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Background: Intravenous anesthetics etomidate, propofol,
and midazolam produce negative inotropic effects of various
degrees. The mechanism underlying these differences is
largely unknown.

Methods: The effects of intravenous anesthetics on L-type
Ca?’, transient outward and inward-rectifier K channel cur-
rents (I, IK,,, and IK,) were compared in canine ventricular
cells using the whole-cell voltage-clamp technique. I, and Ik
were elicited by progressively depolarizing cells from —40 to
+40 mV, and from —90 to +60 mV, respectively. The peak
amplitude and time-dependent inactivation rate of I, and Ix
were measured before, during, and after the administration
of equimolar concentrations (5, 30, or 60 uM) of etomidate,
propofol, or midazolam.

Results: Exposure to etomidate, propofol, and midazolam
produced a concentration-dependent inhibition of I.,. Midazo-
lam was the most potent intravenous anesthetic; at 60 uM,
etomidate, propofol, and midazolam decreased peak I, by 16
+ 4% (mean = SEM), 33 = 5%, and 47 = 5%, respectively.
Etomidate, propofol, and midazolam given in a 60-uM concen-
tration decreased IK,, by 8 + 3%, 9 + 2%, and 23 + 3%, respec-
tively. IK, was decreased by 60 uM etomidate and midazolam
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by 20 + 6% and 14% * 5%, respectively. Propofol had no effect

on IK,.
Conclusions: At equimolar concentrations, intravenous an-

esthetics decreased the peak I, Ik, and Iy, with various de-
grees of potency. Effects of anesthetics on I, were signifi-
cantly greater compared with their effects on K' currents.
These findings suggest that the negative inotropic actions of
etomidate, propofol, and midazolam are related, at least in
part, to decreased I¢,. Some effects, such as I inhibition, may
partially antagonize effects of decreased I.,. Indeed, the final
effect of these intravenous anesthetics on myocardium will
be the sum of these and other sarcolemmal and intracellular
effects. (Key words: Anesthetics, intravenous: etomidate; mi-
dazolam; propofol. Animal: dog. Current: calcium; potassium.
Tissue: myocardium; ventricular.)

INTRAVENOUS anesthetics etomidate, propofol, and
midazolam are used to induce and maintain general an-
esthesia and to provide sedation during local and re-
gional anesthesia. These agents can depress cardiovas-
cular function in humans'~?® and animals."’

The mechanisms underlying in vivo cardiovascular
depression by intravenous anesthetics are not well un-
derstood but probably include a reduction in
afterload®” and preload®’® and direct myocardial de-
pression.'”"" Although the mechanisms of intravenous
anesthetic-induced negative inotropic effects appear
to be diverse,”'' """ increasing evidence suggests that
these agents exert direct negative inotropic actions
in vivo'™ and in vitro.'>'>'°* Because changes in
contractile force reflect an interaction between Ca’’
influx and K™ efflux through the sarcolemma, Ca’’
release and sequestration by the sarcoplasmic reticu-
lum, activity of membrane Ca’>" and K pumps, and
the Ca*" sensitivity of the contractile proteins, it i$
possible that these agents may interfere with any one
of these steps, thus decreasing contractility. Although
all intravenous anesthetics have negative inotropic ef-
fects, researchers frequently contend that etomidate
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IV ANESTHETICS ON MEMBRANE CURRENTS

is the least potent.™''t1 Preliminary studies implicate
sarcolemmal ion channels as a potential site of intra-
venous anesthetic-induced negative inotropic ac-
tion."**ft

Our goal was to gain greater insight into the mecha-
nisms underlying the negative inotropic effects of intra-
venous anesthetics by evaluating and comparing the
effects of etomidate, propofol, and midazolam on the
high-threshold Ca®" current (I, low-threshold tran-
sient K™ current (IK,,), and the inward-rectifier K" cur-
rent (IK,) in single canine ventricular cells using the
whole-cell patch-clamp technique.

Materials and Methods

Preparation of Single Ventricular Cells

These experiments were approved by the Medical
College of Wisconsin Animal Care Committee, and all
experimental procedures strictly conformed to the stan-
dards of American Association for Accreditation of Labo-
ratory Animal Care. Adult mongrel dogs weighing 15 to
25 kg were placed in a Plexiglas box and anesthetized
with halothane. After surgical anesthesia was attained,
the trachea was intubated and the lungs were ventilated
with 1.5% halothane in oxygen. The chest was opened
and the heart was excised rapidly and placed in cold
Krebs' solution. Thin strips of the ventricular tissue
were cut into 5-mm lengths and placed in cold cardi-
oplegia solution composed of 10 mM NacCl, 60 mM KCI,
5 mM MgCl,, 20 mM glucose, 100 mM sucrose, 5 mM
pyruvate, 20 mM taurine, 5 mM N-2-hydroxyethylpiper-
azine-N'-2-ethanesulfonic acid (HEPES), and 0.5 mM di-
sodium salt of ethylenediamine tetraacetic acid (Na,
EDTA). The washed ventricular segments were placed
in Ca*'-free Tyrode's solution composed of 140 mM
NaCl, 5.4 mM KCI, 5 mM MgCl,, 5.5 mM glucose, 5 mM
HEPES, 4 mg/ml collagenase (Type I, 161 units/mg;
Worthington, Freehold, NJ), 2 mg/ml bovine albumin
(Sigma Chemical Co., St. Louis, MO), 40 pM CaCl,, 5 mM
pyruvic acid, and 5.5 mM disodium salt of adenosine

TtWilliams JP, McArthur DJ, Walker EW, Rictsema K, Teunissen E,
Bonnenkamp H. Goderie P, Stanley HT: A comparison of the hemody-
namics of Diprivan (propofol), thiopental, and etomidate for induc-
tion of anesthesia in patients with coronary artery discase. Semin
Anesth 1988; 7:112-5

11Wegrzynowicz ES, Matsuda J, Volk K, Shibata E, Wachtel R:
Propofol decreases voltage activated calcium currents in rabbit heart
myocytes (Abstract). ANESTHESIOLOGY 1990; 73:A592.

Anesthesiology, V 85, No 5, Nov 1996

triphosphate (Na,-ATP); the pH was adjusted to 6.2 with
NaOH. The solution containing ventricular tissue was
incubated at 37°C for 1 to 2 h in a slow shaker. After
this incubation, single ventricular cells were washed
three times in cold potassium glutamate (K-glutamate)
solution composed of 130 mM K-glutamate, 5.7 mM
MgCl,, 5 mM HEPES, 5.5 mM glucose, 5 mM Na,-ATP,
and 0.12 mM Na,-EDTA; the pH was adjusted to 7.4
with KOH. Dispersed cells were stored in K-glutamate
solution at 4°C before use.

Voltage-clamp Recording

A drop of dispersed single canine ventricular cells was
placed in a perfusion chamber (22°C) on the stage of
an inverted microscope (Olympus IMT-2; Leeds Instru-
ments, Minneapolis, MN) equipped with modulation
contrast. At 500X magnification, a hydraulic micromani-
pulator (Narishige, Tokyo, Japan) was used to position
heat-polished borosilicate patch pipettes with tip resis-
tance of 4 to 6 M2 on the membrane of ventricular
cells. High-resistance seals (3 to 30 G{2) were formed,
after which the pipette patch was removed by negative
pressure to obtain the electrical access to the whole
cell as previously described.'” Whole-cell currents were
elicited by 200-ms depolarizing pulses generated by a
computerized system (pClamp software; Axon Instru-
ments, Burlingame, CA) every 5 to 10 s. The currents
were amplified by a List EPC-7 patch-clamp amplifier
(Adams & List Associates, Great Neck, NY), and the
amplifier output was low-pass filtered at 500 Hz. All data
were digitized (sampling rate = 10,000/s) and stored on
a hard disk to permit analysis at a later time. For the
I, the leak and capacitative currents were subtracted
from each record by linearly summating scaled currents
obtained during 10-mV hyperpolarizing pulses.

Recording Solutions

The external solution used to measure I, contained:
10 mM BaCl,, 135 mM tetraethylammonium chloride,
1 mM MgCl,, 10 mM glucose, and 10 mM HEPES (pH
= 7.4). The pipette solution used to measure I¢, con-
tained: 130 mM CsCl, 5 mM adenosine triphosphate
(magnesium salt), 5 mM ethyleneglycol-bis-(-aminoe-
thyl ether) N,N,N’,N'-tetraacetic acid (EGTA), 10 mM
HEPES, 1 mM MgCl,, and 10 mM glucose (pH = 7.2).

The external solution used to measure Ig contained:
135 mM NaCl, 5.5 mM dextrose, 0.5 mM MgCl,, 4 mM
KCl, and 2 mM CaCl, (pH = 7.4). The pipette solution
used to measure I contained: 125 mM potassium aspar-



1094

BULJUBASIC ET AL.

tate, 20 mM KCI, 10 mM EGTA, 5 mM adenosine triphos-
phate (magnesium salt), 1 mM MgCl,, and 5 mM HEPES
(pH = 7.2).

Drug Effects

Repetitive current-voltage curves were obtained in
the control solution to monitor time-dependent
changes in I, and I, followed by exposure to 5, 30,
or 60 uM etomidate, midazolam, or propofol. Effects of
anesthetics on I, and Iy were complete within 6 min
and were reversible with washout.

The recommended intravenous doses to induce anes-
thesia are approximately 0.2 to 0.4 mg/kg for midazo-
lam, 0.3 mg/kg for etomidate, and 2.5 mg/kg for propo-
fol. It was reported that plasma protein-bound fraction
of midazolam and propofol is 97%, whereas for etomi-
date it is 76%. Peak plasma concentrations during induc-
tion with these doses vary widely but are reported to
be approximately 0.5 to 3 uM for midazolam,"'*"*" 3
uM for etomidate,?' and 50 pM for propofol.****§§ For
our study, intravenous anesthetics were obtained com-
mercially in their vehicles (2 mg/ml etomidate, 5 mg/
ml midazolam, and 10 mg/ml propofol). Each anesthetic
was diluted in a given extracellular solution to make 1
mM stock solution that was divided into aliquots, frozen
at —15°C, and thawed for daily use. Measured volumes
of the 1-mM concentration of each drug were diluted
into a known volume of perfusate to obtain perfusate
drug concentrations of 5, 30, and 60 uM. Cells were
randomly exposed to one of the anesthetic agents, at
one of three concentrations. 4-aminopyridine (4-AP;
Sigma Chemical Co.) and barium chloride (Ba®"; Fisher
Scientific, Itasca, IL) were dissolved directly in the re-
cording solution. Nifedipine (Sigma Chemical Co.) was
dissolved in 70% ethanol to make 1 mM stock solution,
yielding a final solvent concentration in the recording
solution of 0.07%, which by itself did not affect the
current. Cobalt chloride (Co”"; Sigma Chemical Co.)
was dissolved directly in the recording solution. Tetro-
dotoxin (TTX; Sigma Chemical Co.) was dissolved in
the recording solution to make 1 mM stock solution.

Vehicle preparations of etomidate (350 mg/mL pro-
pylene glycol in H,O), propofol (Intralipid; 100 mg/ml
soybean oil, 22.5 mg/ml glycerol, and 12 mg/ml egg
lecithin in water), and midazolam (0.01% disodium ede-

§§White PF: Propofol: Pharmacokinetics and pharmacodynamics.
Semin Anesth 1988; 7:4- 20
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tate and 1% benzyl alcohol in water, adjusted to pH of
3 with 0.1 NHCl,) were also prepared and administered
in separate groups of cells (n = 2 to 4) at the concentra-
tions that would correspond to the highest drug con-
centration given in this study (60 uM) over the same
time period (6 to 10 min). None of the drug vehicles
had any effect (change <5%) on either Ic,, IK,,, or IK,.

Statistical Analysis

All currents are expressed as means = SEM and were
analyzed by two-way analysis of variance. If the F-test
showed significance, Fisher’s test for least significant
differences was performed, with the level of signifi-
cance designated at P = 0.05.

Results

Calcium Current

Calcium current (I,) was generated by depolarizing
pulses (10 mV; 200 ms) from a holding potential of —40
mV to a command potential as high as +40 mV. All
experiments were performed with Ba®" (10 mM) as the
charge carrier in place of external Ca*" (2 mM); this
substitution increased the peak of I, and decreased the
rate of inactivation. In 64 cells (each group containing
5 to 9 cells), the threshold activation occurred at ap-
proximately —30 mV and the maximal activation was
reached between —10 and 0 mV. This I, resembled
high-threshold, long-lasting (L-type) Ca’" channel cur-
rent previously described by researchers in our labora-
tory** and by others.”>"*” Figure 1 (upper panel) illus-
trates the effects of 60 uM etomidate (A), propofol (B),
and midazolam (C) on the peak I, elicited by the test
pulse from a holding potential of —40 mV to 0 mV in
three canine ventricular cells. Peak I, (fig. 1A-C, lower
panel) was plotted as a function of membrane potential
to analyze the effects of etomidate (A), propofol (B),
and midazolam (C) on the current-voltage relations for
I, activation. Figure 1D summarizes decreases of the
peak Ic, amplitude by all three anesthetics. Etomidate
at concentrations of 5 uM, 30 uM, and 60 uM decreased
the peak I, amplitude by 3 = 3% (n = 7, NS), 10 £ 6%
(n=7,NS)and 16 + 4% (n = 6; P = 0.05), respectively.
Propofol at concentrations of 5 uM, 30 M, and 60 uM
also decreased the peak I, amplitude by 10 = 3% (n
=0,NS), 21 + 4% (n = 9; P = 0.05), and 33 = 6% (n
= 9; P = 0.05), respectively. In a dose-dependent man-
ner, 5 uM, 30 uM, and 60 uM midazolam decreased the
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depolarization step from a holding potential of —40 mV
to 0 mV revealed that all three anesthetics not only
decreased the peak I, but also hastened the inactivation

of I, and thus further contributed to a decrease of total
Ca*" influx. The inactivation phase of I, trace was best
fitted with a single exponential curve with an average
control inactivation constant (7) of 0.185 *= 0.013 s.
Although all three anesthetics decreased the inactiva-
tion constant at 60 uM, etomidate given at 5 and 30
uM did not significantly alter the inactivation constant
(table 1). Although propofol significantly decreased 7
at two higher concentrations, it produced a significantly
smaller (P = 0.05) decrease compared with the same
concentration of midazolam. The effects of intravenous
anesthetics on I, were readily reversible with washout.

Potassium Current

During the 200-ms depolarizing pulses from —90 mV
to consecutively more positive voltages as high as +60
mV, cells showed transient outward K™ current (IK,,)
and an inward-rectifier K" current (IK,). To measure IK,,
and IK,, all experiments were done in the presence of
20 uM tetrodotoxin (TTX) and 2 mM cobalt chloride
(Co*") in the external solution to block Na“ and Ca*"
currents, respectively. Addition of nifedipine (1 uM) in
the external solution produced no significant changes in
I amplitude, indicating that this current is not influenced
by the Ca’" influx via the Ltype Ca®" channel. Voltage-
dependent IK, was activated approximately at voltages
negative to —20 mV and was completely abolished by 1
mM Ba’’ in the external solution, as described pre-
viously.”™* Voltage-dependent IK,, was identified as
IK,,, subtype because it was blocked by 2 mM 4-amino-
pyridine (4-AP) in the external solution.”

Figure 2A shows actual recordings of the peak IK,
and IK,, elicited by depolarizing pulses from a holding
potential of —90 to —50 mV, and from —90 to +60 mV,
respectively, in control solution and during exposure
to 60 uM etomidate, propofol, and midazolam in three
ventricular cells. Peak 1K,, and IK, were plotted as a
function of membrane potential to analyze the mean
anesthetic effect on the current amplitude (fig. 2B).
At equimolar concentrations, etomidate, propofol, and
midazolam caused reversible decreases in the peak IK,,
amplitude (at +60 mV) by 8 £ 3% (n = 8; P = 0.05),
9+ 2% (n = 6; P = 0.,05),and 23 =+ 3% (n = 15; P =
0.05), respectively. At the same concentration, etomi-
date and midazolam produced reversible decreases in
the peak IK, amplitude (at —50 mV) by 20 * 6% (n =
8; P = 0.05), and 14 + 5% (n = 15; P = 0.05). Propofol
had no effect on I, (n = 6). The effects of intravenous
anesthetics on IK,, and IK, were not voltage dependent.

-35
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Table 1. Effects of Midazolam, Etomidate, and Propofol on Time-depe

ndent Inactivation of Calcium Current (Ic.) and Transient

Outward Potassium Current (I,,) as Characterized by Inactivation Constant, 7 (Tau)

Drug 5 uM 30 uM 60 uM lkio (B0 M)
Etomidate 5.341 + 0.885t 6.421 + 0.449t 9.262 = 1.249*t 30.34 + 2.60t
Propofol 6.51 =+ 0.820 8.338 = 1.260"t 9.432 * 1.591*t 2414 + 3671
Midazolam 7.244 = 1.345" 10.638 + 1.828" 17.593 £ 1.517* 4535 + 412

Data are shown as 1/7. The control ~ values were 0.185 + 0.013 sec (1/7 =

and .., respectively. The control values were not significantly different among different groups. The higher 1/7

* P = 0.05 versus initial control.
t P = 0.05 versus midazolam.

The decrease of IK,, and IK, amplitude by intravenous
anesthetics was completely reversed with washout.

At equimolar concentrations, all three anesthetics sig-
nificantly decreased IK,,; however, midazolam was
more potent than etomidate and propofol (fig. 2C). At
the same concentration, etomidate and midazolam pro-
duced similar and statistically significant decreases in
IK,, whereas propofol had no effect (fig. 2D).

Similar to I, IK, current that was obtained by a
depolarization step from a holding potential of —90 mV
to +60 mV was also fitted with a single exponential
curve to study its inactivation kinetics. The control inac-
tivation constant (7) was 0.034 = 0.0014 s. Neither
etomidate nor propofol changed the inactivation con-
stant but midazolam decreased the inactivation constant
by nearly 40% (table 1).

Discussion

Intravenous anesthetics cause various degrees of car-
diovascular depression in vivo'™> and in vitro.'>'> !
The differences in cardiovascular depression could re-
sult from their differential effects on systemic vascular
resistance,”” venous capacitance,”” the autonomic ner-
vous system, and the heart.'”"

Etomidate produces only minimal effects on cardio-
vascular dynamics™'' and therefore is widely recom-
mended for patients with compromised cardiac func-
tion and hypotension. On the other hand, propofol pro-
duces cardiovascular depression to a larger extent than
does etomidate,™'"** and thus propofol should be used
cautiously in patients with hypovolemia. It was re-
ported that induction of anesthesia with midazolam,
even in patients with limited coronary flow, was accom-

Anesthesiology, V 85, No 5, Nov 1996

5.405 + 0.430 sec ') and 0.0344 = 0.0014 sec (1/7 = 29.07 + 1.37 sec ') for I,

value indicates higher rate of channel inactivation.

panied by no change in cardiac output or central venous
pressure and only a modest reduction in peripheral vas-
cular resistance.” At equimolar concentrations as great
as 50 uM in isolated guinea pig heart preparation, pro-
pofol has been shown to be more potent than etomidate
and less potent than midazolam in depressing myocar-
dial contractility.'” However, the authors suggested that
at equivalent induction concentrations (concentration
that produces the same depth of anesthesia), propofol
would be the most potent, midazolam less potent, and
etomidate the least potent negative inotrope.'” Despite
the extensive literature documenting differences in neg-
ative inotropic effects among intravenous anesthetics,
very little is known about the mechanisms underlying
these differences.

Our purpose in this study was to identify and compare
the actions of etomidate, propofol, and midazolam on
macroscopic Ca** and K* currents in isolated canine
ventricular myocytes to identify possible mechanisms
for the observed differences in negative inotropic ef-
fects of these anesthetics.

Inward Ca?* current (Ico), transient outward K™ cur-
rent (IK,,), and inward-rectifier K* current (I,) contrib-
ute to the electrical activity in human,*® rabbit’ and
canine ventricular myocytes®® and are the major deter-
minants of the action potential duration in these
cells.*** The efflux of K* through K* channels is func-
tioning as an important modulator of the action poten-
tial in canine ventricular myocytes,** " offsetting Gad
current and thus preventing early slow-response action
potentials*? while maintaining a high resting membran¢
potential in latent pacemaker cells.*

Our results show that etomidate. propofol, and mida-
zolam reduce the amplitude of I, IK,,, and IK, in thes¢
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Fig. 2. Effects of 60 uM etomidate, propofol, and midazolam
on the peak transient K channel current amplitude (IK,,) elic-
ited by depolarizing pulse from a holding potential (HP) of
—90 to +60 mV, and the peak inward-rectifier K' channel cur-
rent amplitude (IK,) elicited by a depolarizing pulse from a
holding potential (HP) of —90 to —50 mV in three ventricular
cells (4). The control current-voltage relation for the activation
of IK,, (expressed as a fraction of control maximal K* current)
at voltages positive to —20 mV, and IK, at voltages negative to
—~20 mV, under control conditions and in the presence of 60
M etomidate (B, left), propofol (B, center), and midazolam (B,
right). *P = 0.05 versus anesthetic. The decrease (expressed as
a percentage of control) of the peak IK,, amplitude (C), and
maximum IK, amplitude (D) by 60 uM etomidate, propofol,
and midazolam in a total of 29 canine ventricular cells. *P =
0.05 versus control; TP = 0.05 versus etomidate; §P = 0.05
midazolam versus propofol.

cells. Furthermore, these three channel types were not
equally sensitive to block by these anesthetics, and I,
was blocked more effectively than IK,, or IK,. Midazo-
lam was the most potent in decreasing peak Ic,, whereas
etomidate was the least potent. A recent study using
the whole-cell and single-channel recordings in guinea
pig ventricular myocytes found that 4.4 and 27.4 uM
etomidate decreased the whole-cell L-type I¢,.>” Similar
concentrations of etomidate did not produce attenua-
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tion of I, in this study, suggesting the possibility of
differences between species (guinea pig vs. dog). An-
other possibility is that the large decrease in I, ob-
served by Takahashi and Terrar*' is partially due to a
significant I, rundown in guinea pig myocytes as re-
ported by the same authors. The relative potency of
intravenous anesthetics in depressing I, correlates well
with in vitro and in vivo depression of contractility,
supporting the hypothesis that the block of I, is one of
the most important factors in determining the negative
inotropic effect of intravenous anesthetics. Effects of
all three anesthetics on I, were dose dependent and
readily reversible.

In addition to decreasing the peak current, intrave-
nous anesthetics could decrease a total I, by increasing
the rate of inactivation of open Ca’*" channels. Indeed,
analysis (single exponential fit) of the inactivation por-
tion of the I, revealed that midazolam dramatically in-
creased the rate of I, inactivation. Propofol was less
potent, whereas only 60 uM etomidate significantly in-
creased the rate of I, inactivation. Absence of the effect
of 5 uM etomidate on I, inactivation rate that we found
correlates with the findings of Takahashi and Terrar,”’
who reported no effect of a similar dose of etomidate on
the single Ca®" channel Kinetics. At 27.4 uM, etomidate
reduced the mean open time and increased the mean
closed time, favoring the closed state without any effect
on conductance.”” In our study, 30 uM etomidate did
not alter the I, inactivation rate, which could be consis-
tent with the relatively greater effect seen in their study.
The same group reported that a high concentration of
propofol (100 M) also decreased the mean open time
and increased the mean closed time without changing
I, channel conductance."' Decreased peak current and
increased rate of inactivation by propofol seen in this
study are consistent with their observations at the sin-
gle-channel level. The increased rate of I, inactivation
suggests that midazolam, and to a lesser degree propofol
and etomidate, bind to the open Ca®’ channel and
through an interaction with the gating mechanism in-
crease the rate of transition of the channel from an
open to inactivated state. Further studies investigating
frequency and voltage dependence, rate of recovery
from inactivation, and the single-channel recordings are
needed to determine the exact nature of this interac-
tion.

Midazolam was the most potent and propofol the least
potent in depressing IK,, in ventricular cells. The de-
crease in amplitude of IK,, by these anesthetics suggests
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that these agents may influence the phase 1 repolariza-
tion and early plateau phase of the action potential.*!
These alterations of plateau voltage may result in
changes in other voltage-dependent currents during the
plateau phase, including augmented I,, and therefore
cytosolic Ca*” concentration, contractility, and duration
of the action potential in the ventricular myucylcs.” i
However, the magnitude of I decrease may not be able
to overcome a large decrease in I,, as suggested by
shortened action potential duration in the presence of
propofol.”” It is of great interest that midazolam in-
creased the rate of IK,, inactivation, whereas propofol
and etomidate did not change channel inactivation. The
mechanism(s) underlying similar effects of midazolam
on I, and IK,, inactivation are not clear.

Etomidate exerted the greatest depressant effect on
IK,, whereas propofol had no effect. Baum™ has re-
ported the lack of propofol’s effect on IK, in guinea
pig ventricular myocytes. Blockade of IK, can affect the
duration of the action potential and the rate of repolar-
ization because this current is activated during the repo-
larization of the cardiac action potential.”” This current
plays a critical role in determining the amplitude and
shape of the subthreshold response,””"" thus influenc-
ing the excitability of ventricular myocytes. Therefore,
a depressant effect of intravenous anesthetics on the
outward Iy would alter resting membrane potential and
affect action potential duration and cellular excitability.

Despite the inhibition of both I, and I, the greater
decrease of I, may be responsible for the negative ino-
tropic effect observed with these agents. Although mi-
dazolam produced the largest decrease of I, the final
effect on myocardial contractility would be dramatically
attenuated due to a decrease of Iy and its significantly
smaller induction dose. Because the induction concen-
tration of midazolam is less than 5 pM, midazolam
would probably be free of effects on I, when anesthesia
is induced.

Etomidate, propofol, and midazolam produced a dose-
dependent decrease of Ca*’ influx and a type-depen-
dent decrease of K' efflux. These anesthetics, particu-
larly midazolam, also increased the rate of I, and I
(only midazolam) inactivation, thus further decreasing
the total current. Our data suggest that cardiac depres-
sion caused by intravenous anesthetics is due, at least
in part, to a decreased amplitude of I, as directly mea-

sured by the whole-cell voltage-clamp method. The rela-
tive magnitude of a decrease in I, correlates well with
clinically and experimentally observed negative inotro-
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pic effects of these anesthetics. These membrane alter-
ations probably interact with other actions of these in-
travenous anesthetics, including the changes in K cur-
rents leading to an overall effect on myocardial
contractility and excitability.
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