Bioavailability of Intramuscular Rocuronium in Infants and Cbildren

Lynne M．Reynolds，M．D．，＊Marie Lau，B．S．，\dagger Ronald Brown，B．S．，\dagger Andrew Luks，B．A．，M．A．，\ddagger Manohar Sharma，Ph．D．，§ Dennis M．Fisher，M．D．｜｜

Abstract

Background：Intramuscular rocuronium，in doses of $\mathbf{1 , 0 0 0}$ $\mu \mathrm{g} / \mathrm{kg}$ in infants and $1,800 \mu \mathrm{~g} / \mathrm{kg}$ in children，produces com－ plete twitch depression in $5-6 \mathrm{~min}$ ．To determine the rate and extent of absorption of rocuronium after intramuscular administration，blood was sampled at various intervals after rocuronium administration by both intramuscular and intra－ venous routes to determine plasma concentrations（ C ）of rocuronium． Methods：Twenty－nine pediatric patients ages 3 months to 5 yr were anesthetized with $\mathrm{N}_{2} \mathrm{O}$ and halothane．The trachea was intubated，ventilation was controlled，and adductor pol－ licis twitch tension was measured．When anesthetic conditions were stable，rocuronium $(1,000 \mu \mathrm{~g} / \mathrm{kg}$ for infants and 1,800 $\mu \mathrm{g} / \mathrm{kg}$ for children）was injected either intramuscularly（in the deltoid muscle）or intravenously．Four venous plasma samples were obtained from each child $2-240 \mathrm{~min}$ after rocuronium administration．A mixed－effects population pharmacokinetic analysis was applied to these values to determine bioavailabil－ ity，absorption rate constant，and time to peak Cp with intra－ muscular administration． Results：With intramuscular administration，rocuronium＇s bioavailability averaged 82.6% and its absorption rate constant was $0.105 \mathrm{~min}^{-1}$ ．Simulation indicated that Cp peaked 13 min after rocuronium was given intramuscularly，and that 30 min after intramuscular administration，less than 4% of the admin－ istered dose remained to be absorbed from the intramuscular depot．

Conclusions：After rocuronium is administered into the del－

[^0]toid muscle，plasma concentrations peak at 13 min ，and proximately 80% of the administered drug is absorbed systeng－ ically．（Key words：Anesthesia：pediatric；pharmacokinetics． Injection：intramuscular；intravenous．Muscle relaxants：rẽ̛ curonium bromide．Pharmacokinetics：bioavailability；mixe effects modeling；NONMEM．）

UNTIL recently，succinylcholine was the only musce relaxant that produced effective neuromuscular bloc愿－ ade with intramuscular administration．We recent启？ showed that deltoid（in contrast to quadriceps）inje tion of rocuronium $(1,000 \mu \mathrm{~g} / \mathrm{kg}$ in infants and 1,80 ） $\mu \mathrm{g} / \mathrm{kg}$ in children）produces complete paralysis in $5-\frac{\stackrel{\circ}{5}}{5}$ \min in infants and children anesthetized with nitrol oxide and halothane，and also that these doses of intris muscular rocuronium permitted tracheal intubation $\frac{\stackrel{g}{\omega}}{\omega}$ 2．5－3．0 min in a few lightly anesthetized patients．${ }^{1} \mathrm{~N}$ information exists regarding the rate and extent of alo sorption of rocuronium from the intramuscular depo Accordingly，we measured plasma concentrations of res curonium after intramuscular and intravenous adminiés tration to determine bioavailability

Methods

The study was conducted using Organon Inc．＇s Inve $\frac{{ }_{6}^{\circ}}{6}$ tigational New Drug Application，and the protocol wad approved by our institutional review board．After of taining informed consent from parents，we studied $2 \mathbb{8}$ pediatric patients who were classified as American Soci－ ety of Anesthesiologists physical status 1 or 2 and under－ going elective surgery．Patients were divided by age into two groups：infants（ages $3-11$ months； 8.4 ± 1.8 kg ［means $\pm \mathrm{SD}$ ］； $\mathrm{n}=13$ ）and children（ $1-5 \mathrm{yr} ; 15.5$ $\pm 4 \mathrm{~kg} ; \mathrm{n}=16$ ）．We intended to study 24 patients（ 12 infants and 12 children）but added five patients because of problems with the assay，which are described later． No patient had a history of bleeding disorder，neuro－ muscular disease，or hepatic or renal insufficiency．Pa－
tients were excluded if they received anticonvulsants or aminoglycoside or polypeptide antibiotics during the period of the operation.
Eight patients received midazolam orally or nasally before operation; the remaining 21 were not premedicated. Anesthesia was induced with $\mathrm{N}_{2} \mathrm{O}$ and halothane. After establishing intravenous access, the trachea was intubated and ventilation was controlled to maintain normocapnia. The inspired halothane concentration was adjusted to produce end-tidal halothane concentrations of $0.8-1.0 \%$ in children younger than 2.5 yr and of $0.7-0.8 \%$ in children older than 2.5 yr. Patients were randomized to receive rocuronium as either an intramuscular $(\mathrm{n}=14)$ or intravenous $(\mathrm{n}=15)$ injection. When end-tidal halothane concentrations and baseline twitch recordings were stable for $>5 \mathrm{~min}$, rocuronium $(10 \mathrm{mg} / \mathrm{ml})$ was injected via a 21-gauge needle $1-2 \mathrm{~cm}$ into a single deltoid muscle after negative aspiration for blood or as a rapid bolus into a peripheral intravenous catheter in the upper or lower extremity. The rocuronium dose was $1,000 \mu \mathrm{~g} / \mathrm{kg}$ for infants and $1,800 \mu \mathrm{~g} /$ kg for children.

Five venous blood samples were obtained from each patient. The initial sample was obtained after induction of anesthesia but before rocuronium administration; the remaining four samples were obtained between 2 and 240 min after rocuronium administration. For each patient, target times for blood sampling differed, as determined by randomization (table 1). This "randomized block" approach provides maximal information for a population pharmacokinetic approach when "sparse sampling" is used. ${ }^{2}$
Supramaximal square-wave train-of-four stimuli were administered at 2 Hz every 12 s to the ulnar nerve via needle electrodes at the wrist. Evoked tension of the adductor pollicis was measured using a Grass FT-03 force transducer (Grass Instrument Company, Quincy, MA) while maintaining preload at $50-100 \mathrm{~g}$. The force signal was amplified (DC bridge signal conditioner; Gould Electronics, Valley View, OH), digitized (NB-MIO16, National Instruments, Austin, TX) on a Macintosh computer, and displayed (LabView; National Instruments). The ratio of the first component of the train-of-four (T1) to its control value was determined. Each train-of-four was recorded on a strip chart (TA240; Gould).
Respiratory gas was sampled at the y-connector to determine the partial pressure of carbon dioxide by infrared analysis (Capnomac Ultima; Datex, Helsinki,

Table 1. Age, Weight, and Target Sampling Regimen for Pediatric Patients Given Rocuronium Intravenously or Intramuscularly

Age Group	Route of Administration	Age (yr)	Weight (kg)	Target Sampling Times (min)
Infants	Intravenous	0.30	6.4	5, 12, 90, 190
		0.59	7.5	4, 18, 45, 190
		0.77	11.2	5,* 18,* 30, 120
		$0.82 \dagger$	9.8	5, 18, 30, 240
		0.84	9.3	$2,24,90,240$
		0.97	8.6	4, 8, 45, 120
		0.97	10.5	3, 8, 60, 150
	Intramuscular	0.27	5.2	6, 20, 45, 190
		0.48	7.4	2, 10, 60, 120
		0.53	6.3	8, 10, 30, 120
		0.74	9.3	4, 25, 45, 240
		0.87	8.6	4, 25, 30, 240
		0.87	9.5	2, 15, 90, 150
Children	Intravenous	1.5	9.0	5, 18, 60, 120
		1.6	13.5	5,* 24,* 45, 240
		2.9	16.4	3,* 8,* 30,* 150
		$3.1 \dagger$	12.0	5, 24, 90, 150
		3.3	14.2	3, 24, 90, 240
		$3.9 \dagger$	16.7	3, 8, 30, 190
		4.0	16.8	4,* 18,* 60,120
		4.7	16.7	2, 12, 45, 190
	Intramuscular	1.6	12.0	2, 20, 30, 190
		1.9	12.2	4, 25,* 30, 120
		1.9	12.9	$6,15,60,150$
		3.3	11.4	2, 15, * 45, 240
		4.8	19.2	$6,25,90,150$
		$5.0 \dagger$	19.5	8, 15, 90, 190
		$5.3 \dagger$	20.7	4, 25, 45, 120
		5.5	24.0	8, 10, 60, 240

* Concentration of rocuronium exceeded the upper limit of the standard curve for this assay. Consequently, this value was not used in the pharmacokinetic analysis.
\dagger This patient was added to the analysis to supplement the plasma samples with concentrations exceeding the upper limit of the assay.

Finland). Arterial oxygen saturation was measured continuously (N200 Oximeter; Nellcor, Hayward, CA). Systolic blood pressure and heart rate (Dinamap; Critikon, Tampa, FL) were measured before and every minute for 5 min after rocuronium administration.
The injection site and the skin of the trunk and face were observed for erythema; signs consistent with histamine release were sought. At the end of surgery, 20 $\mu \mathrm{g} / \mathrm{kg}$ atropine and $70 \mu \mathrm{~g} / \mathrm{kg}$ neostigmine were administered to antagonize residual paralysis. In the postanesthetic recovery room, patients were examined for signs of weakness, such as inability to sustain leg lift ${ }^{3}$; the
injection site was examined for signs of tissue inflam－ mation or damage．
Blood samples were iced immediately，and，after cen－ trifugation，plasma was buffered with $0.8 \mathrm{~m} \mathrm{NaH} \mathrm{N}_{2} \mathrm{PO}_{4}$ and stored at $-20^{\circ} \mathrm{C}$ until analysis using gas－liquid chro－ matography．${ }^{4}$ The lower limit of sensitivity of the assay is $10 \mathrm{ng} / \mathrm{ml}$ rocuronium，with a coefficient of variation $<12 \%$ at that concentration．
Pharmacokinetic analyses were performed using the NONMEM statistical package．\＃As in all bioavailability analyses，we assumed that all clearances and volumes of distribution were identical with the two different routes of administration（intravenous and intramuscu－ lar）；in turn，any difference between routes of adminis－ tration in the plasma concentration（ Cp ）versus time profile results from differences in bioavailability，rate of absorption，and dosing regimen（if present）．Analyses were performed using one－，two－，and three－compart－ ment models．In addition，we tested models in which pharmacokinetic parameters were weight normalized and those in which they were not．Parameters of these pharmacokinetic models included volume of the central compartment $\left(\mathrm{V}_{1}\right)$ ，volume of the second compartment $\left(V_{2}\right)$ ，volume of the third compartment $\left(V_{3}\right)$ ，clearance $\left(\mathrm{Cl}\right.$ ，elimination clearance equal to $\left.\mathrm{V}_{1} \cdot k_{10}\right)$ ，rapid and slow distribution clearance（ $\mathrm{Cl}_{\text {rapid }}$ ，equal to $\mathrm{V}_{1} \cdot k_{12}$ ； and $\mathrm{Cl}_{\text {slow }}$ ，equal to $\mathrm{V}_{1} \cdot k_{13}$ ），and volume of distribution at steady state（Vss，equal to $V_{1}+V_{2}+V_{3}$ ）．With intra－ muscular administration，we assumed first－order absorp－ tion with rate constant $\boldsymbol{k}_{\mathrm{a}}$ from the intramuscular depot into the central compartment；bioavailability of intra－ muscular administration was designated F ．Absorption half－life（ $\mathrm{t}_{1 / 2}$ absorption）was determined as $\ln (2) / k_{\mathrm{a}}$ ．For the two－compartment model，distribution and elimina－ tion half－lives（ $\mathrm{t}_{1 / 2} \alpha$ and $\mathrm{t}_{1 / 2} \beta$ ，respectively）were deter－ mined using standard equations．${ }^{5}$ For the three－compart－ ment model，rapid and slow distribution half－lives $\left(t_{1 / 2} \pi\right.$ and $t_{1 / 2} \alpha$ ，respectively）and elimination half－life （ $\mathrm{t}_{1 / 2} \beta$ ）were determined iteratively．＊＊
Intraindividual variability for Cl was assumed to be log－normally distributed，modeled as：

$$
\begin{equation*}
\ln \left(\mathrm{Cl}_{\mathrm{i}}\right)=\ln (\mathrm{Cl})+\eta \mathrm{i}, \tag{1}
\end{equation*}
$$

where Cl_{i} is the estimate for Cl for the $\mathrm{i}^{\text {th }}$ individual， Cl is the typical value for the population，and η_{i} is a random

[^1]variable with mean 0.0 and variance Ω^{2} ．Interindividual variability for V_{1} was modeled in a similar manner．Some models permitted interindividual variability for $\mathrm{Cl}_{\text {rapid }}$ ， $\mathrm{Cl}_{\text {slow }}, \mathrm{V}_{2}, \mathrm{~V}_{3}, \boldsymbol{k}_{\mathrm{a}}$ ，and／or F ，modeled in a similar manner； however，interindividual variability in $\mathrm{Cl}_{\text {rapid }}$ was as－ sumed to be the same as for $\mathrm{Cl}_{\text {slow }}$ and that for V_{2} equal to that for V_{3} ．

After the＂typical＂values were determined，we used NONMEM＇s post－hoc step to determine values for th $\frac{\sum_{2}^{2}}{0}$ pharmacokinetic parameters for each patient．Plots ${ }_{\circ}^{\text {莶 }}$ the pharmacokinetic parameters for each patient wers plotted against each of the covariates age and weigl and examined for systematic trends（e．g．，a relation b $\underset{\sim}{\circ}$ tween Cl and age）using a smoother（lowess，a nonlinea regression function）．If trends appeared，these covar $\frac{\text { 震 }}{}$ ates were incorporated into the pharmacokineti亳 model．Models containing additional pharmacokinetieg parameters（either additional compartments，addition＊ parameters to allow for interindividual variability，or the influence of covariates on a particular pharmacokinetiğ parameter）were accepted if they improved the obje $\frac{0}{Q_{0}}$ tive function（ $P<0.01$ requires a decrease of 6.6 unit⿳亠丷厂巾 for one additional parameter or 9.2 units for two add $\frac{{ }_{2}}{\infty}$ tional parameters），and they either improved the pa tern of residual differences between measured and prö⿱宀⿱日女口 dicted values for Cp or decreased the trend between pharmacokinetic parameter and a covariate．

Because time to peak Cp with intramuscular adminiờ tration is a function of all the pharmacokinetic parame ters，its typical value and confidence limits cannot b $\stackrel{\rightharpoonup}{6}$ determined using Student＇s t values．Instead，we dete $\overrightarrow{\overrightarrow{0}}$ mined the time to peak Cp using NONMEM＇s simulatio ${ }^{\circ}$ mode．Using the＂typical＂values for the pharmacok netic parameters and allowing for the interindividua variability determined in the pharmacokinetic analysi范 we simulated the Cp vs．time course of 250 individual愛 given rocuronium intramuscularly．Time to peak C was determined for each of these 250 individuals and the 5th，50th（median），and 95th percentile values were determined．We also used the typical values for F anđ $\tilde{\tilde{4}}$ k_{a} to simulate the typical time course of rocuronium remaining to be absorbed from the intramuscular depot． Finally，we used NONMEM＇s post－hoc step to estimate the plasma rocuronium concentration in each patient 60 min after rocuronium administration．Mean values for intramuscular and intravenous administration were compared using Student＇s t test for unpaired data．Peak depression of twitch tension（expressed as a percentage decrease from the control value）and times to 10%（la－

Fig. 1. Time course of rocuronium plasma concentrations after intravenous or intramuscular administration to infants (1,000 $\mu \mathrm{g} / \mathrm{kg}$) or children ($1,800 \mu \mathrm{~g} / \mathrm{kg}$). Circles indicate measured values, and lines connect values for each patient. In one child (intravenous group), only a single plasma concentration value was used in the analysis (see table 1). Values for two infants, one with each route of administration, overlie those for others.

tency), 50%, and peak twitch depression (onset) and time to initial ($>1 \%$), 10\%, 25\% (clinical duration), and 90% recovery of twitch tension (duration of action) were determined. Values are reported as means \pm SD. Comparisons between infants and children and between intravenous and intramuscular administration were performed using Student's t test for unpaired data; $P<0.05$ (corrected, with the Bonferroni inequality, for multiple comparisons) was considered significant.

Results

Pharmacokinetic Analysis

In six patients (four with intravenous administration, two with intramuscular), values for one to three plasma samples exceeded the upper limit of the standard curve for the rocuronium assay (table 1). These 11 Cp values exceeding the upper limit of the standard curve for the assay were not used in the pharmacokinetic analysis; however, the standard curve was altered so that no subsequent samples exceeded the upper limit. To compensate for the missing Cp data, we studied an additional five patients, assigned to the same groups as the
patients whose data were excluded. Four other patients had one supplemental plasma sample each: the infant (intramuscular group) at 2 min , and the children at 6 min and 27 min (intramuscular group) and at 180 min (intravenous group). In one child (intravenous group), the 190 -min sample could not be obtained because venous access was lost. A total of 108 plasma samples (excluding blank samples) were used in the analysis, 57 of them from the intramuscular group (fig. 1).
A two-compartment pharmacokinetic model fit the Cp data better than a one-compartment model (as indicated by an improvement in the objective function of 68 points, and by visual assessment of the residual differences between predicted and observed concentrations; table 2). Adding a third compartment further improved the quality of the fit (fig. 2). For both the two- and three-compartment models, weight normalization of the pharmacokinetic parameters improved the quality of the fit (model 5 vs . model 6 and model 10 vs . model 11). Permitting interindividual variability in $\mathrm{Cl}_{\text {rapid }}, \mathrm{Cl}_{\text {slow }}$, $\mathrm{V}_{2}, \mathrm{~V}_{3}, k_{\mathrm{a}}$ or F or both did not further improve the quality of the fit. Plots of values for Cl and V_{1} for each patient (determined using NONMEM's post-boc step) versus covariates age and weight did not reveal a sys-

REYNOLDS ET AL．

Table 2．Pharmacokinetic Models Tested and Their Objective Function

Model No．	No．of Compartments	Weight Normalized	Interindividual Variability in：＊				
			$k_{\text {a }}$	F	$\begin{gathered} \mathrm{Cl}_{\text {rapida }}, \mathrm{Cl}_{\text {slow }}, \\ \mathrm{V}_{2}, \mathrm{~V}_{3} \end{gathered}$	Objective Function	Statistical Significance
1	1	Yes	No	No	No	1，504．162	－
2	1	Yes	Yes	No	No	1，504．162	Not different from model 1
3	1	Yes	No	Yes	No	1，504．162	Not different from model 1
4	1	Yes	Yes	Yes	No	1，504．162	Not different from model 1
5	2	Yes	No	No	No	1，436．430	$P<0.01$ versus model 1
6	2	No	No	No	No	1，507．960	Objective function worse than model 5
7	2	Yes	Yes	No	No	1，436．389	Not different from model 5 ¢尹
8	2	Yes	No	Yes	No	1，436．203	Not different from model 5
9	2	Yes	Yes	Yes	No	1，436．127	Not different from model 5 －
10	3	Yes	No	No	No	1，423．997	$P<0.01$ versus model $5 \stackrel{\sim}{\sim}$
11	3	No	No	No	No	1，498．403	Objective function worse than model 10
12	3	Yes	Yes	No	No	1，423．997	Not different from model 10
13	3	Yes	No	Yes	No	1，423．783	Not different from model 10
14	3	Yes	Yes	Yes	No	1，423．783	Not different from model 10
15	3	Yes	No	No	Yes	1，423．746	Not different from model $10 \stackrel{\stackrel{\rightharpoonup}{\stackrel{\circ}{*}}}{\text { ¢ }}$

＊All models permitted interindividual variability in Cl and V_{1}
tematic influence of the covariates on the pharmacoki－ netic parameters．
Thus the＂optimal＂pharmacokinetic model had three compartments and permitted interindividual variability in Cl and V_{1} ．The typical value for Cl was 4.03 $\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$（table 3）and did not vary with age or weight（fig．3）；the typical value for V_{1} was $105 \mathrm{ml} /$ kg and did not vary with age or weight（fig．4）．With intramuscular administration，the typical value for F was 82.6% and did not vary with age or weight．The typical value of k_{a} was $0.105 \mathrm{~min}^{-1}$（resulting in an absorption half－life of 6.6 min ）and did not vary with age or weight． Volume of distribution at steady state was $325 \mathrm{ml} / \mathrm{kg}$
（table 4）．Rapid and slow distribution half－lives were 2.5 and 27 min ，respectively；elimination half－life was $\stackrel{\rightharpoonup}{\circ}$ 127 min ．These values did not differ between infants⿳亠口冋㐅 and children．
Simulations based on the pharmacokinetic parameters合 indicated that the median time after intramuscular ad－ ministration when Cp peaked was 13 min ；the 5 th and $\stackrel{\stackrel{\rightharpoonup}{\circ}}{0}$ 95th percentiles were 9 and 19.8 min ，respectively．$\stackrel{\rightharpoonup}{ة}$ Fifteen minutes after intramuscular administration，the ${ }_{\circ}^{\circ}$ quantity of rocuronium simulated to remain in the intra－ muscular depot was $171 \mu \mathrm{~g} / \mathrm{kg}$ in infants and $308 \mu \mathrm{~g} / \stackrel{\stackrel{\rightharpoonup}{\square}}{\stackrel{\circ}{*}}$ kg in children（fig．5）；the value is greater in children ${ }_{6}^{5}$ than in infants because of the larger dose administered．

Fig．2．Values for the observed concentra－ tions of rocuronium divided by concen－ trations predicted in the pharmacokinetic analysis（expressed as a percentage）are plotted against time for each patient．The left panel presents values from the popu－ liation analysis，and the right panel shows values from the post－boc analysis．If the pharmacokinetic model fit the data per－ fectly，all lines would lie horizontally at 1.0 ．

[^2]Table 3. Parameters for Rocuronium Estimated in the Population Pharmacokinetic Analysis

Typical Value	Standard Error of Estimate	Interindividual Variability	
Cl	$4.03 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$	8.2	16.4
$\mathrm{~V}_{1}$	$105 \mathrm{ml} / \mathrm{kg}^{*}$	16.3	48.1
$\mathrm{Cl}_{\text {rapid }}$	$11.8 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$	18.1	ND
V_{2}	$85.7 \mathrm{ml} / \mathrm{kg}$	16.9	ND
$\mathrm{Cl}_{\text {slow }}$	$0.975 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$	22.5	ND
V_{3}	$134 \mathrm{ml} / \mathrm{kg}^{\mathrm{F}}$	82.6%	84.3
$\mathrm{~K}_{\mathrm{a}}$	$0.105 \mathrm{~min}^{-1}$	7.5	ND

ND = not determined in this model.

- Expressed as a percentage of the typical value.
† Computed as $100 \% \cdot \sqrt{\Omega^{2}}$ where $\Omega^{2}=$ variance $(\eta) ; 68 \%$ of the population lies within this range of the typical value.

Simulations indicated that 30 min after intramuscular administration, less than 4% of the administered dose remained to be absorbed from the depot. For infants, mean plasma rocuronium concentration 60 min after intramuscular administration was similar to that after intravenous administration (table 5); however, for children, mean rocuronium concentration was larger after intramuscular administration.

Twitch Tension

All patients developed complete twitch depression. With both intramuscular and intravenous administration, times to 10% and 90% twitch depression were similar in infants and children (table 6); however, time to twitch depression was more rapid with intravenous, compared with intramuscular, administration. Time to initial recovery was longer in children given rocuro-
nium intramuscularly than in children given rocuronium intravenously and in infants given rocuronium intramuscularly. Except for these differences in recovery, time to initial recovery of twitch tension, clinical duration, and duration of action were similar after intravenous and intramuscular administration and in infants compared with children. Eleven infants and nine children, eight with intravenous administration and 12 with intramuscular administration, had residual neuromuscular blockade at the end of surgery and received neostigmine.

Adverse Events

One child developed mild, transient erythema at the injection site; no other rashes or other signs of histamine release were observed. No patients had clinical signs of weakness during recovery. After administration of rocuronium, heart rate increased more than 20% (median, 26%, range, $21 \%-58 \%$) in one infant and seven children, four with intramuscular administration and four with intravenous administration. Systolic blood pressure increased more than 20% in two infants and three children (median, 26%; range, $22 \%-40 \%$), one with intramuscular administration and four with intravenous administration. No patient had more than a 20% decrease in heart rate or systolic blood pressure.

Discussion

We recently reported that deltoid injection of rocuronium $(1,000 \mu \mathrm{~g} / \mathrm{kg}$ in infants and $1,800 \mu \mathrm{~g} / \mathrm{kg}$ in children) produces complete paralysis and permits tracheal intubation at 2.5-3.0 min during light halothane anesthesia. ${ }^{1}$ Time to 10% recovery of twitch tension with

Fig. 3. Values for clearance (Cl) estimated in NONMEM's post-boc pharmacokinetic analysis are plotted against weight and age. The line, determined using a smoother (lowess), suggests that there is no relation between Cl and either weight or age.

Fig. 4. Values for V_{1} estimated in NONMEM's post-boc pharmacokinetic analysis are plotted against weight and age. The line, determined using a smoother (lowess), suggests that there is no relation between V_{1} and either weight or age.
these doses was $72 \pm 13 \mathrm{~min}$ in infants and 86 ± 27 min in children. These values are larger than reported for clinical doses of rocuronium given intravenously in pediatric patients. For example, Woelfel et al. ${ }^{6}$ reported that time to 25% recovery was $41.9 \pm 13.6 \mathrm{~min}$ in infants and $26.7 \pm 6.6 \mathrm{~min}$ in children ${ }^{7}$ given $600 \mu \mathrm{~g} / \mathrm{kg}$ rocuronium; time to 10% recovery was not reported in these studies. Two explanations are possible for rocuronium's prolonged duration of paralysis with intramuscular administration. First, doses of rocuronium administered in our study were larger than those typically given intravenously to infants and children (although the extent to which the large dose is bioavailable after intramuscular administration was unknown), and no data exist regarding duration of intravenous rocuronium doses >800 $\mu \mathrm{g} / \mathrm{kg}$ in pediatric patients. Second, duration of paralysis might be increased if absorption from the intramuscular depot were delayed. Although all patients in the initial studies had adequate return of neuromuscular function (as demonstrated by recovery of train-of-four ratio and sustained leg lift ${ }^{3}$), the lengthy surgical procedures in some of these patients prevented us from assessing the earliest time at which recovery would be adequate. In particular, we were concerned that slow

Table 4. Parameters for Rocuronium Derived from the Population Pharmacokinetic Analysis

Typical Value

$V_{s s}(\mathrm{ml} / \mathrm{kg})$	325
$\mathrm{t}_{1 / 2}$ absorption (min)	6.6
$\mathrm{t}_{1 / 2} \pi(\mathrm{~min})$	2.5
$\mathrm{t}_{1 / 2} \alpha(\mathrm{~min})$	27.0
$\mathrm{t}_{1 / 2} \beta(\mathrm{~min})$	127

absorption from the intramuscular depot might sustain plasma concentrations of rocuronium and thereby place patients at risk for residual weakness. Thus the goal of the present study was to determine the extent and rate of absorption of rocuronium from the intramuscular depot.
The present study shows that bioavailability of intramuscular rocuronium is 82.6% and the half-life for absorption from the depot is 6.6 min . Based on "typical" values for bioavailability and absorption rate determined in the pharmacokinetic analysis, the quantity of rocuronium remaining to be absorbed from the intramuscular depot 30 min after rocuronium administration is $35 \mu \mathrm{~g} / \mathrm{kg}$ in infants and $64 \mu \mathrm{~g} / \mathrm{kg}$ in children (the larger residual dose in children is a function of the larger dose required in those patients). This residual quantity of rocuronium is $<11 \%$ of the usual clinical dose (600 $\mu \mathrm{g} / \mathrm{kg}$). For infants, plasma rocuronium concentrations are similar 60 min after intramuscular and intravenous administration (table 5), consistent with the fact that recovery indices are similar for the two routes of administration (table 6). Thus persistent absorption of rocuronium from the intramuscular depot is not likely to be a common clinical problem in infants. However, for children, plasma rocuronium concentrations are larger 60 min after intramuscular administration than with intravenous administration, consistent with the longer time to initial recovery with intramuscular administration. In our initial study, ${ }^{1}$ the longest time to initial recovery of twitch tension was 121 min in a child (compared with an average value of 70 min in children); this prolonged recovery may have resulted from delayed absorption. These findings reinforce our earlier recommendation that time to 10% recovery of neuromuscular function with these large doses of intramuscular rocuro-

Fig. 5. Quantity of rocuronium remaining to be absorbed from the intramuscular depot is plotted against time. Values were determined by simulation based on the parameters determined in the pharmacokinetic analysis (table 3). Values are larger for children than for infants because of the larger dose administered $(1,800 \mu \mathrm{~g} / \mathrm{kg} v \mathrm{~s} .1,000 \mu \mathrm{~g} / \mathrm{kg})$. Values at time zero are the product of the dose administered and the "typical" value of bioavailability.
nium is at least 1 h and that we do not recommend its use in procedures of briefer duration.

Pharmacokinetic simulations also indicate that the median time to peak Cp after intramuscular administration is 13 min but ranges from $9.0-19.8 \mathrm{~min}$. This time to peak Cp explains why onset is delayed with intramuscular, compared with intravenous, administration, and suggests that the factor limiting onset of intramuscular rocuronium is the rate of absorption from the intramuscular depot.

The traditional approach to determine bioavailability is to study each patient twice, once with intravenous administration and once with the alternate route. In addition, most studies obtain many plasma samples from each patient. Our approach differs in that we used an unpaired design with sparse sampling; that is, we studied different patients in the intramuscular and intravenous groups and obtained a small number of samples from each patient. Obtaining paired data from children would require us either to study volunteers or to study those children who require repeated anesthesia and surgery. Neither of these choices seemed appropriatestudying pediatric volunteers raises ethical issues, and studying only those children requiring repeated surgical procedures might preselect children with underlying medical or surgical problems that alter their pharmacologic response. Thus we considered a nontraditional unpaired design. The second deviation from the tradi-

[^3]tional approach is our use of a sparse sampling regimen. Traditionally, pharmacokinetic studies required >10 15 samples per patient. In addition, data from each patient were analyzed separately. However, population pharmacokinetic tools such as nonlinear mixed-effects modeling and naive pooled data analysis permit reliable determination of pharmacokinetic characteristics when only a few samples are obtained from each person.

Recently, Wright and Fisher $\dagger \dagger$ simulated whether a sparse sampling unpaired design yielded accurate estimates for bioavailability. Pharmacokinetic data for cisatracurium ${ }^{8}$ were used to simulate data sets of ten persons in a paired study design (i.e., each was given an intravenous and intramuscular dose of the muscle relaxant) or 20 persons in an unpaired study design (in which ten are given an intravenous dose and ten an intramuscular dose). Wright and Fisher permitted interindividual variability in the pharmacokinetic parameters and residual error in the "measured" values for plasma concentration. The magnitude of interindividual variability and residual error was permitted to vary, and the number of samples per patient was either 15 (rich sampling) or three to five (sparse sampling). Despite permitting large amounts of interindividual variability, increasing residual error, a small number of samples, and model misspecification (e.g., using a one-compartment pharmacokinetic model to analyze data simulated from a twocompartment model), the value for bioavailability was estimated accurately. Thus it appears that our nontraditional approach yields reliable estimates for bioavailability.
In our pharmacokinetic analysis, permitting interinvidual variability for k_{a} and F did not improve the quality of the fit. Although there is likely to be interindividual variability in both the rate and extent of absorption from the intramuscular depot, figure 1 shows that the Cp versus time curves for intramuscular administration have the same magnitude of interindividual variability

Table 5. Values for Plasma Concentration of Rocuronium ($\mathrm{ng} / \mathrm{ml}$) 60 min after Administration by the Intravenous or Intramuscular Routes

	Infants	Children
Intravenous	$1,169 \pm 124$	$1,627 \pm 266$
Intramuscular	$1,258 \pm 128$	$2,204 \pm 284^{*}$
Values are mean \pm SD.		
'Different from intravenous administration for the same age group.		

Table 6. Onset and Spontaneous Recovery of Twitch Depression for Infants and Children Given Rocuronium

	Infants		Children	
	Intravenous	Intramuscular	Intravenous	Intramuscular
N	7	6	8	8
Dose ($\mu \mathrm{g} / \mathrm{kg}$)	1,000	1,000	1,800	1,800
Onset (min)				
10\% twitch depression*	0.3 ± 0.1	2.0 ± 0.9	0.3 ± 0.1	2.6 ± 0.7
50\% twitch depression*	0.4 ± 0.1	3.2 ± 0.9	0.4 ± 0.1	3.5 ± 1.0
90\% twitch depression*	0.5 ± 0.2	4.7 ± 1.2	0.5 ± 0.1	4.9 ± 1.4
100\% twitch depression*	0.7 ± 0.3	7.4 ± 2.1	0.7 ± 0.2	6.3 ± 2.3
Spontaneous recovery (min)				
Initial recovery	$54 \pm 10 \dagger$	$55 \pm 8 \ddagger$	$56 \pm 11 \ddagger$	68 ± 6
10\% recovery	$68 \pm 14 \dagger$	66 ± 9	65 ± 13	81 ± 15
25\% recovery	$77 \pm 17 \dagger$	74 ± 12	72 ± 15	$87 \pm 20 \S$
90\% recovery	110 ± 17 ¢	$98 \pm 24^{\star \star}$	$106 \pm 24 \S$	$128 \pm 29 \dagger$

[^4]as those for intravenous administration. This suggests that interindividual variability in both k_{a} and F is small.
The present study provides pharmacokinetic parameters for rocuronium for pediatric patients ages 3 months to 5 yr ; these values can be compared with values reported previously by Vuksanaj and Fisher ${ }^{9}$ for children ages 4-11 yr. The value for Cl in the present study, $4.03 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$, is less than the value for the "typical" (50% percentile) $20-\mathrm{kg}, 6$-yr-old child reported in the earlier study $\left(7.10 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$. The minimal age overlap in the two studies (only 3 of 20 patients in the previous study and 2 of 15 patients in the intravenous group in the present study were ages 4 or 5 yr) limits comparison of the two studies. However, findings from these two studies suggest that Cl varies minimally during the first few years of life, peaks at 4-6 yr, and then gradually decreases to the value of 2.89 $\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$ reported in adults. ${ }^{10}$
The present study provides additional insight into the potential clinical role of intramuscular administration of rocuronium. First, our analysis suggested that variability in bioavailability and rate of absorption were minimal or absent. Therefore, variability in the time course of intramuscularly administered rocuronium does not result from variability in absorption characteristics. Second, the bioavailability of 82.6% with intra-
muscular administration partially explains the magnitude of the dose required by this route. Whether intramuscular administration of rocuronium is widely adopted into clinical practice to replace elective intramuscular administration of succinylcholine remains to be determined.

In summary, when rocuronium is administered intramuscularly in the deltoid muscle, the absorption halflife is approximately 6.6 min , plasma concentrations peak at 13 min , and bioavailability exceeds 80%. These findings are consistent with initial neuromuscular recovery from these doses of intramuscular rocuronium occurring at $1-1.5 \mathrm{~h}$, and they reinforce our recommendations that rocuronium should not be administered intramuscularly if duration of surgery is expected to be less than 60-90 min.

The authors thank H. Kenneth Spencer, Ph.D., and Jane Cyran, Ph.D., of Organon Inc., for their continued support of studies examining intramuscular administration of muscle relaxants.

References

1. Reynolds LM, Lau M, Brown R, Luks A, Fisher DM: Intramuscular rocuronium in infants and children. Dose-ranging and tracheal intubating conditions. Anesthesiology 1996; 85:231-9
2. Hashimoto Y, Sheiner LB: Designs for population pharmacody namics: value of pharmacokinetic data and population analysis. J Pharmacokin Biopharmaceut 1991; 19:333-53
3. Mason LJ, Betts EK: Leg lift and maximum inspiratory force, clinical signs of neuromuscular blockade reversal in neonates and infants. Anesthesiology 1980; 52:441-2
4. Furuta T, Canfell PC, Castagnoli KP, Sharma ML, Miller RD: Quantitation of pancuronium, 3 desacetylpancuronium, vecuronium, 3-desacetylvecuronium, pipecuronium and 3-desacetylpipecuronium in biological fluids by capillary gas chromatography using nitrogensensitive detection. J Chromatogr 1988; 427:41-53
5. Gibaldi M, Perrier D: Pharmacokinetics, 2nd ed. New York, Marcel Dekker, 1982, p 48
6. Woelfel SK, Brandom BW, McGowan FX, Gronert BJ, Cook DR: Neuromuscular effects of $600 \mu \mathrm{~g} \cdot \mathrm{~kg}^{-1}$ of rocuronium in infants dur-
ing nitrous oxide-halothane anaesthesia. Paediatric Anaesthesia 1994; 4:173-7
7. Woelfel SK, Brandom BW, Cook DR, Sarner JB: Effects of bolus administration of ORG-9426 in children during nitrous oxide-halothane anesthesia. Anesthesiology 1992; 76:939-42
8. Sorooshian SS, Stafford MA, Eastwood NB, Boyd AH, Hull CJ, Wright PMC: Pharmacokinetics and pharmacodynamics of cisatracurium in young and elderly adult patients. Anesthesiology 1996; 84:1083-91
9. Vuksanaj D, Fisher DM: Pharmacokinetics of rocuronium in children aged 4-11 years. Anesthesiology 1995; 82:1104-10
10. Szenohradszky J, Fisher DM, Segredo V, Caldwell JE, Bragg P, Sharma ML, Gruenke LD, Miller RD: Pharmacokinetics of rocuronium bromide (ORG 9426) in patients with normal renal function or patients undergoing cadaver renal transplantation. Anesthesiology 1992; 77:899-904

[^0]: ＊Assistant Professor of Anesthesia
 \dagger Staff Research Associate
 \ddagger Research Fellow．Present address：Medical Student，University of California，San Diego．
 \int Research Chemist．
 ｜｜Professor of Anesthesia and Pediatrics
 Received from the Department of Anesthesia，University of Califor－ nia，San Francisco．Submitted for publication March 13，1997．Ac－ cepted for publication June 12，1997．Supported in part by Organon Inc．and conducted under their Investigational New Drug Applica－ tion．

 Address correspondence to Dr．Fisher：Department of Anesthe－ sia，University of California，San Francisco，California 94143－0648． Reprints will not be available．Address electronic mail to：〈fisher＠zachary．ucsf．edu〉

[^1]: \＃Beal SL，Sheiner LB：NONMEM＇s User＇s Guide．San Francisco， University of California San Francisco， 1992.
 ${ }^{* *}$ Excel Solver．Microsoft，Redmond，Washington．

[^2]: Anesthesiology，V 87，No 5，Nov 1997

[^3]: $\dagger \dagger$ Wright PMC, Fisher DM: Unpublished data.

[^4]: Values are mean \pm SD. Statistical comparisons were made between infants and children and between intramuscular and intravenous routes.

 * Intramuscular differs from intravenous for both age groups ($P<0.05$).
 $\dagger \mathrm{N}=6$.
 \ddagger Differs from intramuscular administration in children $(P<0.05)$.
 $\S N=7$.
 ! $N=4$.
 ${ }^{* *} N=5$.

