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A Technique for Population Pharmacodynamic
Analysis of Concentration—Binary Response Data

James M. Bailey, M.D., Ph.D.,* Keith M. Gregg Ph.D.t

Background: Pharmacodynamic data frequently consist of
the binary assessment (a “yes” or “no” answer) of the re-
sponse to a defined stimulus (verbal stimulus, intubation, skin
incision, and so on) for multiple patients. The concentration—
effect relation is usually reported in terms of C.,, the drug
concentration associated with a 50% probability of drug effect,
and a parameter the authors denote y, which determines the
shape of the concentration—probability of effect curve. Accu-
rate estimation of vy, a parameter describing the entire curve,
is as important as the estimation of Cs,, a single point on this
curve. Pharmacodynamic data usually are analyzed without
accounting for interpatient variability. The authors postulated
that accounting for interpatient variability would improve the
accuracy of estimation of y and allow the estimation of C,
variability.

Methods: A probit-based model for the individual concentra-
tion—response relation was assumed, characterized by two pa-
rameters, Cs, and y. This assumption was validated by compar-
ing probit regression with the more commonly used logistic
regression of data from individual patients found in the anes-
thesiology literature. The model was then extended to analysis
of population data by assuming that Cs, has a log-normal distri-
bution. Population data were analyzed in terms of three pa-
rameters, (Cs,), the mean value of C,, in the population; w, the
standard deviation of the distribution of the logarithm of Cs;
and y. The statistical characteristics of the technique were
assessed using simulated data. The data were generated for a
range of y and w values, assuming that Cs, and y had a log-
normal distribution.

Results: The probit-based model describes data from individ-
ual patients and logistic regression does. Population analysis
using the extended probit model accurately estimated (Cs,), y,
and o for a range of values, despite the fact that the technique
accounts for Cs, variability but not y variability.

Conclusion: A probit-based method of pharmacodynamic
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analysis of pooled population data facilitates accurate estima-
tion of the concentration—response curve. (Key words: Anes-
thetics: interpatient variability; Cs,. Pharmacodynamics: con-
centration—response. Statistics: logistic regression; probit re-
gression; random effects.)

PHARMACODYNAMIC data are often recorded as bi-
nary variables; that is, the patient does or does not
respond to a command, can or cannot maintain ade-
quate spontaneous ventilation, does or does not have a
hemodynamic or somatic response to surgical stimulus,
and so forth. In this situation, the most common tech-
nique of data analysis is logistic regression, in which
the probability of drug effect is evaluated as a function
of C, the drug concentration in plasma (or at the effect
site), with the equation

RE=NE/ (CS50LEHED) (@

Cs is the concentration at which the probability of
drug effect is 50% and vy is a measure of the steepness
of the concentration - effect curve (throughout this arti-
cle P refers to the probability of drug effect, such as
the probability of ablating the response to some stimu-
lus, such as skin incision). Logistic regression has been
used for the analysis of the pharmacodynamics of in-
haled and intravenous anesthetics,' '’ usually with a
primary focus of determining Cs, values. However, lo-
gistic regression not only estimates the median point
of the concentration -response curve (Cs,), but it also
provides information on the shape of this curve by esti-
mating the steepness parameter y. Note that equation
1, when applied to a single patient, implies that there
is a fundamental element of intrapatient variability in
the concentration - effect relation. There is a finite, al-
beit small, probability of drug effect at very low drug
concentrations, and at high drug concentrations there
is still some probability that a drug effect will not be
observed. This reflects what many studies have shown:
specifically that the drug concentration needed to block
the response of an individual to a repetitive and un-
changing stimulus varies randomly around some mean

202 Iudy 60 uo 3sanb Aq Jpd°€1.000-000+0.661-2¥S0000/€LLLEEISTS/¥/98/sPpd-0[01IE/ABO|0ISBUISBUE/WOD JIBYDIBA|IS ZESE//:d}Y WOI) papeojumoq



826

J. M. BAILEY AND K. M. GREGG

value during the study. This also is consistent with the
clinical observation that anesthetic requirements vary
during a procedure, even when the stimulus is seem-
ingly unchanging. The parameter y is a measure of this
intrapatient variability and has substantial clinical sig-
nificance. When v is large (>6). the probability of effect
is very close to zero when C is less than Cs, (even if
only slightly less) and very close to 1 when C is greater
than Cs, (even if only slightly greater). In other words,
if y is large there is a well-defined threshold for drug
effect. In contrast, when Y is small, the drug effect -
concentration curve is not as steep, and it is difficult to
clearly define a threshold for drug effect. For example, if
Y = 1, equation 1 implies that the concentration must
increase by a factor of 9 to increase from a 10% chance
10 a 90% chance of drug effect. In contrast, if y = 10,
the concentration need only increase by a factor of 1.5
to change from a 10% to 90% chance of drug effect.
Understanding the shape of the concentration - effect
curve is important for clinical practice,'!'2 Although
Cso is a single point of the concentration - effect curve,
the parameter y characterizes the entire relation. For
example, given C.,, the drug concentration associated
with a 90% or 95% probability of drug effect (Cyy Or
Cos) depends on y. Given that most anesthesiologists
would prefer to maintain the anesthetic concentrations
at Cy, or Cos rather than Csy, it seems that accurate

estimation of y could be viewed as important
termining Cs,,.

as de-

Ideally, logistic regression would be

applied to data
taken from individu

al patients for evaluation of Cso and
Y and then these individual values could be used to
gencrate a measure of central tendency (mean, median,
and so on) for the population. But in reality, many im-
portant stimuli, such as tracheal intubation, loss of con-
sciousness, skin incision, or sternotomy, can only be
¢valuated once during the study of any one patient and
logistic regression is most often applied to pooled data
of multiple patients with one data point per patient.
Analysis of pooled data should account for interpatient
variability around the typical concentration - response
curve. Evaluating interpatient variability has proved use-
ful in pharmacokinetic investigations,"*"'*> and we be-
lieve it is important to develop methods to evaluate
pharmacodynamic interpatient variability.
Although quantifying interpatient variability

is of in-
terest in its own right, it is e

Ve€n more important to
account for interpatient variability to evaluate more ac-
curately the shape of the individual concentration - ef-
fect curves. Evaluation of the steepness of the individual
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whom have a steep concentration—e
varying values of C,
10).

concentration - effect relation may be confounded by
the lack of distinction between intrapatient and interpa-
tient variability. This is illustrated conceptually in figure
1, where the concentration - effect relations of nine hy-
pothetical patients are presented. Although each curve
is steep, the curve generated by one point from each
patient is much flatter (and, in fact, the curve would
have appeared even flatter if we had not selected low
probability values from the leftward curves and high
probability values from the rightward curves). Although
this is a contrived example, it nevertheless illustrates
how intrapatient variability may be overestimated if in-
terpatient variability is significant. The resultant concen-
tration - effect curve may appear artificially flat while
the curve for any one patient may be steep. No readily
accessible method is available to evaluate interpatient
Cso variability or to distinguish interpatient Cs, variabil-
ity in pooled data analysis from flat individual concentra-

tion-effect curves. This article presents a technique to
achieve these goals.
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Methods

Appendix 1 presents the mathematical basis for this
probit-based approach to pharmacodynamic analysis. The
technique is based on the assumption that for individual
patients the probability of a drug effect is given by

P = ®[yInC — yInC50] )

where ® denotes the standardized cumulative normal
distribution; that is, ®[yInC-yInCs,] is the area under a
Gaussian curve (with standard deviation of 1) from minus
infinity to yInC-yInCs, (see appendix 1 for details). Thus
equation 2 resembles equation 1 (logistic regression) in
that it is characterized by two parameters, y and Cs,,
and the probability increases with increasing C.

In two separate studies, Vuyk et al”’ collected data
during gynecologic surgery on the response to repeti-
tive intra-abdominal stimuli (electric cautery) of individ-
ual patients as a function of alfentanil plasma concentra-
tion when supplemented by nitrous oxide or various
concentrations of propofol. Because this is, to our
knowledge, the largest collection of individual concen-
tration -response data, we used it to assess the validity
of probit analysis for individual patients (equation 2) by
comparing the results to those of logistic regression
(equation 1). Observed responses and drug concentra-
tions were taken from the figures of these reports. The
parameters (Cs,, y) in equations 1 and 2 were evaluated
by maximum likelihood estimation. The logarithm of
the likelihood of observed results

o b =2 1
=2 {Rilog®)+ A —-R)logd —P)} (3

(P is given by equation 1 or 2 and R = 1 if a drug
effect is observed and R = 0 otherwise and I indexes
patients) was maximized as a function of Cs, and y. The
estimation procedure was easily implemented using an
Excel spreadsheet (Microsoft, Redmond, WA), taking
advantage of its built-in function that evaluates the error
function and the Solver function for the maximization
step.

Appendix 1 describes generalization of equation 2 to
account for interpatient variability. The probability of
drug effect when concentration - response data are col-
lected from multiple patients with one observation per
patient is given by

P = ®[(y In C — y In (CSODA( + w?y?)]  (4)

where ® again denotes the standardized cumulative nor-
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mal distribution, but now the probability of drug effect
is determined by three parameters, (Cs,), the mean
value of Cs, in the population; y; and w?, the variance of
In Cs, values in the population. Derivation of equation 4
is contingent on the assumption that the probability of
drug effect for individual patients is given by equation
2 and that the distribution of Cs, values in the popula-
tion has a log-normal distribution.

Direct validation of equation 4 was not possible be-
cause we are not aware of a sufficiently large data set
comprised of single data points from multiple patients
for which the interpatient variability of Cs, (w” in equa-
tion 4) is also known. Instead, computer simulation
was used for indirect validation. Each simulated study
consisted of 30 different participants (a number fairly
typical of many anesthesiology pharmacodynamic stud-
ies). A Cs, value and a y value were assigned to each
hypothetical “‘patient” using the Excel random-number
generator and assuming that both Cs, and y had log-
normal distributions. This is analogous to the enroll-
ment of patients, during a true human participant study,
from a population with randomly varying Cs, and y
values. For all simulations we assumed that the mean
Cs, (denoted (Csy)) was 100 units per milliliter, that the
standard deviation of the distribution of log y was 0.5
(see Discussion to follow), and the mean value of y and
the variance of C5, were varied, as will be described.
Each simulated patient was also assigned a single drug
concentration from one of 30 values distributed uni-
formly from 10 to 300 units/ml. This corresponds in a
real study to the investigator assigning a drug dose to
each patient enrolled in the study. At this point, if the
concentration - effect relation were completely deter-
ministic (no intrapatient variability) then a positive drug
effect would be observed if the drug concentration, C,
assigned to the patient exceeded the value of Cs, for
that patient (see appendix 1). However, as noted ear-
lier, there is an element of randomness even in the
individual concentration - effect relation. To account for
this intrapatient variability, a normally distributed ran-
dom variable (denoted ¢), with mean value of 0 and
standard deviation of 1, was generated for each ‘‘pa-
tient” and added to yInC — yInCs, (see equation A-
1 in the appendix 1). If this sum exceeded zero, the
simulated patient was assumed to have a positive drug
effect (the response variable R was given a value of 1).

This simulation technique is best illustrated with an
example. Each simulation was done on a spreadsheet
and each row corresponded to a single ‘“‘patient’” and
had entries for the assigned value of C and the randomly
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generated values of Cs,, v, and € and the sum INEES
yInCs, + ¢, which determined R. In one of the simula-
tions, patient 6 was assigned a drug concentration of
80 units/ml. The values of C.,, Y, and € returned by
random-number generation were 95, 9.4, and 0.9, re-
spectively. Thus yInC — yInCs, + ¢ was equal to —0.72,
and this indicates that a drug effect was not observed
(i.e, R = 0). In contrast, patient 13 was assigned a drug
concentration of 90 units/ml. The values of Cso, ¥, and
¢ returned by random-number generation were [55)
5.4, and 1.4, respectively. For this patient, yIlnC —
vInCs, + € was equal to 0.08 and R = 1.
Six different simulations were conducted by assigning y
a mean value of either 10 (steep concentration - response
curves), 5 (intermediate concentration response curves),
or 2 (flat concentration - response curves) and assigning
w? values of either 1 or 0.04. Twenty-five repetitions of
cach simulation were conducted to assess the statistical
properties of this technique. Maximum likelihood esti-
mates of (Cs,), v, and w were calculated using equations
3 and 4 and implemented with the Excel spreadsheet. We
also applied “‘naive” probit analysis (ignoring interpatient
variability) to the simulated data sets by assigning w the
value of 0.
Appendix 2 provides a detailed description of how to
use an Excel spreadsheet to implement this technique.
This technique was applied to real data presented by
Ausems et al’ on the relation among alfentanil (when
supplemented by nitrous oxide), plasma concentration,
and the responses to intubation and skin incision, with
data retrieved from the published graphs of Jacobs et
al."’ on the relation between midazolam plasma concen-
trations and loss of responsiveness. and of Bailey et al.'°
on the relation between sufentanil plasma concentra-
tions and the responses to intubation, skin incision,
and sternotomy in cardiac surgical patients, using the
original data. For alfentanil, an indirect and approximate
estimate of w was made by €quating it to the standard
deviation of In Cs, values for the electroencephalo-
graphic effect reported by Egan ef al.'” For midazolam,
the standard deviation of patient ages in the study of
Jacobs et al."® was used as a measure of w, because
these investigators found that age was an important
covariate of In Cs,. For sufentanil, w was directly calcu-
lated from reported values of C., '

50 -

Results

Population pharmacodynamic analysis using equation
(4) is based on the assumption that a probit model
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Table 1. Comparison of Logistic and Probit Regression

Logistic Regression

Probit Regression
(equation 1)

(equation 4)

Patient

Log Log
Number Likelihood Cso Likelihood Cso

1 = 1:06582 2141 —1.03553 214.5
2 —.70989 322.0 —.80881 330.5U
3 —1.60195 154.7 —1.59424 154.62
4 —2.58987 218.5 —2.56484 218.5§
5 —2.87866 2431 = 258761l 243.3§
6 O/ 82, 70.7 —5.76901 7158/
7 —1.75534 249.9 —1.73134 25045
8 —3.12353 216.4 —3.11987 217.2%
9 —1.17598 114.1 —1.1386 114.2§
10 — 12977 11.9 —1.24108 1124 Z
11 —1.98425 27.0 —2.4843 30.0 g
2 —1.31266 17T =il-2911i76 11955
13 —1.3843 66.7 —1.3697 66.8 ;
14 ~2.07401 68.0 ~2.03493 68.3 5
15 —4.3225 135.5 —4.30576 135.7 ‘_3,
16 —1.17671 741 —1.14826 74.5 §
17 —2.83859 196.1 —2.80724 196.9 §—
18 —3.70032 112285 —3.69338 122.7 5
19 —3.75884 151.6 =3.758 152.0 §
20 —2.98351 101.6 —2.98554 101.0 g
21 —2.68345 11741145 —2.67342 172.4 §
22 —1.30887 33.5 =1:29635 33.6 §
23 —1.36657 27.8 —1.47043 26.5 §
24 —1.93444 2112, = 12996 21.3 3
25 —2.06559 45.5 —2.05672 45.7 g
26 —1.78894 33.3 = B658 33.4 §
21 —2.2905 58.7 220078 58.6 g
28 —2.07936 213 —2.0662 2115 &
29 = 1510739 78.0 —1.08837 78.0 §
30 —2.25199 37.5 —2.23398 37.5 §
31 = 12911965 292 —1.89681 292 g
3
(equation 2) accurately describes the concentration - g
response relation for individual patients. We assessed 3
this assumption using the data of Vuyk and colleagues, §
who have studied extensively the pharmacodynamics %
of alfentanil in combination with varying doses of pro-

pofol or nitrous oxide in healthy women undergoing
lower abdominal gynecologic surgery.”” They have pre-
sented concentration - response data from 38 patients.
In seven cases the data were not amenable to either
logistic or probit analysis (because a concentration was
found above which there was always a positive drug
effect and below which there was never a positive drug
effect). For the remaining 31 patients, the log-likeli-
hoods of the “‘best” (maximum likelihood) description
of the data by either logistic regression or probit analysis
are shown in table 1, along with Cs, values. There was
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Fig. 2. Individual estimates of (Cs,) (4), y (B), and w (C) for 25
repetitions of simulated data generated assuming (C,,) = 100,
mean y = 10 (y is log-normal distributed with a standard devia-
tion of 0.5), and @ = 1. These target values for the estimates
are indicated by accented horizontal lines.

no difference between the two approaches in their abil-
ity to describe these data.

The precision and bias of population analysis using
equation (4) was evaluated by computer simulations.
Figures 2 and 3 show the distribution of population
estimates of (Cs,), v, and w for two of these simulations.
For figure 2, the simulated data were generated assum-
ing that (Cs,) = 100, y = 10, and w = 1. Qualitatively,
this represents steep individual concentration - re-
sponse curves with substantial interpatient variability
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in the Cs, value. For figure 3, the target values are (Cs,)
= 100, y = 2, and w = 0.2, which qualitatively repre-
sents flat individual concentration-response curves
(large intrapatient variability) with relatively insignifi-
cant interpatient variability. The statistical fidelity of
the method is indicated by how close the individual
estimates are to these target values (shown as horizontal
lines in the figures). For quantitative appraisal, the mean
estimates of (Cs), v, and w for 25 repetitions of six
different simulations (varying in the values of y and w)
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Fig. 3. Individual estimates of (C,) (4), y (B), and w (C) for 25
repetitions of simulated data generated assuming (Cs,) = 100,
mean y = 2 (yis log-normal distributed with a standard devia-
tion of 0.5), and @ = 0.2. These target values for the estimates
are indicated by accented horizontal lines.
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Table 2. Results of Computer Simulations

Target Parameters Estimated Parameters

(0 ¥ W Cso Y w

100 10 1 94.9 (25.6) 9.8 (0.9) 1.05 (0.17)
100 10 0.2 102.0 (10.9) 10.5 (0.8) 0.25 (0.08)
100 5 1 96.4 (30.2) 4.9 (0.4) 0.97 (0.24)
100 5 0.2 103.2 (11.6) 4.9 (1.1) 0.21 (0.06)
100 2 1 102.5 (35.6) 2:10:3) 1.0 (0.34)
100 2 0.2 98.7 (18.4) 1.8 (0.7) 0.23 (0.04)

Estimated parameters are shown with standard deviation of estimate (for 25
repetitions) in parentheses. Target parameters are those used to generate the
simulated patient data and thus are the targets for ideal estimation.

are shown in table
the estimates.

Figure 4 compares the predicted concentration - re-
sponse curves using parameters estimated by “‘naive’”
probit regression (equation 2) and population probit
regression (equation 4) for simulated data from a popu-
lation with (Csq0) = 100, ¥ = 10, and w = 1. The curve
is normalized to (Cs,) so that the “‘true’” curve can also
be illustrated (this is necessary because individual C50
values vary in the population). By normalizing the
curve, we can use a single curve to represent the under-
lying population).

The results of applying equation (4) to real data are
shown in table 3. Also shown are independent but indi-
rect and approximate estimates of w. Also shown are
estimates of y made accounting for interpatient variabil-
ity (equation 4) and by naive estimation (assuming that
w = 0 in equation 4).

Discussion

We have presented a technique for population phar-
macodynamic analysis of binary data, our goal being
to improve the accuracy of estimating the parameter
characterizing the shape of the individual concentra-
tion - effect relation and to provide a simple method to
assess interpatient Cs, variability. Although many phar-
macodynamic studies concentrate on estimating Cs,
this is only one point of the concentration - effect curve.
In this study (as with logistic regression), the shape of
the concentration-effect curve is largely determined
by a single parameter, which we denoted y. Drugs with
a relatively large value of -y have a steep concentration -
effect relation with well-defined thresholds for effect.
Furthermore, if we believe that accurate estimation of
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2, along with standard deviations of

Cs, is important, then we should devote the same effort
to estimating vy, because it will determine Cgy, or Cys
and most clinicians would prefer to maintain patients
at this level rather than Cs, (viewing a 50% chance
of awareness, for example, as undesirable). In short,
accurate assessment of this aspect of pharmacodynam-
ics is essential for the clinical use of the drug.

The technique we describe characterizes the concen-
tration - response curve with three parameters, (Cs,), 7,
and w. (C5,) is the mean Cs, value for the population
and vy is a measure of how steep the individual concen-
tration -response curve is. Because this curve is ex-
pressed as the probability of drug effect as a function
of drug concentration, y is a measure of intrapatient
variability. In contrast, w” is a measure of interpatient
variability, the variance of In Cs, values in the popula-
tion. By accounting for interpatient variability, we hope
to avoid confounding intrapatient and interpatient vari-
ability, leading to artificially low estimates of 7.

In a previous report, we defined a measure of recov-
ery, denoted mean effect time, which depended closely
on the steepness of the concentration - effect relation
as measured by y."' In an editorial comment, Schnider
and Shafer'” noted that if estimates of y were artificially
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Fig. 4. The probability of response as a function of drug con-
centration, normalized to (Cs,). Simulated data were generated
assuming that the mean value of y = 10 (y is log-normal dis-
tributed with a standard deviation of 0.5) and that ® = 1.
Shown are the concentration—response curves for the typical
patient with y = 10 (—-), the curve estimated using population
probit analysis (equation 4) (— — —), and the curve estimated
with naive probit analysis (equation 2) (. . . . . . De
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Table 3. Variance Estimate Comparison
o & 2 ‘y
Drug Stimulus Probit Indirect y Naive
Alfentanil Intubation 0387 0.65 8.05 2.56
Alfentanil Skin incision 0.45 0.65 3.18 1.81
Midazolam Verbal 0.74 0.38 5/05 11311
Sufentanil Combined 1|27 0.67 3.02 0.76

The data for alfentanil is taken from references 5 and 16. The data for midazolam is taken from reference 10. The estimate of y uses the full equation (4), and

the estimate of “‘naive’ y uses equation (4) but with w assigned a value of zero.

low, then the calculated mean effect time would grossly
exaggerate recovery time. A source of error in the esti-
mation of vy is the failure to consider interpatient vari-
ability in Cs,. Methods of data analysis that use pooled
data from a population and do not account for the fact
that different patients will have different Cs, values may
lead to inaccurate estimates of y. This is analogous to
the situation in pharmacokinetic analysis'*~"> and is il-
lustrated by figure 4, which shows that if there is sub-
stantial interpatient variability of Cs, values (in this case,
a standard deviation for In Cs, of 1), the concentration -
response curve estimated by naive application of logis-
tic regression to pooled data is very flat, even when the
individual curves are steep (in this case, a mean y value
of 10). In our applications of this technique to real data
(table 3), we see that “naive’” estimates of y (ignoring
interpatient variability and assuming that w = 0) are
considerably lower than those that account for interpa-
tient variability, as predicted by the simulation illus-
trated in figure 4.

We can illustrate these points quantitatively by calcu-
lating mean effect time for midazolam, as an example,
using ‘‘naive’’ versus population estimates of y (table
3). The technique for calculating the mean effect time
is described by Bailey,'" with the substitution of equa-
tion 2, rather than equation 1, for the probability of drug
effect, and we consider the specific case of a duration of
administration of 100 min. After discontinuing adminis-
tration, the mean effect time based on the naive esti-
mate of y (1.31) is 42 min. Using the population-based
estimate of y (5.05), the estimate is 14 min. The naive
estimate exaggerates the estimate of recovery time.
However, we must also emphasize that accurate estima-
tion of vy is important for understanding the pharmacol-
ogy of the drug only if the clinician titrates the drug to
effect. If drugs are administered without end points for
titration, the naive estimate of y may actually be more
informative, although this would be grossly misleading
about the concentration - effect curve of the typical pa-
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tient. For example, if we seek the drug concentration
that ensures that an effect will be observed in 90% of
all patients, then the naive estimate of -y should be used
for the calculation. However, this drug concentration
may be a gross overdose for any one patient if we can
titrate to effect. The population-based estimate of vy is
a better reflection of the concentration - effect curve in
this situation, although both estimates are useful and
we recommend using both types of analysis in pharma-
codynamic research.

It is also of some interest that the mean effect time
calculated using a naive estimate of y based on logistic
regression (equation 1) was considerably larger than
the estimate using the naive probit (equation 2) (89
versus 42 min). This presumably reflects the fact that
the logistic distribution has longer tails than the normal
distribution and may confirm the speculation by
Schnider and Shafer'” that calculations of mean effect
time may be inflated due to the tails of the logistic
distribution.

The equation we derive to describe the probability
of drug effect (equation 4) is not as straightforward and
casily understood as the one used for “‘naive’” logistic
regression of pooled data (equation 1). Thus a discus-
sion is warranted. Equation 4 relates the probability of
drug effect for the population to the cumulative normal
distribution, by convention denoted ®(x). If we plot a
standardized normal curve (a Gaussian or bell-shaped
curve with a standard deviation of 1) on the x-y axis,
centered around x = 0, P(x) is the area under this curve
to the left of x. Note that x can be either positive or
negative; if x = 0, then &(x) = 0.5, because x = 0 is
the midpoint of the curve. In equation 4, x = (yInC
— yIn{Cso))/ (1 + w*y?). So as C increases, P(x) also
increases, which is logical because the probability of
drug effect should increase as the drug concentration
increases. The probability of drug effect is 50% when
C = (Csp) because x = (yInC — yIn(Cse))/y(1 + w?y?)
= 0 at this point and the normal curve is centered
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around x = 0. Also, note that as y becomes larger, x
= (yInC — yIn(Cs))/ (1 + w®y?) increases more per
unit increase in concentration; that is, the concentra-
tion-effect curve is steeper. Finally, as w becomes
larger (greater interpatient variability), the increase in
x and ®(x) per unit increase in drug concentration de-
creases; that is, the concentration - curve for the popula-
tion is flatter. This reflects the fact that with greater
interpatient variability there will be more patients with
extremes of Cs,, both low and high, so that for the
population the probability of drug effect at low drug
concentrations is increased while it is decreased at high
concentrations, flattening the curve.

Within the framework of the model and its assump-
tions, the mathematical derivation of equation 4 is ex-
act. Thus the utility of this technique is determined
solely by the validity of the assumptions of the model.
The critical assumptions are (1) the concentration - re-
sponse relation for individual patients is described by
equation 2, a probit relation, rather than by the more
commonly used logistic equation (equation 1); (2) the
distribution of Cs, values in the population conforms
to a log-normal relation; and (3) we can ignore the
interpatient variability of y without substantial loss of
accuracy.

The first assumption, that individual concentration -
response curves are appropriately described by a probit
model, was directly evaluated using data for individual
patients and was compared with logistic regression. Al-
though logistic regression has been commonly used for
binary response pharmacodynamic analysis, we know
of no previous effort to determine whether intrapatient
variability is well described by a logistic distribution. In
our analysis of the data of Vuyk et al,”” we found that
the probit model (which uses a normal distribution to
describe intrapatient variability) fit the data as well as
the logistic model. This reflects the fact that the logistic
and normal distributions are not that dissimilar, both
being symmetric and sigmoid. We cannot conclude that
the probit model is superior to the logistic model for
individual patients, but it seems apparent that it is just
as appropriate.

The second assumption of the model is that the distri-
bution of Cs, values conforms to a log-normal distribu-
tion. This type of assumption is commonly used in both
pharmacokinetic and pharmacodynamic modeling and
conforms to observed distributions of pharmacokinetic
and pharmacodynamic parameters."> However, if the
actual distribution of Cs, values are multimodal, this
assumption is clearly incorrect.
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The final critical assumption of this model is that it is

7y maive’; that is, we have not accounted for variability
in y values. Although we have referred to y as the
parameter that determines the steepness of the concen-
tration - response relation, the slope of this curve is also
influenced by Cs,. Thus ignoring 7 variability is not
equivalent to assuming that the shape of the concentra-
tion-response curve is the same for all patients. In addi-
tion, interpatient y variability could be incorporated
into the model if the distribution of y were normal. As
we noted previously, a log-normal distribution seems
more plausible. However, if the variance is not too
large, a normal distribution could approximate a log-
normal, as a “first-order’” approximation similar to that
used in NONMEM,"*'* and the model could be ex-
panded to consider interpatient variability in . How-
ever, we have not extended the model in this manner
because our primary focus is the variability of Cs,. Ac-
counting for y variability would add a parameter to the
model (two additional parameters would be required
if covariance between C., and v is considered). Few
anesthesiology data sets of this type are large enough
to support accurate estimation of four (or five) parame-
ters. In our simulations, we have assumed a log-normal
distribution of y values in the population, with a stan-
dard deviation equal to 50% of the mean value, a sub-
stantial variability. We chose this value because the
mean standard deviation of In y values among the sepa-
rate patient subsets of the data from Vuyk et al.” (after
“trimming” the highest and lowest y value in each
group) was 0.477. Thus a In y standard deviation of 0.5
seems realistic. We found that our estimates of the mean
value of y were accurate despite our "y naive’’ estimat-
ing equation (equation 4). This seems to parallel the
observation that the “w” naive” approach, logistic re-
gression, is a good estimator of (Cs,) (see figure 4) but
may fail in the estimation of y, a measure of variability
(intrapatient). Similarly, our “y naive” technique esti-
mates (y) reasonably accurately but provides no infor-
mation about its variability. Although our model does
not fully account for interpatient variability, we believe
it is an improvement over the fully “naive’ logistic re-
gression approach.

A possible concern with this project is that we cannot
validate our technique directly. There are simply no
data sets available consisting of single concentration -
response observations from multiple patients for whom
the variance of Cs, in the population is known. Conse-
quently, we evaluated the statistical properties of the
technique using computer simulation. We *‘created” 30
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patients for each simulation by randomly generating
values of Cs, and 7y, analogous to the experimental in-
vestigator enrolling patients from a population with log-
normal distributions of these variables, and we assigned
a single drug concentration to each patient, analogous
to the experimental investigator selecting a drug dose
for each patient in the study. We then accounted for
intrapatient variability by letting the response variable,
R, be determined by the sum of yInC — vInCs, and a
term representing random intrapatient variability, gen-
erated by a random-number generator. Thus the simula-
tions emulated a typical pharmacodynamic study. We
wish to emphasize that computer simulation is a com-
monly used validation procedure for statistical methods,
and our approach parallels the validation of widely used
population pharmacokinetic techniques.'* We believe
our simulations are realistic. They are based on a probit
model (equation 2) for the individual concentration -
response relations, which we have shown is a reason-
able assumption, and on the assumption of log-normal
distributions for Cs, and vy. If these assumptions are
plausible, our simulations indicate that this technique
can accurately estimate (Cs,), v, and w.

We illustrated this technique by applying it to three
sets of actual patient data, that reported by Ausems et
al.” for the relation between alfentanil (supplemented
with nitrous oxide) concentration and the response to
intubation or skin incision, that reported by Jacobs et
al'’ for the loss of responsiveness and midazolam
plasma concentration, and data for sufentanil reported
by Bailey et al.'® In each of these cases we have Approxi-
mate, indirect measures of w, and the estimates with our
technique and these indirect measures are in reasonable
agreement. But this observation must be tempered by
the approximate nature of the indirect measures. In the
case of alfentanil, the indirect measure is the standard
deviation of electroencephalographic measures of In
Cso reported by Egan et al'” Whether this has an im-
portant relation to the somatic or sympathetic response
to intubation or incision is uncertain. In the case of
midazolam, the investigators found that patient age was
a significant covariate in the estimation of In Cs,; that
is, In Cs, was proportional to age."” The independent
estimate of w in the table is simply the standard devia-
tion of the patient ages in the study (multiplied by the
coefficient of proportionality reported by the authors)
and so should probably be viewed as a lower bound to
the true standard deviation of Cs, in the population. For
the sufentanil data, the estimate of w is actually direct
but must be viewed as crude because the number of
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patients used for the estimate was small (n = 5) and
the responses to different stimuli (intubation, incision,
and sternotomy) were pooled for analysis.

There is a considerable statistical literature on the
analysis of binary or ordered categorical data (see
McCullagh and Nelder'® and Zeger and Liang' for over-
views) and, in particular, Sheiner’ has described the
analysis of categorical data within the framework of the
NONMEM program. We have not examined the analysis
of binary data with NONMEM, primarily because the
probit technique is so easily implemented with an Excel
spreadsheet (as detailed in appendix 2). However, in
the analysis of binary data it is necessary to evaluate
complicated integrals. In our probit model, these inte-
grals (the cumulative normal distribution) are provided
by a builtin function with a high degree of accuracy.
With NONMEM, the integrals are evaluated by a tech-
nique known as the Laplace approximation.””?' To our
knowledge, application of the Laplace approximation
to the analysis of sparse binary data (one data point per
patient) has not been validated in simulations such as
those we used here.

We have presented a method for population analysis
of binary, “‘yes/no,” pharmacodynamic data. The tech-
nique estimates the mean value of Cs,, a parameter
v that influences the steepness of the concentration -
response curve, and w?’, the variance of InCs, in the
population. The model assumes a log-normal distribu-
tion of Cs, values. The underlying model for the individ-
ual concentration-response relations was validated by
analysis of individual patient data. The statistical proper-
ties of the technique were evaluated by computer simu-
lation.
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lently if ¢ = —(yInC — yInCs). Thus the probability of drug effect
is

- P
P = f e XU = G/ (CUSA @S 02) 6)
Gikemsnesny (U ar ETH)F
(The integrand is the logistic density function.)
As an alternative, we propose using probit analysis. The basic
model is again

y=7vInC — yIn C50 + ¢ (A-1)

but ¢ now has a normal distribution with a mean of zero and a
variance of 1. Again we assume that a drug effect is observed only
if y = 0. Also note that again the concentration-effect curve is
characterized by two parameters, y and Cs, (which is why the normal
distribution may be arbitrarily assumed to have a variance of 1). With
this model the probability of observing a drug effect is

1

D= —

‘ e dx = B[y In C — v In C50] (A-2)
V21

(yInC—yInC50)

where @ denotes the cumulative standardized normal distribution.
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Equation (A-2) is applicable to data from a single patient. For the
analysis of pooled population data with one observation per individ-
ual, this expression must be generalized. We rewrite equation A-1 as

Yi=7vyInC — yIn C50; + ¢ (A-3)

where the subscript I indexes patients. Note that we assume that y
is the same for all patients. We also assume that C., has a log-normal

distribution; that is, C5, = (Cs,) exp (,) where (Cs,) is the mean C.,
value and 6, is normally distributed with a mean of zero and in un-
known variance w* and is independent of ¢,. With these assumptions
we can write

Yi= v InC — vy In (C50) + (y6; + €) (A-4)

Because the sum of two independent normally distributed variables
is itself a normally distributed variable whose variance is the sum of
the variances of its individual components, in this model y, is a nor-
mally distributed variable with variance equal to 1 + (yw)®. Because
we observe a drug effect if y, = 0, the probability of a drug effect in
the ith individual for population analysis is

20 InC—vyl1 550
2 d(p[“%_@q A5)

-
e el
Wi O 2 =) V1 + (yw)?

V1+(yw)

(For convenience we have dropped the index I). Note that the

probability of drug effect for this population model is now character-

ized by three parameters: (Cs,), the mean value of C., for individual

patients, y a measure of the steepness of the concentration - response
curve, and w?, the variance of Cs, values in the population.

Appendix 2

In this appendix we describe the implementation of population
probit analysis using an Excel spreadsheet. This implementation is
illustrated in figure 5. These instructions assume a computer with a
mouse For personal computers, cells are highlighted by using the
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T ) e e i E F
Bl 64 0  250| -1.33612) 0.090755 -0.04132
2 85 0 5/ -1.05786 0.14506  -0.06806
L3 123 1| 1 -06955 024337 -061373
(4| 139 0 | -0.57559 0282447 -0.14415
5] 153 0 | 048149 0315085  -0.16436
6 203 0 -0.20421 0.419094| -0.23589
i 206 1 | -0.18983| 0.424723| -0.37189
| 8 | 217 0 | -0.13881 0.444798 -0.25555
9 | 221 0 [ -0.1209| 0.451884] -0.26113
10 226 o | -0.09897| 0.460583| -0.26808
1 237] 0| | -0.05236| 0.479119| -0.28326
12 241 14 | 0.03595 0.48566| -0.31367
| 0 [0003914] 0.501562 -0.30239
14 270| 1 0.075467| 0.530078| -0.27566
15 274 1 1 0.079092| 0.53152] -0.27448
16 278 0| | 0.104099| 0.541455| -0.33862
17 279 1] 0.10762| 0.542851| -0.26532
18 291] gﬁr | 0.148913] 0.559189| -0.35575
19 347 1] 0.321497| 0.626083| -0.20337
(20| 374 1| | 0.394973| 0.653568 -0.18471
21 384 1 | 0.420847| 0.663067 -0.17844
22 388 1] 0.431009| 0.666769 -0.17602
(23] 406 1 | 0.475476| 0.682776| -0.16572
24 432 0| | 0.536343| 0.704139] -0.52891
25 451 1 0.578549/ 0.718553| -0.14354
] 26 527 1| | 0.731258, 0.767689| -0.11481
(27 571] 1| | 0.809889| 0.790998| -0.10182
28 577 1 0.820139) 0.793932| -0.10022
(29| 674 0| 10.97251] 0.834601| -0.78147
(30| 700/ 1 1.009625| 0.843662| -0.07383
31] 73 1] [ 1.061462] 0.85576] -0.06765
[32] 794 1 1.133181] 0871431/ 005977
33 7% -1 || 1135648 0.871948| -0.05951
34 I j -7.77311

Fig. 5. A typical Excel spreadsheet for population probit analy-
sis. The entries in this example are explained in appendix 2.

mouse to align the “# over a cell and striking the mouse button.
Options from the menu above the spreadsheet itself are selected by
using the mouse to align the ©“ /" over the option and clicking the
mouse button.

1. Enter data in columns A and B. The concentrations at which
observations of drug effect were made are entered in column A
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6.

(cells A1:A33 in this example). The response variables are entered
in column B (enter a ‘1" if a drug effect was observed and ‘0"
otherwise).

. Enter initial estimates, or guesses, of (Cs) in cell C1, of y in cell

C2, and of v in cell C3.

. Highlight cell D1. Type “= ($c$2*In(al) — $c$2*In($c$1))/((1 +

($¢$2*$¢$3)A2)A.5)". (The quotation marks are not included in
the expression to be typed). Strike the Enter key. Now position
the mouse over the lower right corner of cell D1 until the “+"
symbol appears (distinguish this from the ‘¥ symbol). While
depressing the mouse button, drag the mouse down column D,
in this example to row 33. This will fill in cells D2:D33 with the
above expression except that the drug concentrations in cells
A2:A33 will be used (in place of the value in cell Al) for cells
D2:D33.

. Highlight cell E1. Select the ‘‘function wizard,”” which is the box

labeled “f,” in the menu above the spreadsheet. A menu of catego-
ries of functions will appear on the screen. Select “‘Statistical.” A
menu of statistical functions will appear. Scroll down to “NORMS-
DIST" and select this option. Then select the “Next” option. A
line for inserting the argument of the function will appear. Type
“d1” and strike the Enter key. This will cause the value of the
cumulative standardized normal distribution of the value in cell
D1 to appear in cell E1. Place the mouse over the lower right-
hand corner of cell E1 until the “+" symbol appears. Keeping
the mouse button depressed, drag the mouse down column E
to fill in cells E2:E33 with the values of the normal distribution
corresponding to cells C2:C33 and D2:D33.

. Highlight cell F1. Type “= bl*log(el) + (1 — bl)*log(1 — el)”

and strike the Enter key. Place the mouse over the lower right-
hand corner of cell F1 until the “+" symbol appears, and while
keeping the mouse button depressed drag the mouse down col-
umn F to fill in cells F2:F33.

Highlight the cell below the last cell entered in column F. In this
example, this is cell F34. Select the icon labeled “X" in the menu
above the spreadsheet and strike the Enter key. This will enter
the sum of the values in column F (the log-ikelihood values).

. Select the “Tools” option in the menu at the top of the spreadsheet

and then select the “Solver” option. Select “‘Set Target Cell” and
designate the cell containing the sum of the loglikelihood values,
in this case typing “f34". Select “Max’’ and then select By Chang-
ing Cells” and type “‘c1,c2,c3". Strike the Enter key. This will result
in maximum likelihood estimation by varying the values of (Cs,),
¥, and w in cells C1:C3. This process should be repeated using
multiple starting values in cells C1:C3. Convergence of estimation
can be improved by constraining (Cs,), v, and w to have positive
values. This option is available in the Solver menu
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