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Protective Effect of Stromafree Methemoglobin
during Cyanide Poisoning in Dogs

Peter H. Breen, M.D., F.R.C.P.C.,* Schlomo A. Isserles, M.D., T Eric Tabac, Ph.D.,1 Michael F. R

Uri Z. Taitelman, M.D., D.A.B.T.||

Background: During fire exposure, cyanide toxicity can
block aerobic metabolism. Oxygen and sodium thiosulfate are
accepted therapy. However, nitrite-induced methemoglobin-
emia, which avidly binds cyanide, decreases oxygen-carrying
capacity that is already reduced by the presence of carboxyhe-
moglobin (inhalation of carbon monoxide in smoke). This
study tested whether exogenous stroma-free methemoglobin
(SFmetHb) can prevent depression of hemodynamics and me-
tabolism during canine cyanide poisoning.

Methods: In 10 dogs (weighing 18.8 + 3.5 kg) anesthetized
with chloralose-urethane and mechanically ventilated with
air, baseline hemodynamic and metabolic measurements were
made. Then, 137 + 31 ml of 12 g% SFmetHb was infused into
five dogs (SFmetHb group). Finally, the SFmetHb group and
the control group (n = 5, no SFmetHb) received an intravenous
potassium cyanide infusion (0.072 mg-kg™'-min™") for 20
min. Oxygen consumption (Vo)) was measured with a Datex
Deltatrac (Datex Instruments, AHelsinki, Finland) metabolic
monitor and cardiac output (QT) was measured by pulmonary
artery thermodilution.

Results: From baseline to cyanide infusion in the control
group, QT decreased significantly (p < 0.05) from 2.9 * 0.8 to
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1.5 + 0.4 I/min, mixed venous Pco, (PVo,) tended to decrease
from 35 + 4 to 23 = 2 mmHg, PV, increased from 43 * 4 to
62 = 8 mmHg, V,, decreased from 93 * 8 to 64 = 19 ml/min,
and lactate increased from 2.3 = 0.5 to 7.1 = 0.7 mm. In the
SFmetHb group, cyanide infusion did not significantly change
these variables. From baseline to infused cyanide, the in-
creases in blood cyanide (4.8 * 1.0 to 452 = 97 um) and plasma
thiocyanate cyanide (18 = 5 to 65 = 22 um) in the SFmetHb
group were significantly greater than those increases in the
control group. SFmetHb itself caused no physiologic changes,
except small decreases in heart rate and Pv, . Peak SFmetHb

reached 7.7 + 1.0% of total hemoglobin.

Conclusions: Prophylactic intravenous SFmetHb preserved
cardiovascular and metabolic function in dogs exposed to sig-
nificant intravenous cyanide. Blood concentrations of cya-
nide, and its metabolite, thiocyanate, revealed that SFmetHb
trapped significant cyanide in blood before tissue penetration.
(Key words: Gases: carbon monoxide. Heart: cardiovascular
function. Metabolism: cellular aerobic. Toxicity: cyanide;
smoke inhalation; thiocyanate. Pharmacology: nitrites; thio-
sulfate.)

A major cause of death in house fires in the United
States is inhalation of toxic compounds, especially car-
bon monoxide and cyanide. Fire victims may inhale
smoke containing toxic amounts of hydrogen cyanide
gas.'”> Hydrogen cyanide is produced in fires by the
thermal decomposition of nitrogenous materials, in-
cluding natural fibers (wool and silk) and synthetic
polymers (polyurethane and polyacrylonitrile).>*” Cya
nide binds to intracellular cytochrome oxidase, the last
cytochrome in oxidative phosphorylation, to block cel-
lular aerobic metabolism®®® and decrease the tissue
utilization of oxygen.

Standard treatment includes the administration of 0X-
ygen, sodium thiosulfate, and sodium or amyl nitrite.’
Treatment with oxygen during cyanide poisoning is
well established'’"'* and is essentially devoid of side
effects. Sodium thiosulfate, which increases the enzy-
matic conversion of cyanide to thiocyanate,'*” also i
commonly used during cyanide poisoning.”

Sodium or amyl nitrite is administered to induce in-
traerythrocyte methemoglobinemia, which avidly
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STROMA-FREE METHEMOGLOBIN DURING CYANIDE POISONING

binds cyanide.” However, nitrite-induced methemoglo-
binemia to treat cyanide poisoning from fires is compli-
cated by the presence of carbon monoxide, a common
incomplete combustion product in smoke.' Carbon
monoxide converts oxyhemoglobin to carboxyhemo-
globin® and shifts the oxyhemoglobin dissociation
curve to the left,” which decreases the oxygen-deliv-
ering capacity to the tissues. In fact, studies have sug-
gested a synergistic effect of carbon monoxide and
cyanide on oxygen metabolism in the body, such that
lower concentrations of each gas are more toxic when
they are present together.* 71314

Thus, the induction of endogenous methemoglobin-
emia with nitrite may be dangerous when oxygen-car-
rying capacity is already reduced by the presence of
carboxyhemoglobin.'*?'3'° In addition, the formation
of adequate methemoglobin can take 30-70 min’'®
with significant variability among patients. Finally,
eventual elimination of cyanide bound as cyanmethe-
moglobin depends on the conversion of cyanide to
thiocyanate,'” a reaction hastened by sodium thiosul-
fate.

Alternatively, the infusion of exogenous stroma-free
methemoglobin solution (SFmetHb) during cyanide
poisoning is appealing. On intravenous injection, met-
hemoglobin is instantly available to bind cyanide with-
out any reduction in oxygen-carrying capacity. In rats,"”
SFmetHDb effectively treated the otherwise lethal effects
of cyanide poisoning, but circulatory or gas exchange
functions were not studied.

However, in previous studies of combined cyanide
and carbon monoxide in the dog,'” we demonstrated
that critical recovery of cardiovascular and metabolic
function (except lactic acidosis) occurred within 15
min of cessation of cyanide exposure. Thus, in a real-
life situation of cyanide toxicity such as a house fire,
extraction of the victim from the cyanide exposure
would facilitate recovery of critical cardiovascular and
metabolic function probably before a further antidote
could be administered. Alternatively, we reasoned that
the prophylactic administration of SFmetHb could pre-
vent toxicity of subsequent exposure to cyanide by
chelating and trapping cyanide in the blood before it
could reach the tissues. Clinical scenarios, in which
prophylaxis against potential cyanide exposure is at-
tractive, include rescue workers entering a fire or in-
dustrial accident and soldiers at risk from chemical

= In one treatment dog, cyanide was infused through the distal port
of the pulmonary artery catheter and pancuronium was administered.
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warfare. Accordingly, in this study, we test the hypoth-
esis that SFmetHb can prevent the depression of cardio-
vascular and metabolic function that occurs in a canine
model of cyanide poisoning, by binding and trapping
cyanide in the blood before it can reach the intracellu-
lar compartment and block aerobic metabolism.

Materials and Methods

General Preparations

This study was conducted in accordance with the
American Physiologic Society’s Guiding Principles in
the Care and Use of Animals and was approved by the
institutional Animal Care Committee. Ten dogs (18.8 +
3.5 kg) were anesthetized with 160 mg/kg intravenous
chloralose and 800 mg/kg urethane. Further mainte-
nance doses of chloralose (20 mg/kg) and urethane
(100 mg/kg) were administered as necessary. After tra-
cheal intubation, the lungs were mechanically venti-
lated (Harvard respirator, Model 613, South Natick,
MA) with air and the animal was positioned supine for
the remainder of the experiment. Tidal volume (311
* 56 ml) and frequency (20.5 + 2.0 min ") were ad-
justed to maintain Pac,, near 32 mmHg. The exhaled
port of the ventilator was connected to the input of
the Deltatrac metabolic monitor (Datex Instruments,
Helsinki, Finland).

A catheter was inserted in a femoral vein for adminis-
tration of drugs and normal saline. Another catheter
was placed in the femoral artery for sampling of arterial
blood and measurement of arterial blood pressure.
Through the right external jugular vein, a thermistor-
tipped flotation catheter was positioned in a pulmonary
artery branch (by pressure monitoring) for mixed ve-
nous blood sampling and measurements of pulmonary
artery, pulmonary wedge pressures, and thermodilu-
tion cardiac output (Model 9510A Edwards cardiac out-
put computer, Irvine, CA). Through the left external
jugular vein, another flotation catheter was positioned
in the right side of the heart for administration of the
cyanide infusion.# Vascular pressures were measured
with Gould transducers (model P23, Gould, Oxnard,
CA) and displayed on a polygraph recorder.

Experimental Protocol

Before the experimental protocol began, sodium bi-
carbonate was infused (about 2 mEq/kg) to facilitate a
physiologic baseline arterial pH level (7.43 += 0.07);




BREEN ET AL.

Table 1. Selected Measurements in th

Intravenous Administration of Stroma-free Methemoglobin in the SFmetHb Group,

¢ Control Group (n = 5) and SFmetHb Group (n = 5) of Dogs at Baseline, after

and at the End of the Cyanide Infusion

Control Group

SFmetHb Group

Baseline CN Baseline SFmetHb CN
Psa (mmHg) 126 + 23 1015423 142 £ 13 450 146 + 11
HR (min ) 122 1T 126 = 36 163 + 41 136 + 441 166 + 37
Ppa (mmHg) 12.8 = 0.8 24.2 * 5.5" 10.2 + 4.1 12.4 + 6.0 16.2 + 9.6*
pPH, 7.43 + 0.03 7.39 + 0.08 7.41 = 0.09 7.39 = 0.09 7.39 = 0.07
Veo, (MI/min) 83 + 8 89 + 19 83 + 33 82 = 34 92 + 41t
metHb (% total Hb) 201+ 1.2 1.8 i1 0.6 + 0.4 Tilaz 1L0% 2.9 +10.97
Blood [CN] (uMm) 22 +20 113 + 33* 488510 2.6 (3.4T 452 + 97*
Plasma [CN] (um) 33+24 3.2 +3.9 612 & 111t
Plasma [SCN] (uMm) 276 11.0 45.7 + 16.9" 17.6 = 4.9 171, £,6.0 656.3 = 22,11

Values are mean = SD.

Psa = systemic arterial blood pressure; HR = heart rate; Ppa = pulmonary arterial blood pressure; pHv = venous blood pH »(n = 4 in control group); Vo =
pulmonary CO, elimination; metHb = methemoglobin (percent of total hemoglobin, n = 4 in control group); blood [CN] = cyanide concentration; plasma [SCN]

- thiocyanate concentration (n = 4 in SFmetHb group).
*Significant difference (P < 0.05) from baseline.

tSignificant difference (P < 0.05) from other stages.

thereafter, no further sodium bicarbonate was adminis-
tered.

For the SFmetHb group, baseline measurements con-
sisted of blood temperature, hemodynamics, oxygen
consumption (V,,), carbon dioxide production (Vco,),
and minute ventilation (VE), and simultaneous samples
of arterial and mixed venous blood. Then, SFmetHb
(137 = 31 ml, 12 g%) was slowly infused into the
femoral vein. After 15 min, the measurement sequence
was repeated (SFmetHb stage). Then, the cyanide infu-
sion began and the measurement sequence was re-
peated after 20 min of cyanide infusion (cyanide stage).
The control group of animals followed a similar proto-
col except that SFmetHb was not administered.

The commercially prepared bovine stroma-free he-
moglobin (Biopure Corporation, Boston, MA) was
stored at —20° C. After thawing, it was incubated with
an equimolar amount of sodium nitrite for 1 h during
gentle stirring. Then, the SFmetHb was dialyzed
through 12-14,000 M.W. pore membrane (Specta/Por,
Thomas Scientific, Swedesboro, NJ) four times during
48 hours in a bath of sterile normal saline for cleansing
and to remove any traces of residual sodium nitrite.
Conversion of hemoglobin to methemoglobin was con-
firmed by spectrophotometric measurement at 630 nm
(Spectronic 601, Milton Roy, Rochester, NY).

Potassium cyanide was prepared each experimental day.
Two drops of 0.1 N NaOH were added to alkalinize 10 ml
0.9% sodium chloride (NaCL) before adding potassium
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cyanide powder. For each dog, we prepared a potassium
cyanide solution that delivered 0.072 mg-kg '-min '
when infused at 1 ml/min."" We infused this cyanide solu-
tion through the catheter positioned in the right heart."*

Data Analysis

The pH level, P.,,, and P, of blood samples were
measured at 37°C in a blood gas analyzer (Nova 5,
Nova Biomedical, Waltham, MA) and corrected to body
temperature.'® Fractions of oxyhemoglobin, carboxy-
hemoglobin, and methemoglobin and total hemoglobin
concentration were measured by cooximetry (model
IL 482, Instrumentation Laboratory, Lexington, MA).
To measure lactate, blood samples were processed by
reagent methods (Diagnostic Reagents, Sigma Chemi-
cal, St. Louis, MO) and ultraviolet light absorption (340
nm) was measured on a spectrophotometer (model
300N, Gilford Instrument, Oberlin, OH). Minute venti-
lation (VE), oxygen consumption (V,,,), and carbon
dioxide production (V,,) were measured with the
metabolic monitor (I)eltafruc), which employed a con-
stant flow generator and the Haldane transformation
to calculate differences between inspired and cxpi'I’Cd
flows. According to standard convention, Ve, and Vco,
were expressed as standard temperature and pressure
(dry), while VE was reported as body temperature and
pressure (saturated).

To measure blood cyanide concentration,' the hy-
drogen cyanide in the headspace above acidified blood
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Fig. 1. Cardiac output (mean = SD, n = 5) in the control and
stroma-free methemoglobin groups of dogs at baseline, after
intravenous administration of stroma-free methemoglobin in
the stroma-free methemoglobin group, and at the end of the
cyanide infusion. *Significant difference (P < 0.05) from base-

line. {Significant difference (P < 0.05) from the stroma-free
methemoglobin measurement.

was detected by gas chromatography (model 5790,
Hewlett-Packard, Avondale, PA). Plasma was separated
from blood by centrifugation. Then, plasma thiocya-
nate concentration was measured by a colorimetric
technique,”” using a spectrophotometer at 520 nm. In
the SFmetHb group, we also measured cyanide concen-
tration in the plasma.

We used Student’s paired ¢ test (control group) or
repeated-measures  analysis of variance (SFmetHb
group) to test each variable for differences among
stages.”' If populations did not have normal distribu-
tions or equal variances about the mean, nonparamet-
ric tests were employed (Wilcoxon signed rank test
and Friedman repeated measures analysis of variance
on ranks, respectively). For a significant F statistic (P
< 0.05), the differing stages were identified by the
Student-Newman-Keuls multiple comparison test. Data
are reported as mean *+ SD.

Results

The administration of SFmetHb to the SFmetHb
group caused no physiologic changes in cardiovascular
and metabolic variables (within the statistical con-
straints of n = 5), with the exception of small decreases
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in heart rate (table 1) and Pv,, (fig. 2, middle). Peak
measured SFmetHb reached 7.7 + 1.0% of total hemo-
globin (table 1). After administration of SFmetHb., its
renal excretion during the experiment was evident by
the appearance of dark urine. The decrease in percent
oxyhemoglobin (89.5% * 1.7% to 84.0% = 2.2%) was
mostly caused by the added exogenous methemoglo-
bin.

At the end of the cyanide infusion in the control
group (fig. 1), Qr decreased significantly (P < 0.05) to
1.5 £ 0.4 I/min, from the baseline value of 2.9 + 0.8
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Fig. 2. Mixed venous P¢,, and P, (PV,, and Py, , respectively)
and arterial blood P, (Pa, ) (mean * SD, n = 5) in the control
and stroma-free methemoglobin groups of dogs at baseline,
after intravenous administration of stroma-free methemoglo-
bin in the stroma-free methemoglobin group, and at the end
of the cyanide infusion. *Significant difference (P < 0.05) from
baseline. {Significant difference (P < 0.05) from the other
measurements in the stroma-free methemoglobin group.
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I/min. While arterial blood pressure and heart rate did
not significantly change (table 1), pulmonary artery
pressure increased significantly during the cyanide in-
fusion (24.2 + 5.5 mmHg), compared to baseline (12.8
+ (0.8 mmHg). In contrast, in the SFmetHb group, Qr
did not decrease below baseline measurements during
the cyanide infusion (fig. 1, shaded bars).

Blood gas data are displayed in figure 2. In the control
group, compared to baseline, the cyanide infusion
tended to decrease PV o, from 35 * 4 to 23 = 2 mmHg
and significantly increased PV, from 43 + 4t0 62 *=
8 mmHg. Arterial P, also increased during the cyanide
infusion in the control group (lower panel). Venous
PH level did not significantly decrease (table 1). In
the SFmetHb group, none of these variables changed
during the cyanide infusion.

In the control group, V()_, (fig. 3, top) significantly
decreased to 64 = 19 ml/min during the cyanide infu-
sion, compared to baseline (93 * 8 ml/min). At the
same time, lactate (fig. 3, bottom) significantly in-
creased from 2.3 = 0.5 to 7.1 = 0.7 mM but V,, did
not significantly change (table 1). In the SFmetHb
group, Vo, and lactate remained stable during the cya-
nide infusion (fig. 3, shaded bars).

Compared to baseline (4.8 = 1.0 um, table 1), the
cyanide infusion resulted in a significant increase in
the blood [CN] (452 = 97 um, P < 0.05) in the
SFmetHb group, that was significantly larger (P < 0.05,
Mann-Whitney rank sum test) than the blood [CN] in-
crease in the control group. In the SFmetHb group, the
cyanide infusion resulted in a significant increase in
plasma [CN] (612 = 111 um) compared to baseline (3.3
+ 2.4 pm). In a parallel fashion, the cyanide infusion
resulted in a significant increase in the plasma thiocya-
nate [SCN] from 18 = 5 to 65 * 22 um, P < 0.05 in
the SFmetHb group, that was significantly greater (P
< 0.05, Student’s ¢ test) than the plasma [SCN] increase
after cyanide was administered in the control group.

Discussion

This study provides the first evidence, we believe,
that prophylactic intravenous infusion of exogenous
SFmetHb (0.9 g/kg) preserved cardiovascular and meta-
bolic function in dogs exposed to a significant amount
of intravenous cyanide, without compromising oxygen-
carrying capacity in the blood. In contrast, animals that
did not receive SFmetHb had significant percent de-
creases in Qr (48%) and V,, (32%), and a significant
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I:‘ig. 5.. Oxygen consumption (V,,), respiratory quotient (R =
Vco,/Vo,), and venous lactate concentration (mean + SD, n =
5) in the control and stroma-free methemoglobin groups of
dogs at baseline, after intravenous administration of stroma-
free methemoglobin in the stroma-free methemoglobin group,
and at the end of the cyanide infusion. *Significant difference
(P < 0.05) from baseline.

increase in venous lactate by 4.8 mm, during the same
cyanide exposure. Previous studies in rats have showed
that, after cyanide infusion, survival was significantly
improved by administration of SEFmetHb,'*'” but cardio-
vascular and metabolic function were not studied.

Furthermore, the infusion of SFmetHb itself had little
effect on any cardiovascular or metabolic variable. The
observed decrease in heart rate during the SFmetHb infu-
sion (table 1) has been reported in spontaneously con
tracting neonatal rat myocardiocytes exposed to bovine
SFmetHb.*?

The ferric heme group of methemoglobin avidly
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binds cyanide® and forms the rationale for induction
of endogenous methemoglobinemia, usually by inhala-
tion of amyl nitrite or infusion of sodium nitrite.’ But,
during fires with smoke inhalation and exposure to
carbon monoxide, conversion of hemoglobin to methe-
moglobin decreases the oxygen-carrying capacity of
blood that may already be compromised by the pres-
ence of carboxyhemoglobin."? Instead, we propose
that intravenous administration of exogenous bovine
SFmetHb to our study dogs trapped a significant
amount of cyanide in the intravascular compartment
before it could reach the intracellular compartment
and paralyze aerobic metabolism, as evidenced by lack
of metabolic and cardiovascular depression.

That SFmetHb trapped cyanide in the blood before
it could reach the tissues is evident in the intravascular
measurements of cyanide and its metabolite, thiocya-
nate. The total blood concentrations of cyanide were
higher in the SFmetHb-treated animals than the control
dogs because the measurement of blood cyanide con-
centration, which forces all cyanide into the gaseous
phase,"” includes cyanide in all blood components, in-
cluding SFmetHb in plasma. Indeed, high plasma cya-
nide concentration in the SFmetHb group reflects trap-
ping of cyanide by SFmetHb in the vascular compart-
ment. The lower amounts of blood cyanide in the
control animals, which did not receive SFmetHb, re-
flects more tissue uptake of the toxin.

Furthermore, thiocyanate is the normal metabolite of
cyanide in the body.” Thiosulfate can be a sulfur donor
in the rhodanese-catalyzed reaction to metabolize cya-
nide to thiocyanate.”"* Plasma SCN concentrations
were greater in the SFmetHb-treated dogs presumably
because the cyanide, trapped in the intravascular com-
partment, was available for detoxification by the rap-
idly equilibrating physiologic pool of cyanide-reactive
“sulfane” sulfur.”**** In the control group, once cya-
nide entered the cellular compartment and penetrated
the mitochondria, the generally extracellular locations
of cyanide antidotes (such as SFmetHb or thiosul-
fate**) limit their effectiveness.

We selected a cyanide-binding dose of SFmetHb that
was 2.4 times greater than the molar cyanide dose ad-
ministered to the animal, to maximize chelation of cya-
nide in the blood compartment,”” without excess dos-
age of SFmetHb. To significantly increase animal sur-
vival in rats,'”” a much greater equivalence molar
binding ratio (SFmetHb:CN) was used (9.2-306), sug-
gesting a generous margin of safety if excess SFmetHb
is administered.
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The urinary half-life elimination of SFmetHb solutions
is about 3-5 h."” Accordingly, in the prophylaxis of
Cyanide poisoning, stroma-free cyano-methemoglobin
is relatively rapidly excreted in urine to provide a one-
step therapeutic method to inactivate and eliminate
cyanide from the body.

Exogenous mammalian SFmetHb can be relatively
easily produced and stored.'”* Indeed, a major chal-
lenge in the use of SFmetHb as a blood substitute has
been preventing its oxidation to methemoglobin — that
reaction is easily catalyzed in the laboratory. Lyophiliza-
tion of hemoglobin preparations* adds further poten-
tial for storage and stability. To demonstrate that intra-
venous SFmetHb is safe in humans requires studies
seeking potential side effects on glomerular filtration
rate, immunoreactivity, reticuloendothelial system, etc.
Then, we speculate that SFmetHb might be adminis-
tered preemptively to emergency personnel at high
risk for cyanide exposure, including rescue workers
entering fires or industrial accidents and soldiers sub-
ject to chemical warfare.

In previous models of combined carbon monoxide
and cyanide poisoning in dogs,"* we discussed the im-
portance of oxygen and sodium thiosulfate (despite
its extracellular location) in the treatment of cyanide
toxicity. However, additional antidote therapy may be
necessary for complete detoxification of cyanide.” Ac-
cordingly, we also envision future studies that test, in
addition to the established use of oxygen and sodium
thiosulfate, the efficacy of SFmetHb as a third-line treat-
ment agent (especially pre-hospital) after cyanide expo-
sure during fires, industrial accidents, or other toxic
exposure.

The authors acknowledge the late S. Bursztein, M.D., for advice
about the metabolic monitor and thank Helen Rosenberg for bio-
chemical and blood gas analysis. Stroma-free hemoglobin was pro-
vided by Biopure Corporation, Boston, Massachusetts.
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