previously reported.”

In control groups, a-adrenoceptor stimulation was in-
duced with cumulative concentrations of phenyleph-
rine (10 %, 1077, 10 %, 10>, and 10" * m) with proprano-
lol (10 ° m). To study [-adrenoceptor stimulation, cu-
mulative concentrations of isoproterenol (10 %, 107,
10 % 10 °, and 10 * m) with phentolamine (10 ° m)
were used. The volume of drugs did not exceed 2% of
the bath volume. All drugs were purchased from Sigma-
Aldrich Chimie (L’isle d’Abeau Chesnes, France). Pro-
pranolol and phentolamine were added 15 min before
phenylephrine or isoproterenol were introduced, re-
spectively.

Because halogenated anesthetics are negative inotro-
pic agents and thus could modify the inotropic reserve,
we also studied the effects of a-adrenoceptor (n = 8)
and [-adrenoceptor (n = 8) stimulations at a lower
calcium (0.4 mm) concentration in separate groups of
papillary muscles. Decreasing calcium concentration
from 0.5 to 0.4 mm induced a negative inotropic effect
that was of the same magnitude as those induced by
1 MAC isoflurane or sevoflurane. These experiments
allowed us to verify that decreasing contractility per se
does not induce a potentiation of of - and [-adrenocep-
tor stimulations.

Administration of Halogenated Anesthetics
Isoflurane (Fortec 3; Cyprane Ltd., Keighley, UK) and
sevoflurane (Sevotec 3; Ohmeda, West Yorkshire, UK)

were added to the carbon dioxide and oxygen mixture :

with a calibrated vaporizer. The gas mixture bubbled
continuously in the bathing solution. To minimize evap-
oration of anesthetics vapors, the jacketed reservoir was
covered with a thin paraffin sheet. Anesthetic concen-
trations in the gas phase were monitored continuously
using an infrared calibrated analyzer (Artema MM200;
Taema, Antony, France). Isoflurane and sevoflurane
concentrations used were 0.8 and 1.4 vol%, corres-
ponding to 1 MAC in the adult rat at 29°C."*~'° After a
30-min period of equilibration with halogenated anes-
thetics, the inotropic responses to either a- or S-adreno-
ceptor stimulations were studied in the same cumula-
tive manner as in the control groups.

Electromagnetic Lever System and Recording
The electromagnetic lever system has been described
previously.'” Briefly, the load applied to the muscle was
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Fig. 1. Mechanical parameters of contraction and relaxation.
(Upper) Muscle shortening length (L/L,.) plotted against
time. (Lower) Force (F) plotted against time. Twitch 1 was
loaded with preload only at L. Twitch 2 was loaded with
the same preload as twitch 1 but was abruptly clamped to
zero load with critical damping just after electrical stimulus;
maximum unloaded shortening velocity (V,..) was deter-
mined from this twitch. Twitch 3 was fully isometric; isometric
active force (AF) was determined from this twitch. Coefficient
R1, the ratio of maximum shortening velocity (,,..Vc) to maxi-
mum lengthening velocity (,,..Vr), tests lusitropy under low
load; coefficient R2, the ratio of the peak of the positive force
derivative (+dF/dt) to the peak of the negative force derivative
(—dF/dv), tests lusitropy under high load.

determined using a servomechanism-controlled current
through the coil of an electromagnet. Muscular shorten-
ing induced a displacement of the lever, which modu-
lated the light intensity of a photoelectric transducer.
All analyses were made from digital records of force
and length obtained with a computer, as previously
described."?

Mechanical Parameters

Conventional mechanical parameters at L.x Were cal-
culated from three twitches (fig. 1). The first twitch
was isotonic and was loaded with the preload corre-
sponding to L,... The second twitch was abruptly
clamped to zero load just after the electrical stimulus.
The muscle was released from preload to zero load with
a critical damping to slow the first and rapid shortening
overshoot resulting from the recoil of series passive
clastic components, as previously reported.'® The maxi-
mum unloaded shortening velocity (V,,,.) was deter-
mined from this twitch. The third twitch was fully iso-
metric atE

The mechanical parameters characterizing the con-
traction and relaxation phases and the coupling be-
tween contraction and relaxation are defined as follows
(fig. 1).
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Contraction Phase. We determined Vmax using the
zero-load clamp technique, maximum shortening veloc-
ity (. VC) of the twitch with preload only, maximum
isometric active force normalized per cross-sectional
area (AF); and the peak of the positive force derivative
normalized per cross-sectional area (+dF/db). V., and
AF tested the inotropic state under low (isotonic) and
high (isometric) loads, respectively.

Relaxation Phase. We determined maximum length-
ening velocity of the twitch with preload only (., Vr)
and the peak of the negative force derivative at 1L
normalized per cross-sectional area (—dF/dt). These
two parameters studied relaxation under low- and high-
loading conditions, respectively. Because changes in
the contraction phase induce coordinated changes in
the relaxation phase, .. Vr and —dF/dt cannot assess
lusitropy,” and thus variations in contraction and relax-
ation must be considered simultaneously to quantify
drug-induced changes in lusitropy. Therefore indexes
of contraction -relaxation coupling have been devel-
oped."’

Contraction—Relaxation Coupling. Coefficient R1
= max Y&/ max VT €valuated the coupling between contrac-
tion and relaxation under low load, and thus the lusi-
tropy in a manner that is independent of inotropic
changes.” Under isotonic conditions, the amplitude of
sarcomere shortening is greater than that observed un-
der isometric conditions.”’ Because of the lower sensi-
tivity of myofilaments for calcium when cardiac muscle
is markedly shortened under low load, relaxation pro-
ceeds more rapidly than contraction, apparently as a
result of the rapid uptake of calcium by the sarcoplas-
mic reticulum. Thus, in rat myocardium, R1 tests sarco-
plasmic reticulum uptake function. Coefficient R2 =
(+dF/dt)/(—dF/dt) evaluated the coupling between
contraction and relaxation under high load in a manner
that less depends on inotropic changes.” When the mus-
cle contracts isometrically, sarcomeres shorten very lit-
tle.”” Because of the higher sensitivity of myofilaments
for calcium,”’ the time course of relaxation is deter-
mined by calcium unbinding from troponin C rather

than by calcium sequestration by the sarcoplasmic retic-
ulum. Thus R2 indirectly reflects myofilament calcium
sensitivity.'"

At the end of the study, the muscle cross-sectional
area was calculated from the length and weight of papil-
lary muscle, assuming a density of 1.

Statistical Analysis
Data are expressed as means = SEM. Control values
between groups were compared by analysis of variance.
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Table 1. Baseline Values of Mechanical Parameters in the Different Groups of Papillary Muscles

Isoproterenol Groups Phenylephrine Groups
Control Isoflurane* Sevoflurane* Control Isoflurane” Sevoflurane*
(n = 10) (n=8) (n=18) (ni=10) (n =8) (n=8)
/(=) 2220810515 2.29 + 0.30 11579 =104l 2.34 = 0.10 1740 2= (01712 75 == 10510
AF(mN-mm?) 35515 29516 3l =14 32814 22 +3 28613
R1 0.68 + 0.03 0.75 + 0.05 0.80 + 0.04 0.72 = 0.03 0.79 = 0.06 0.79 + 0.04
R2 1.66 + 0.06 IE5iF==10108; 1.68 + 0.06 RSN ON]2 1150) 2= (0)0)7/ 1.59 + 0.06 o

Data are mean + SEM.

V...x = maximum unloaded shortening velocity; AF = isometric active force normalized per cross-sectional area; R1 = ratio of maximum shortening velocity
(maxVc) to maximum lengthening velocity (maVr); R2 = ratio of the peak of the positive force derivative (+dF - dt ') to the peak of the negative force derivative
(—dF-dt ™).

* Baseline values correspond to those obtained after halogenated anesthetics exposure in the isoflurane and sevoflurane groups.

00" JIBYDISA|IS ZBSE//:d]IY WO} PAPEOjuM:

Concentration -response curves were determined by In the control groups, phenylephrine and isoprotere-= !
fitting the data to Hill’s sigmoid pharmacologic model, nol induced a positive inotropic effect as shown by the 3
according to the following equation: significant increase in V., and AF (figs. 2 and 3; tableg

2). The positive inotropic effect of isoproterenol was g

Effy = Effnax + €+ (Coo + O greater than that observed with phenylephrine Theseé_
in which Eff, is the observed effect at the C concentra- results correspond with those previously reported in:‘%\’_
tion, Eff,,,, the maximum effect, and Cs, the concentra- rat myocardium.“’ g
tion that results in 50% of Eff.,.. Iterative nonlinear least Figure 2 shows the absolute values of AF recorded in%

a

squares regression curve fitting was used to obtain the response to increasing concentrations of phenylephrine S
best fit (Matlab 1.2¢ software; The MathWorks, South  and isoproterenol, under control conditions, and in the

Natick, MA). Comparison of several means was per- presence of 1 MAC isoflurane and sevoflurane. Despite§
formed using analysis of variance and the Newman-  the moderate negative inotropic effects induced byg
Keuls test. Comparison of the relations between R1 or isoflurane (AF, 81 * 2% of baseline; n = 16) and sev-%
R2 (lusitropic effect) and AF (inotropic effect) between oflurane (AF, 92 += 8% of baseline; n = 16), absolut g
groups was performed using a multivariate analysis of baseline values of inotropic parameters were not sig-§
variance, as previously reported.” All probability values nificantly different between the control groups and th %
were two tailed, and a probability value <0.05 was isoflurane or sevoflurane groups (table 1). However,%

required to reject the null hypothesis. Statistical analysis because the baseline value of AF differs markedly from$
was performed on a computer using NCSS 6.0 software  one papillary muscle to another, it is difficult to shows
(Statistical Solutions Ltd., Cork, Ireland). a pharmacologic effect when using absolute values (ﬁg.g
2). When measured as a percentage of baseline haloge-g
nated anesthetic response, the positive inotropic effects;o;

Results . i - 3

of phenylephrine (fig. 3A) and isoproterenol (fig. 3B)=

Sixty-nine left ventricular papillary muscles were stud- ~ were enhanced in the presence of 1 MAC isoflurane ory
ied. The mean L, ,, was 5.9 * 0.2 mm; the mean cross- sevoflurane compared with the control groups (table

sectional area was 0.59 + 0.03 mm*; the mean ratio of 2). Median effective concentration values were not sig-
resting force to total force was 0.08 *= 0.01; and the nificantly different between groups, indicating no sig-
mean R1 was 0.71 = 0.01. A decrease in contractility nificant shift between the concentration-response
was observed as [Ca®"|o was decreased from 2.5 to 0.5 curves (table 2). In contrast, decreasing contractility by
mM. The decrease in V., (64 = 2% of the value at decreasing the calcium concentration (from 0.5 to 0.4
[Ca*"]o of 2.5 mm) and AF (48 = 2% of the value at mm) did not induce any significant potentiation of a-

[Ca*"]o of 2.5 mm) were consistent with previous re- and f-adrenoceptor stimulations (fig. 4). The decrease
ports.”"® No significant differences in baseline values in AF obtained by the decrease in calcium concentration
were observed between groups (table 1). (78 £ 4% of baseline) was not significantly different

Anesthesiology, V 88, No 5, May 1998
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Fig. 2. Effects of 1 minimum alveolar concentration (MAC) isoflurane (n = 8) and 1 MAC sevoflurane (n = 8) on the inotropic

effects of phenylephrine (4) or isoproterenol (B).
Control groups, n = 10. B1 corresponds to baselin
values after halogenated anesthetic exposure in the

Data are absolute mean values of the active isometric force (AF) + SEM.
e values at a calcium concentration of 0.5 mwv. B2 corresponds to baseline
isoflurane and sevoflurane groups. Because the baseline value of AF differs

markedly among papillary muscles, it is difficult to show a pharmacologic effect when using absolute values.

from that induced by 1 MAC isoflurane (81 + 2%) but
was significantly greater than that induced by 1 MAC
sevoflurane (92 + 8%; P < 0.05).

Isoproterenol induced a marked positive lusitropic
effect under low and high loads, as shown by the sig-
nificant decreases in R1 and R2 (table 3). This result
was consistent with those previously reported in the
rat myocardium.*'” In the presence of 1 MAC of isoflur-
ane or sevoflurane, isoproterenol still induced signifi-
cant decreases in R1 and R2 (table 3), and the magni-
tude of these effects were similar to those observed in
the control group (table 3). Nevertheless, the lusitropic
effects of S-adrenoceptor stimulation are highly corre-
lated to its inotropic effect, and, as we stated before,
isoflurane and sevoflurane potentiated the inotropic ef-
fect of f-adrenoceptor stimulation. Consequently, we
studied the relations between AF (inotropic) and R1 or
R2 (lusitropy) to assess precisely the possible interac-
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tion of halogenated anesthetics with the lusitropic ef-
fects of f-adrenoceptor stimulation, as previously re-

ported.® As figure 5 shows, isoflurane and sevoflurane
did not significantly modify these relations.

Discussion

The main finding of this study is that isoflurane and
sevoflurane enhanced the positive inotropic effects of
a-and f-adrenoceptor stimulations. Further, in contrast
to halothane,” isoflurane and sevoflurane did not modify
the positive lusitropic effects of f-adrenoceptor stimula-
tion.

Halothane has been shown to potentiate the positive
inotropic effect of a- and S-adrenoceptors in rat ventric-
ular myocardium and in human atrial and ventricular
myocardium."? However, these studies did not investi-
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Fig. 3. Effects of 1 minimum alveolar concentration (MAC) isoflurane (n = 8) and 1 MAC sevoflurane (n = 8) on the inotropic
effects of phenylephrine (4) or isoproterenol (B). Data are mean percentages of the baseline active isometric force (AF) = SEM.
Control groups, n = 10. The probability value refers to between-group comparison. NS = not significant.

gate other volatile anesthetics such as isoflurane or sev-
oflurane, which are used more widely in clinical prac-
tice. In our study, 1 MAC isoflurane and sevoflurane
potentiated the positive inotropic effect of a- and -
adrenoceptor stimulations, and the magnitude of these
potentiations were comparable to those previously ob-
served in the presence of 1 MAC halothane.” Neverthe-
less, the interaction between halogenated anesthetics

and adrenoceptor stimulation appears to depend on
experimental conditions. Our results are in contrast to
those previously reported by Sanuki et al.,” who re-
ported than sevoflurane and halothane may disrupt the
relation between the [-adrenoceptor and the G, pro-
tein, leading to a decrease in cyclic adenosine mono-
phosphate synthesis in the rat myocardial membrane.
In contrast, more recent results suggest that halothane

Table 2. Effects of Isoflurane (1 MAC) and Sevoflurane (1 MAC) on Inotropic Response to a- or f-Adrenoceptor Stimulation

Concentration Effect

Mechanical Parameters Curve Parameters Control Groups Isoflurane Groups Sevoflurane Groups
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Phenylephrine groups (n =10) (n = 8) (n=8)
Ve Effrmax (%) 126 = 3* 42888 146 + 6™t
ECso (uM) 1]r22e) 2= (0).740) 0.92 + 0.41 1.08 + 0.56
AF S (0) 134 + 8* i1855=EH 108 sl 2= 710k
ECso (um) a7 2= @740 1.08 = 0.31 1.181 = 068
Isoproterenol groups (n =10) (n = 8) (n = 8)
Wi S (00) 1698255 196 + 8™t 2058 ==
ECso (um) 1.20 = 0.21 0:99/ =057 0.93 + 0.16
AF Effrax (%) W7l == 7 208Nl 228 =5 ilea
ECso (um) 1:26=210109 0.92 + 0.14 1.01 = 0.09

Data are mean + SEM.

Vimax = maximum unloaded shortening velocity; AF
that results in 50% of Eff ..

*P < 0.05 versus baseline.
TRk

- isometric active force normalized per cross-sectional area; Eff... = maximum effect; ECs, = concentration

0.05 versus control group.
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Fig. 4. Effects of decreasing calcium concentration from 0.5 (n = 8) to 0.4 mu (n = 8) on the inotropic effects of phenylephrine

(4) or isoproterenol (B). Data are mean percentages of the baseline active isometric force (AF) = SEM. NS = no significant
difference between groups.

actually potentiates adrenoceptor stimulation."****Spe-  is potentiated during isoflurane anesthesia, whereas
cies differences are not likely to explain this discrep-  Park er al.? reported that isoflurane attenuates S-adren-
ancy because potentiation of adrenoceptor stimulation ergic vasodilation in rat coronary arteries in vitro. Fur-
was observed in rat® and in human myocardium."** The ther, although halothane facilitates catecholamines-in-

interaction between halogenated anesthetics and adre-  duced arrhythmias** and potentiates the positive inotro-
noceptor stimulation may also depend on the tissue pic effect of isoproterenol,” Stowe et al.”> reported
studied. In dogs fitted with long-term monitoring instru- that halothane and isoflurane attenuate the effect of
ments, Lennon and Murray” observed that the pulmo- adrenergic stimulation on sinoatrial nodal pacemaker

nary vasodilator response to [-adrenoceptor stimulation cells.

Table 3. Effects of Isoflurane (1 MAC) and Sevoflurane (1 MAC) on Lusitropic Responses to B-Adrenoceptor Stimulation

Concentration Effect Control Group Isoflurane Group Sevoflurane Group
Mechanical Parameters Curve Parameters (n = 10) (n=28) (n=8)
R1 Effmax (%) 60 + 2* 61 + 4* 56 + 4*
ECs (um) 0.28 + 0.08 O 7#==20515 0.29 + 0.08
R2 Effax (%) 83 = 4* 79 + 4* 84 -=3%
ECso (uM) 0.63 + 0.12 0.62 = 0.14 0:82 + 0.22

Data are mean + SEM.

R1 = ratio of maximum shortening velocity (.,Vc) to maximum lengthening velocity (m..Vr); R2 = ratio of the peak of the positive force derivative (+dF-dt™)
to the peak of the negative force derivative (—dF - dt "); Effnax = maximum effect; ECsy = concentration that results in 50% of Eff,
" P < 0.05 versus baseline; no significant differences between groups.

max «
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Fig. 5. Effect of 1 minimum alveolar concentration (MAC) isoflurane (n =
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8) and 1 MAC sevoflurane (n = 8) on the positive

lusitropic effects of B-adrenoceptor stimulation, assessed by the relations between lusitropic parameters under (4) low (R1) or
(B) high (R2) load and active isometric force (AF). Each point corresponds to a concentration of isoproterenol. Data are means
+ SEM. The probability value refers to between-group comparison using multivariate analysis of variance. NS = not significant.

Our study did not allow us to determine the precise
mechanism(s) involved in the potentiation of the posi-
tive inotropic effect of a- and [-adrenoceptor stimula-
tions. We did not observe any shift in the concentra-
tion-response curves as shown by the lack of differ-
ence between the median effective concentrations
(table 2), suggesting that isoflurane and sevoflurane did
not modify the affinity or number of receptors. A grow-
ing body of evidence suggested that volatile anesthetics
may interfere with the signal transduction pathway in-
volving G-protein-coupled receptors. G proteins have
a pivotal regulatory role as membrane-associated signal
transducers, and they may be involved in various car-
diac pathophysiologic states, such as aging or heart fail-
ure.”>?” a-Adrenoceptors are coupled with a G, pro-
tein, leading to activation of phospholipase C and then
production of inositol triphosphate and 1,2 diacylglyc-
erol, which increases intracellular calcium concentra-
tion and activates protein kinase C, respectively.’ [-
adrenoceptors are associated with G, and G, proteins,
which modulate adenylyl cyclase and thus cyclic adeno-
sine monophosphate production, which in turn acti-
vates cyclic adenosine monophosphate-dependent pro-
tein kinase A.” It has been suggested that halothane may
decrease the inhibitory effect of G; protein on adenyl

Anesthesiology, V 88, No 5, May 1998

cyclase activity.”** This effect may be involved in the
facilitation of catecholamine-induced arrhythmias ob-
served in patients anesthetized with halothane*® and in
the potentiation of the inotropic effects of adrenocep-
tor stimulations observed in 7n vitro experiments."” In
addition, it has been shown that halothane stimulates G-
protein-dependent phospholipase C activity and then
increases inositol triphosphate formation.” Few studies
have examined the interactions of other volatile anes-
thetics with G proteins. Nevertheless, in rat brain stem
membrane, interference with muscarinic receptor-
G-protein coupling appears to be a common property
of volatile anesthetics.”” Our results suggest that the
interaction of halothane, isoflurane, and sevoflurane
with myocardial G protein produces similar effects.

In the rat myocardium, R1 quantitates lusitropic ef-
fects under low load, which reflects mainly the calcium
uptake by the sarcoplasmic reticulum.”'> We have
shown that isoflurane and sevoflurane induced no major
lusitropic effect under low load.*'* These results are in
accordance with experimental 7z vitro studies showing
that isoflurane and sevoflurane exert modest inhibitory
effects on cardiac sarcoplasmic reticulum function com-
pared with those induced by halothane.'"'® S-adreno-
ceptor stimulation induces a potent positive lusitropic
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effect under low load, which is thought to be related
to an enhancement in sarcoplasmic reticulum uptake
of calcium.”" Isoflurane and sevoflurane did not sig-
nificantly decrease the positive lusitropic effect of f3-
adrenoceptor stimulations under low load (fig. 2A), in
contrast to our previous results with halothane.” These
results confirm that isoflurane and sevoflurane interfere
modestly with sarcoplasmic reticulum function com-
pared with halothane. The alteration of the positive
lusitropic effect under low load of halothane may well
be mediated by its ability to activate calcium release
channels,***" resulting in a relative depletion of calcium
from sarcoplasmic reticulum stores.'' Isoflurane has
been shown not to activate these channels,'' whereas
sevoflurane has not been evaluated. [-adrenoceptor
stimulation also induced a potent positive lusitropic ef-
fect under high load (decrease in R2), which is thought
to be related to a decrease in myofilament calcium sensi-
tivity.'” As previously reported with halothane,? isoflur-
ane, and sevoflurane did not significantly modify the
positive lusitropic effect of f-adrenoceptor stimulation
under high load (fig. 2B). These results may be of some
clinical importance because diastolic function signifi-
cantly influences overall cardiac performance and be-
cause diastolic dysfunction may precede, or substan-
tially contribute to, abnormalities of systolic function in
various diseases.’” Further, catecholamines play a major
role in the modulation of cardiac relaxation under physi-
ologic and pathologic conditions.'*?>

The following points must be considered when as-
sessing the clinical relevance of our results. First, a-
and S-adrenoceptor stimulation were performed in the
presence of § and a blockade, respectively. However,
it was shown recently that a-adrenoceptor stimulation
may modulate S-adrenoceptor response.*® Second, this
study was conducted at 29°C and at a low-stimulation
frequency. Papillary muscles must be studied at this
temperature because stability of mechanical parameters
is not sufficient at 37°C. The low frequency was neces-
sary because high-stimulation frequency induces core
hypoxia.** Third, the study was performed in rat myo-
cardium, which differs from human myocardium. The
a-adrenoceptor density and consequently the positive
inotropic effect induced by their stimulation is greater
in rats than in humans.’> Nevertheless, the relative im-
portance of a-adrenoceptors in cardiac contractility can
be increased in the presence of disease.*®

In conclusion, in isolated rat myocardium, although
isoflurane and sevoflurane have moderate negative ino-
tropic effects, they enhance the positive inotropic ef-

Anesthesiology, V 88, No 5, May 1998

fects of a- and [-adrenoceptor stimulation, and they did
not modify the positive lusitropic effect of [-adrenocep-
tor stimulation.
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