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Ketamine Attenuates and Reverses Morpbine

Tolerance in Rodents

Naohito Shimoyama, M.D.,* Megumi Shimoyama, M.D.,* Charles E. Inturrisi, Ph.D.,t Kathryn J. Elliott, M.D.%

Background: The development of tolerance complicates the
use of morphine to manage persistent pain. N -methyl-D-aspar-
tate receptor antagonists can attenuate or reverse morphine
tolerance. The authors studied ketamine’s ability to modulate
morphine tolerance.

Method: Tolerance was produced in mice given morphine
subcutaneously and was assessed by a cumulative dose-re-
sponse analysis using the tail-flick test. The ability of ketamine
at 0.3, 3, or 10 mg/kg given subcutaneously before and after
morphine to attenuate the development of tolerance was as-
sessed. The ability of 10 mg/kg ketamine to reverse tolerance
produced by the subcutaneous implantation of morphine pel-
lets to mice was also assessed. Rats were made tolerant to
intraspinal morphine and the effects of the coadministration
of 12 pg intraspinal ketamine were assessed.

Results: Morphine given subcutaneously produced a fivefold
increase in the median effective (EDs,) dose of morphine,
which was dose-dependently attenuated by subcutaneously ad-
ministered ketamine. A tenfold increase in the morphine EDs,
produced by morphine pellets was completely reversed by
ketamine given subcutaneously. Intraspinal morphine pro-
duced a 46-fold increase in its EDs,, which was almost com-
pletely attenuated by the coadministration of intraspinal keta-
mine.

Conclusions: Systemically administered ketamine attenuates
and reverses systemically induced morphine tolerance in
mice, and intraspinal ketamine attenuates tolerance produced
by intraspinal morphine in rats. (Key words: Analgesics, opi-
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oid: morphine. Antagonist, N-methyl-D-aspartate: ketamine.
Receptor: N-methyl-D-aspartate. Tolerance.)

THE N-methyl-D-Aspartate (NMDA) receptor antago-
nists, both competitive or noncompetitive, have been
shown to attenuate or reverse analgesic tolerance to
morphine in animals. MK-801, a noncompetitive NMDA
antagonist, attenuates the development of morphine tol-
erance as assessed by the tailflick analgesic assay in
rats' and in mice> and the by hot-plate analgesic assay
in rats.>* LY274614, a competitive NMDA receptor an-
tagonist, and dextromethorphan, a noncompetitive
NMDA receptor antagonist, attenuate and reverse the
development of morphine tolerance as assessed by the
hot-plate assay in rats or the tailflick assay in mice.>*"°
Furthermore, the changes in central nervous system
concentrations of the mRNA that codes for the major
subunit of the NMDA receptor (NMDAR1 mRNA) that
occur in morphine-tolerant rats are prevented by the
coadministration of LY274614.” These studies indicate
that the NMDA receptor system is involved in morphine
tolerance and have increased our understanding of its
underlying mechanism. Furthermore, these studies sug-
gest the clinical utility of NMDA antagonists. However,
MK-801 and LY274614 are experimental NMDA antago-
nists that are not yet clinically available. On the other
hand, dextromethorphan is clinically available as an oral
antitussive and has the potential for clinical use as an
NMDA antagonist.

Ketamine is another clinically available drug with non-
competitive NMDA receptor antagonist activity. It isa
phencyclidine (PCP) analog with many behavioral ef-
fects in common with other pPCP-like drugs, including
those that are anesthetic, antinociceptive, psychotomi-
metic, anticonvulsant, neuroprotective, and amnesic.”
Although it acts on many neurotransmitter systems,
more recent studies suggest that the locus for many
of these shared behavioral effects is its activity as a
noncompetitive antagonist of the NMDA receptor.”” "

Ketamine given by continuous subcutaneous infusion
at a dose of 10 mg- kg '-d' attenuates the develop-
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ment of morphine tolerance in rats.'” We have extended
this observation to include the dose-response relation-
ship of ketamine on systemically induced morphine tol-
erance in mice, the ability of ketamine to reverse estab-
lished morphine tolerance in mice, and the effect of
intraspinal ketamine on intraspinal morphine tolerance
in the rat.

Materials and Methods

All studies were approved by the Institutional Animal
Care and Use Committee of Cornell University Medical
College.

Animals

Adult male CD1 mice (Charles River Laboratories,
Kingston, NY) weighing 25 to 30 g were used for stud-
ies 1 and 2. Adult male Sprague-Dawley rats (Taconic
Farm, Germantown, NY) weighing 350 to 375 g at the
time of surgery were used for study 3. The mice were
caged in groups of five and the rats were caged individu-
ally with free access to food and water; all animals were
maintained on a regular light-dark cycle. Treatment
groups averaged ten animals.

Tail-flick Test

To assess the analgesic effect of morphine, the tail-
flick test was used. The tailflick apparatus (EMDIE,
Richmond, VA) emits radiant heat to the tail at 2 cm
from the tip in mice and at 5 to 8 cm in rats. The time
from the onset of heat to the withdrawal of the tail (tail-
flick latency) was measured. The intensity of the radiant
heat was adjusted so that the baseline latencies were
between 2.5 and 3.5 s. To avoid causing tissue damage,
the heat stimulus was turned off after 10 s (cut-off la-
tency). A mean tail-flick latency was calculated from two
repeated measurements. Baseline latency was obtained
before opioid or saline administration. Subsequent re-
sponse latencies were determined at the peak analgesia,
which was 30 min after subcutaneous morphine and
10 min after intrathecal morphine were given. The la-
tency data were converted to a quantal form by de-
termining the percentage of analgesic responders in
each group from the response latency values compared
with baseline latencies.

Drugs
Morphine sulfate was obtained from Mallinkrodt (St.
Louis, MO), and racemic ketamine hydrochloride was
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obtained from Sigma Chemical Company (St. Louis,
MO). The doses of morphine and ketamine are ex-
pressed as the free base. Morphine and ketamine were
dissolved in normal saline. The pH of the ketamine dos-
ing solutions for both subcutaneous and intraspinal ad-
ministration were between 5.7 and 6.2. Each subcutane-
ous injection of morphine, racemic ketamine, and saline
was delivered in a volume of 0.1 ml/10 g mouse weight.
Each intraspinal injection was delivered in a volume of
5 ul, followed by 10 pl saline to flush the intrathecal
catheter.

Intrathecal Catheterization

For the intraspinal administration of drugs to the rat,
a catheter was placed in the intrathecal space. Under
halothane anesthesia, a PE-10 tube was inserted through
a small hole made in the atlantooccipital membrane
and threaded 8.5 cm down the intrathecal space to the
lumbosacral level of the spinal cord."" The catheterized
rats were observed for 24 h after operation, and those
with any signs of paralysis were excluded from the
study. At the end of the study, 5 ul of a 1% methylene
blue solution was introduced into the catheter followed
by 10 ul saline to confirm the position of the catheter
and the spread of the dye in the intrathecal space. Ani-
mals with a misplaced catheter or inadequate spread of
the dye, as confirmed by dissection, were excluded
from the study (8.3%).

Dose - Response Studies

After measuring the baseline latencies, increasing
doses of morphine were administered until each animal
responded to the analgesic (cumulative dose-response
assessment™®). An analgesic responder was defined as
one whose mean response tail-flick latency was two or
more times the value of the mean baseline latency. The
percentage of analgesic responders in the group for
each cumulative dose was calculated, and a cumulative
dose-response curve was constructed. The changes in
the median effective dose (EDsy) of morphine deter-
mined from the curves were used to express the
changes in the relative analgesic potency of morphine.

Tolerance Paradigins

Tolerance paradigms were based on previous studies
of the kinetic-dynamic relationships of NMDA receptor
antagonists and morphine tolerance.>* ¢

Study 1: Effect of Systemic Ketamine on the De-
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KETAMINE MODIFIES MORPHINE TOLERANCE

A: Study 1
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Day Il___j____i—_‘:——J

Morphine or Saline
(s.c., tid.)

Ketamune or Saline
(s.c., pre and post morphine

or saline)

B: Study 2
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Day L
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C: Study 3
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Day 1 1 1
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(i.t., pre morphine or saline)

Fig. 1. A timeline that shows the experimental design of each
study (see Materials and Methods section).

velopment of Morphine Tolerance. Study 1 (fig. 1A)
was designed to estimate the dose-response relationship
for subcutaneous ketamine in attenuating the develop-
ment of morphine tolerance. An escalating schedule
of morphine doses administered subcutaneously three
times a day for 3 days was used to produce tolerance
in mice. On the morning of day 1, each animal received
10 mg/kg morphine given subcutaneously at 08:00 A-M.
or underwent a cumulative dose-responsc assessment
using subcutaneous morphine to determine their EDso
analgesic responder was not

value for morphine. Each
t received the sub-

subjected to further tail-flick assay bu
sequent dose of morphine so that each animal received

the same opioid dose, approximately 10 mg/kg on the
10 mg/kg mor-

morning of day 1. On that same day,
On day 2, the

phine was administered two more times.
animals received 20 mg/kg morphine given subcutanc-
ously three times per day; on day 3, the animals received
40 mg/kg morphine given suhcumncously three times
per day. Ketamine at a dose of 0.3, 3, or 10 mg/kg or
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saline was administered subcutaneously 15 min before
and 15 min after each morphine injection on days 1
through 3. On day 1, the first dose of ketamine or saline
was administered before the cumulative dose-response
assessment. On day 4, all animals underwent the mor-
phine cumulative dose-response assessment without
first receiving ketamine or saline. The development of
morphine tolerance was determined by comparing the
morphine EDs, values obtained on day 4 to those of
day 1.

Study 2: Effect of Systemic Ketamine on Estab-
lished Morphine Tolerance. Study 2 (fig. 1B) was
designed to determine whether ketamine could reverse
established morphine tolerance. Tolerance was pro-
duced by implanting two 25-mg morphine pellets on
day 1. The animals underwent a cumulative dose-re-
sponse assessment on day 4. The day 4 morphine ED50
value was compared with the value obtained with mor-
phine-naive animals to determine the degree of toler-
ance. The pellets were then removed and mice were
separated into two groups that received either ketamine
(10 mg/kg) or saline subcutaneously once on day 4 and
three times per day on days 5 through 7. A repeated
cumulative dose-response assessment was done on day
8 without administering ketamine. The morphine EDso
values of ketamine-treated mice on day 8 was compared
with those of morphine-treated mice on day 4 and sa-
line-treated mice on day 8.

Study 3: Effect of Intraspinal Ketamine on the De-
velopment of Morphine Tolerance. Study 3 (fig. 10
was designed to determine whether intraspinal ketamine
could attenuate tolerance produced by intraspinal mor-
phine. A paradigm similar to study 1 was used to produce
intraspinal morphine tolerance in rats. On the morning of
day 1, each animal underwent a cumulative dose-response
assessment with intraspinal morphine to determine the
morphine EDs, value. In this study, the cumulative dose-

response assessment was performed with each group be-
fore administering ketamine to preclude any difference
among the groups that might have been caused by the
intrathecal catheterization. After this procedure, the ani-
mals received additional doses of intraspinal morphine so
that each animal received the same dose of morphine,
approximately 10 g on the morning of day 1. Ten micro-
grams of morphine or saline was administered two more
times on day 1. Twenty and 40 pg morphine or saline
were administered intrathecally three times per day at
9:00, 14:00, and 19:00 on days 2 and 3, respectively.
Ketamine at 12 pg (50 nmol) or saline was administered
intraspinally 10 min before each morphine injection on
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days 1, 2, and 3. Ketamine was administered after the
cumulative dose-response assessment on day 1, 10 min
before the subsequent dose of morphine was injected.
Thus the treatment arms included saline-morphine (SAL
+ MOR), ketamine-morphine (KET + MOR), ketamine-
saline (KET + SAL), and saline-saline (SAL + SAL). Each
animal was tested for its analgesic response to morphine,
and the morphine EDs, value was determined again on
day 5. This was done on day 5 because the return of tail-
flick latencies to baseline values required more than 24 h
after the last 40-ug intraspinal dose of morphine on day
3. The development of morphine tolerance was deter-
mined by comparing the morphine EDs, values obtained
on day 5 to those obtained on day 1.

The acute effect of the intraspinal administration of
12 ug ketamine on tail-flick latencies was tested on
another group of intrathecally cannulated rats. Twelve
micrograms ketamine was given intraspinally followed
by 5 ul saline. Mean tail-flick latency was obtained be-
fore ketamine injection (baseline latency), 10 min after
ketamine injection (immediately before saline injec-
tion), and 10 min after saline injection.

Data Analysis

The quantal dose-response data were analyzed using
the BLISS-21 computer program. This program max-
imized the log-likelihood function to fit a parallel set of
Gaussian normal sigmoid curves to the dose-response
data and provides EDs, values, 95% confidence limits
(CD, and relative potency estimates."’

Results

Study 1 (fig. 2) shows that the escalating subcutane-
ous dosing schedule for 3 days results in a shift to the
right of the morphine dose-response curve on day 4
(SAL + MOR). However, when 10 mg/kg ketamine is
coadministered subcutaneously with morphine, no sig-
nificant shift of the curve is observed. The rightward
shift of the dose-response curve indicates the develop-
ment of tolerance to morphine, the magnitude of which
can be expressed as an increase in the EDs, value and
a decrease in the relative potency of morphine. Table
1 shows these values for each group. On day 4, the SAL
+ MOR group had a morphine EDs, value of 23.1 mg/
kg, more than five times greater than the EDs, value
obtained with saline pretreatment on day 1 (SAL group).
Coadministration of ketamine subcutaneously at a dose
of 0.3 mg/kg (KET — 0.3 + MOR) did not reduce the

Anesthesiology, V 85, No 6, Dec 1996

e DAY 1 SAL
O DAY 4 SAL+MOR

v DAY 1 KET—10

7 DAY 4 KET—10+MOR

100 \ 4
©
n i
o 90
o
< 70
=
< 50
}_
= 30 |
L
@)
o 10 F
L
o

L " " 1

1 35 1o 30 50
MORPHINE DOSE (mg/kg)

Fig. 2. Ketamine given in a subcutaneous dose of 10 mg/kg
(KET — 10) prevents the rightward shift in the morphine
(MOR) dose-response curve on day 4. Tolerance, as assessed
by a rightward shift in the cumulative dose-response curve,
was produced by administering MOR three times a day subcu-
taneously at 10 mg/kg on day 1, at 20 mg/kg on day 2, and at
40 mg/kg on day 3. KET — 10 or saline (SAL) was administered
15 min before and after each MOR dose. On day 1, the first
dose of KET — 10 or SAL was followed by a cumulative MOR
dose-response assessment. On day 4, each animal underwent
cumulative dose-response assessment without previous KET
— 10 or SAL administration. On day 4, the SAL + MOR curve
shifted more than five times, but the curves for the day 1 KET
~ 10 and day 4 KET — 10 + MOR groups were not significantly
different from the day 1 SAL group (see table 1 for EDs, values).

day 4 morphine EDs, value significantly from control.
The 3 mg/kg dose of ketamine (KET — 3 + MOR) sig-
nificantly attenuated tolerance, whereas the 10 mg/kg
dose of ketamine (KET — 10 + MOR) completely
blocked morphine tolerance. On day 1, ketamine at 0.3,
3, or 10 mg/kg did not significantly alter the morphine
EDs, value (table 1). These data demonstrate a dose-
de.pendent attenuation of morphine tolerance by keta-
mine. None of the treatments altered the baseline tail-
flick latencies assessed before the morphine cumulative
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Table 1. Attenuation of Morphine Tolerance by Ketamine

Morphine

Relative

Treatment Day EDso (mg/kg) 95% Cl Potency
SAL 1 4.3 2.9-6.1 1.00
KET-0.3 1 5.0 3.1-7.6 0.86
KET-3 1 4.2 2.6-6.6 1.02
KET-10 1 7.6 5.3-11.1 0.58
SAL +MOR 4 23.1* 16.3-34.0 0.19
KET-0.3 +MOR 4 19.4* 13.8-27.4 0.22
KET-3 +MOR 4 Al 7ady 8.2-16.1 0.37
KET-10 +MOR 4 5.8t 3.8-8.7 0.74

EDs, values for morphine (MOR) with the 95% confidence interval (Cl) were
determined on day 1 and on day 4. The MOR dosing schedule was 10 mg/
kg sc t.i.d. on day 1, 20 mg/kg t.i.d. on day 2, and 40 mg/kg t.i.d. on day 3.
Ketamine (KET) at 0.3, 3, or 10 mg/kg or saline (SAL) was given 15 min before
and after each MOR on days 1, 2, and 3.

* Significantly different (P < 0.05) from day 1 SAL group.

t Significantly different (P < 0.05) from day 4 SAL + MOR group.

dose-response assessment. The 10 mg/kg dose of keta-
mine produced behavioral effects characterized by run-
ning and posturing. Preliminary dose-ranging studies in-
dicated that these effects lasted approximately 10 min,
so we elected to use pre- and postdosing of ketamine
given the relatively longer duration of morphine’s ef-
fects on the central nervous system. No central nervous
system sedation was observed.
In study 2 (table 2), mice in which two 25-mg mof-
phine pellets were implanted developed a significant
degree of morphine tolerance when tested on day 4.
Cumulative dose-response assessment showed a tenfold
shift in the morphine EDsg values (46.3 and 42.3 mg/
kg) compared with naive controls (4.3 mg/kg). After
the pellets were removed on day 4, the mice received
10 mg/kg ketamine subcutaneously on day 4 after the
pellets were removed, the same dose three times per
day on days 5 through 7, or saline. A cumulative dose-
response study on day 8 revealed that in the ketamine-
treated group the morphine EDs, value decreased sig-
nificantly to 8.7 mg/kg (not significantly different from
the SAL group on day 1), indicating a complete reversal
of tolerance. In the control group receiving saline sub-
cutaneously, the morphine ED-, value on day 8 (406.7
mg/kg) showed no change compared with day 4, dem-
onstrating the persistence of a significant degree of mor-
phine tolerance. None of the treatments altered the
baseline tail-flick latencies assessed before the mor-
phine cumulative dose-response assessment.
In study 3, the intrathecal administration of morphine

in escalating doses for 3 days (SAL + MOR group) re-
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sulted in a large rightward shift of the dose-response
curve for morphine on day 5 (fig. 3), indicating a sig-
nificant degree of analgesic tolerance. The magnitude
of this tolerance can be expressed as a 46-fold increase
in the EDs, value for intraspinal morphine from 0.8 ug
(0.5 to 1.3 ug; 95% CD in morphine-naive rats to 38.5
ug (26.9 to 54.9 ug; 95% CD in morphine-treated rats
(table 3). In contrast, the rats that had been given keta-
mine and morphine (KET + MOR group) concurrently
showed only a slight rightward shift on day 5 (fig. 3).
The intraspinal morphine EDs value increased two
times from 1.1 pg (0.8 to 1.5 ug; 95% CD on day 1 to
2.1 pg (1.6 to 2.7 ug; 95% CD on day 5 (table 3). The
intraspinal morphine EDs for the KET + MOR group
on day 5 was significantly different from that of the SAL
+ MOR group on day 5, indicating an attenuation in
the development of tolerance to intraspinal morphine
(from a 46-fold increase in the EDs, value to a twofold
increase in the EDs, value of intraspinal morphine).
Control groups (KET + SAL; SAL + SAL) showed no
difference in the EDs, value of intraspinal morphine on
day 1 or day 5 compared with that of day 1 in the SAL
+ MOR group (table 3). No differences were observed
in baseline tailflick latencies assessed before the mor-
phine cumulative dose-response assessment between
days 1 and 5 in any of the treatment groups.

No changes in tail-flick latencies were seen 10 min
after the intrathecal administration of 12 ug ketamine
and 10 min after the subsequent administration of saline
(table 4), confirming that intraspinal ketamine at this
dose did not affect baseline tail-flick latencies. No behav-

Table 2. Reversal of Morphine Tolerance by Ketamine

Morphine

e e Relative

Treatment Day EDso (Mg/kg) 95% Cl Potency
SAL 1 4.3 2.9-6.1 1.00
MOR-1 4 46.3" 33.0-66.3 0.10
MOR-2 4 42.7" 30.1-60.8 0.09
MOR-1 + KET-10 8 8.7F 5.9-12.6 0.49
MOR-2 + SAL 8 46.7" 33.2-66.9 0.09

ED., values for morphine (MOR) with the 95% confidence interval (Cl) were
determined on days 1, 4, and 8. The MOR pretreatment was two 25-mg
morphine pellets implanted on day 1 and removed on day 4. Ketamine (KET)
treatment was 10 mg/kg sc given once on day 4 following the removal of
pellets and t.i.d. on days 5, 6, and 7. Controls received parallel saline (SAL)
injections. The notations 1 and -2 identify separately treated MOR groups.
0.05) from day 1 SAL group.

0.05) from day 4 MOR-1 and MOR-2 and day 8

* Significantly different P
+ Significantly different P
MOR-2 + SAL groups.



SHIMOYAMA ET AL.

e DAY 1 CONTROL
O DAY 5 SAL+MOR
v DAY 5 KET+MOR
v DAY 5 KET+SAL
o DAY 5 SAL+SAL

100 . 4 o

(e}
o

70
S0
30

10

PERCENT ANALGESIC

Pl 1 1 1

0.5 1 3 5 10 3‘05.0100 360
MORPHINE DOSE (ug IT)

Fig. 3. Intraspinal ketamine (KET) given in a dose of 12 ug (50
nmol) prevents the rightward shift in the intraspinal mor-
phine (MOR) dose-response curve on day 5. Tolerance was
produced by administering MOR three times a day at 10 ug
on day 1, at 20 ug on day 2, and at 40 pug on day 3. KET or
saline (SAL) was administered 10 min before each MOR dose.
On day 1, cumulative MOR dose-response assessment pre-
ceded each treatment. On day 5, the SAL + MOR curve shifted
46 times, whereas curves for day 5 KET + MOR, KET + SAL,
and SAL + SAL groups were not significantly different from the
curve for day 1 before treatment (see table 3 for EDs, values).

ioral effects were observed on days 1 through 5 after
intraspinal ketamine (KET + SAL) was given.

Discussion

Study 1 showed that coadministration of systemic ket-
amine with morphine dose-dependently attenuates the
development of morphine tolerance (table 1). Study
2 found that the systemic administration of 10 mg/kg
ketamine could reverse established morphine tolerance
(table 2). This is perhaps a more clinically relevant issue,

Anesthesiology, V 85, No 6, Dec 1996

because many patients have some degree of opioid tol-
erance. These data correlate with the earlier finding
that various NMDA receptor antagonists can attenuate
and reverse morphine tolerance.”” " Trujillo and Akil'?
previously studied the effect of systemic ketamine on
the attenuation and reversal of morphine tolerance in
rats, and they attenuated but did not reverse morphine
tolerance. These authors described “‘reversal’” as the
inhibition of the expression of morphine tolerance, and
they tested this by administering a single bolus dose
of ketamine (10 mg/kg™" given intraperitoneally) after
morphine tolerance had been established to determine
the effect on morphine tolerance 60 min after ketamine
administration. In our study, we administered ketamine
subcutaneously at 10 mg/kg for 4 days (once on day 4
and 3 times per day on days 5 through 7) after estab-
lished morphine tolerance was demonstrated by de-
termining morphine EDs, values (table 2). We assessed
the reversal of morphine tolerance by repeating the
EDs, determination on day 8 without ketamine pretreat-
ment. The reversal of established morphine tolerance
that we observed was not a result of the inhibition of
expression of tolerance but rather the actual decrease
in the magnitude of the acquired analgesic tolerance as
expressed by a direct comparison of quantitative mor-
phine EDs,, shifts. Studies of morphine tolerance suggest
that the adaptive changes that occur require days to
develop.'>'® The development of complete tolerance to
10 mg/kg morphine given subcutaneously twice daily,
evaluated by the hot-plate test, required more than 8
days." Continuous infusion of intraspinal morphine at
rates of 2, 6, and 20 nmol/h elevated the hot-plate laten-
cies in a concentration-dependent manner on day 1,
and these latencies gradually returned to saline-infused
values by 3 to 5 days for each dose of morphine."
Furthermore, the subcutaneous infusion of LY274614
to morphine-tolerant animals that continue to receive
morphine showed a gradual return of morphine sensi-
tivity over 2 to 3 days.* Thus reversal of established
morphine tolerance probably requires repeated admin-
istration of ketamine over time. For this reason, we
repeatedly administered ketamine for 4 days after mor-
phine tolerance had been established.

The results of our study (see figs. 2 and 3 and tables
I and 3) support the concept that functional NMDA
receptors are necessary for the development of mor-
phine tolerance. However, the exact role that they play
has not been clearly defined. In vitro. mu receptor
activation increases NMDA receptor-gated calcium cur-
rents and is mediated by protein kinase C.'” This poten-
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Table 3. Attenuation of Intraspinal Morphine Tolerance by Intraspinal Ketamine

Morphine

Relative
Group Day EDso (19) 95% Cl Potency
SAL + MOR 1 (before treatment) 0.83 0.53-1.27 1.00
5 38.5 26.9-54.9 0.02

KET + MOR 1 (before treatment) 1.10 0.85-1.52 0.72
5 2.09%t 1.59-2.75 0.34

KET + SAL 1 (before treatment) 0.99 0.57-1.70 0.84
5 1.41 0.83-2.41 0.58

SAL + SAL 1 (before treatment) 1.20 0.70-2.04 0.69
5 1.20 0.70-2.04 0.69

EDs, values for intraspinal morphine (MOR) with the 95% confidence interval (Cl)

were determined for all groups on day 1 before any treatment and on day 5.

The MOR dosing schedule was 10 ug t.i.d. on day 1, 20 xg t.id. on day 2, and 40 ug t.i.d. on day 3. Intraspinal ketamine at 12 pg (50 nmol) (KET) or saline

(SAL) was given 10 min prior to each MOR or SAL injection on days 1, 2, and 3.

* Significantly different (P < 0.05) from day 1 SAL + MOR group.
+ Significantly different (P < 0.05) from day 5 SAL + MOR group.

tiation of the NMDA receptor-mediated response by
protein kinase C is a result of an increase in the probabil-
ity of opening and a reduction of the Mg block of the
NMDA receptor channels.'® This may be one mecha-
nism by which morphine interacts with the NMDA re-
ceptor in the development of tolerance. Activation of
the NMDA receptors increases Ca’" influx, thereby in-
creasing intracellular Ca2* concentration. An increase
in basal free intracellular calcium is seen in brain synap-
tosomes from morphine-tolerant mice."” The increase
in intracellular Ca®" may then initiate a cascade of intra-
cellular events leading to the development of morphine
tolerance. such as the production of nitric oxide. N
nitro-L-arginine, a nitric oxide synthase inhibitor, atten-
uates morphine tolerance in mice.>?*?" In addition, rats
tolerant to intraspinal morphine show an increase in
membrane-bound protein kinase C (translocated pro-

Table 4. Acute Effect of Intraspinal Ketamine on Tail-flick
Latencies

Mean Tail-flick

Treatment Latency (s)
Baseline 3.2 +10.22
Ketamine 12 ng 3.87 + 0.33
3.74 = 0.68

Ketamine 12 pg + saline 5 pl

A total of 12 pg of ketamine was given intraspinally followed by a 5-ul saline
injection with an interval of ~10 min. Mean tail-flick latencies were obtained
prior to ketamine (baseline latency), 10 min after ketamine (immediately prior
to saline), and 10 min after saline. Mean tail-flick latencies were calculated
from two repeated latency measurements. Mean tail-flick latency values are
expressed in mean = SD. No significant difference among the three groups

was seen.
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tein kinase C) in dorsal horn neurons that is not seen
after a single dose of morphine. GM1 ganglioside, a
substance that blocks the translocation of protein Ki-
nase C, prevents morphine tolerance and the increase
in membrane-bound protein kinase C.”? These findings
suggest that nitric oxide production and translocation
of protein kinase C are some of the important intracellu-
lar events involved in the development of tolerance.
Furthermore, changes in central nervous system levels
of NMDAR1 mRNA are seen in morphine-tolerant rats,’
and NMDA receptors are down-regulated in specific re-
gions of the central nervous system in rats subjected to
long-term treatment with morphine,""’ suggesting that
changes in gene expression are involved in the develop-
ment of morphine tolerance. Ketamine has been shown
to block NMDA-evoked currents in voltage- and use-
dependent manners in cultured mouse hippocampal
neurons'' and to attenuate an NMDA-evoked increase in
intracellular Ca>* levels in rat cortical slices."” Ketamine
probably modulates morphine tolerance by blocking
the NMDA receptor-dependent ion channel and thereby
prevents the subsequent intracellular events that lead
to morphine tolerance.

The spinal cord is probably a major site of action of
NMDA receptor antagonists in attenuating morphine
tolerance.>* Intraspinal administration of the NMDA re-
ceptor antagonist MK-801 attenuates morphine toler-
ance development produced by the intraspinal adminis-
tration of morphine.?”** We found in study 3 that intras-
pinal administration of increasing doses of morphine
produced tolerance, as shown by a 46-fold increase in
the intraspinal morphine EDs, value. This morphine tol-
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erance was almost completely attenuated by the coad-
ministration of intraspinal ketamine (fig. 3 and table
3). Ketamine, a compound with high lipid solubility, is
rapidly accumulated by nervous system tissue.”” Keta-
mine’s site of action when given intraspinally probably
is local, within the spinal cord. Thus, if ketamine acted
spinally in attenuating tolerance to intraspinal mor-
phine, spinal cord NMDA receptors are probably im-
portant in the development of tolerance to intraspinal
morphine. The dose of intraspinal ketamine that we
used, 12 pg or 50 nmol, although it had no effect on
baseline tail-flick latencies (table 4), has been associated
with antinociceptive effects in rat models of central
28-30

sensitization.™

Subcutaneous ketamine given at 0.3, 3, or 10 mg/
kg to morphine-naive mice did not affect the analgesic
sensitivity to morphine, as demonstrated by no differ-
ence in the morphine EDs, value after ketamine was
given subcutaneously compared with saline (table 1).
Trujillo and Akil"? also showed that in morphine-toler-
ant rats, 10 mg/kg ketamine given intraperitoneally did
not change morphine sensitivity. We did not evaluate
the acute effects of intraspinal ketamine on analgesic
sensitivity to intraspinal morphine. However, the long-
term intraspinal administration of ketamine did not
change analgesic sensitivity to intraspinal morphine (ta-
ble 3). Furthermore, the EDs, value of intraspinal mor-
phine was evaluated more than 24 h after the last dose
of ketamine was given, suggesting that the attenuation
of tolerance to intraspinal morphine that we observed
was not a result of the change in intraspinal morphine
sensitivity caused by intraspinal ketamine.

In these studies in mice and rats, the investigators
were not blinded to the treatments, and thus bias could
have affected the results. However, these results corre-
late with previous blinded studies using other NMDA
receptor antagonists.' ™©

Ketamine is a clinically available noncompetitive
NMDA antagonist that has been used in the operating
room as an intravenous anesthetic for almost 30 y. Keta-
mine, like other PCP-like drugs, blocks the NMDA-de-
pendent ion channel as a consequence of binding to
the PCP receptor. The PCP binding site may be located
within the lumen of the ion channel, and PCP-like drugs
can exert their effects on the channel most readily when
the channel is open as a result of activation by agonists
(i.e., they are open channel blockers).'"*' The clinical
significance of open channel blockers of the NMDA
receptor channel may be that their effect is maximal
with pathologic activation of NMDA receptors, as in
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disease states, and they may have a lesser effect in
steady-state physiologic conditions.”* Ketamine, which
is effective as an NMDA receptor antagonist at doses
lower than currently used as an anesthetic,” deserves
consideration for clinical use in blocking pathologic
NMDA receptor-mediated events, such as morphine tol-
erance. Ketamine at subanesthetic doses has been re-

33-3

ported to have analgesic effects in humans™ " and may
be of clinical use in managing neuropathic pain**~** and
39,40

cancer pain.’

The most probable side effects that may be encoun-
tered with the clinical use of ketamine at subanesthetic
doses are dose-dependent psychotomimetic effects.”
The coadministration of a benzodiazepine attenuates
ketamine’s postanesthetic emergence reactions' and
may be useful in controlling this side effect. The use of
S(+)-ketamine, which produces fewer psychotomi-
metic effects in humans compared with R(—)-ketamine
at equipotent doses,** may also be an approach to mini-
mize these psychotomimetic side effects in patients.

Neuropathologic evaluation after large doses of both
competitive and noncompetitive NMDA receptor antag-
onists in the adult rat reveal neuronal vacuolation in
the cingulate cortex and retrosplenial cortex and other
neuronal regions suggestive of a neurotoxic effect of
excessive NMDA receptor blockade.”™ These findings
have not been replicated in the dose range that modu-
lates nociceptive processing and the development of
tolerance in rodents, nor have they been reproduced
in primate models. We are unaware of any reported
cases of neurotoxicity or permanent psychosis from the
established clinical experience with ketamine. The
safety of repeated administration of systemic ketamine
has been demonstrated in patients with burns, in whom
it is used for analgesia for daily debridement and dress-
ing changes.*> %’

After repeated administration of intraspinal ketamine
to rabbits, postmortem examination showed no evi-
dence of histologic damage to the spinal cord."® How-
ever, in primates, only single-dose administration of in-
traspinal ketamine has been reported.* Ketamine has
been given to patients in single doses for surgical anes-
thesia without any obvious sequela.”” However, the
safety of repeated administration of intrathecal keta-
mine in humans has not been determined.

We presented evidence of ketamine’s efficacy in atten-
uating and reversing morphine tolerance and of the
presence of a spinal site of action for ketamine. The
clinical utility and safety of ketamine for modulating
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morphine tolerance in patients with chronic pain syn-
dromes should be evaluated.
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