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Background: This investigation examined the effects of des-
flurane and sevoflurane on quantitative indices of left ven-
tricular afterload derived from aortic input impedance (Z,)
interpreted using a three-element windkessel model.

Methods: After Animal Care Committee approval, dogs (n =
8) were chronically instrumented for measurement of sys-
temic hemodynamics including aortic blood pressure and flow.
On separate days, aortic pressure and flow waveforms were
recorded under steady-state conditions in the conscious state
and after equilibration for 30 min at 1.1, 1.3, 1.5, and 1.7 min-
imum alveolar concentration of desflurane or sevoflurane.
Aortic input impedance spectra were obtained via power
spectral analysis of aortic pressure and flow waveforms.
Characteristic aortic impedance (Z.) and total arterial resis-
tance were calculated as the mean of the magnitude of Z,,
between 2 and 15 Hz and the difference between Z,, at zero
frequency and Z., respectively. Total arterial compliance (C)
was calculated from aortic pressure and flow waveforms using
the Windkessel model.

Results: Desflurane and sevoflurane increased heart rate and
decreased systolic, diastolic, and mean arterial pressure, left
ventricular systolic pressure, left ventricular peak positive rate
of increase in left ventricular pressure, percent segment
shortening, and stroke volume. Sevoflurane, but not des-
flurane, decreased cardiac output. Desflurane, but not sevo-
flurane, decreased systemic vascular resistance. Desflurane
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decreased R (3,170 = 188 during control to 2441 + 220
dynes - second - centimeter >at 1.7 minimum alveolar concen-
tration) and did not alter C and Z.. In contrast, sevoflurane
increased C (0.57 + 0.05 during control to 0.79 + 0.05 ml/
mmHg at 1.7 minimum alveolar concentration) and Z_ (139 +
10 during control to 194 + 14 dynes-second - centimeter° at
1.7 minimum alveolar concentration) but did not change R.

Conclusions: The results indicate that desflurane and sevo-
flurane produce substantially different effects on left ventric-
ular afterload in chronically instrumented dogs. Desflurane-
induced decreases in systemic vascular resistance occur pri-
marily because of effects on arteriolar resistance vessels. In
contrast, sevoflurane increased C and Z. concomitant with
pressure-dependent reductions in aortic diameter, suggesting
that this anesthetic may alter left ventricular afterload by af-
fecting the mechanical properties of the aorta. (Key words:
Anesthetics, volatile: desflurane; sevoflurane. Heart: left ven-
tricular afterload. Hemodynamics: aortic blood flow; aortic
pressure. Signal processing: coherence function; power spec-
trum analysis.)

THE two new volatile anesthetics, desflurane and sev-
oflurane, have been shown to produce cardiovascular
effects that share many similarities with older inhala-
tional agents.' Like other volatile anesthetics, desflur-
ane and sevoflurane cause dose-related reductions in
arterial blood pressure in humans.?”” These hypotensive
effects have been attributed to depression of myocardial
contractility*>#'" and alterations in ventricular loading
conditions.?”?~'" While the vast majority of experi-
mental and clinical evidence suggests that desflurane
causes dose-related declines in systemic vascular resis-
tance and end-systolic wall stress similar to isoflurane
in vivo,*>""

the effects of sevoflurane on these mea-
sures of LV afterload are somewhat more controver-
sial ©? 11213 Previous investigations from this’ and
other laboratories'?'*~'® have shown that sevoflurane
does not alter calculated systemic vascular resistance
in experimental animals. In contrast, other studies have
implied that sevoflurane reduces systemic vascular re-
sistance concomitant with declines in arterial blood
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DESFLURANE, SEVOFLURANE, AND LV AFTERLOAD

pressure.'™'* The disparity between these findings
may be partially explained because systemic vascular
resistance is an inadequate measure of LV afterload that
fails to account for the phasic nature of arterial blood
pressure and flow. Aortic input impedance (Z,) is an
experimental description of LV afterload that incor-
porates the frequency-dependent, pulsatile character-
istics of the arterial system.!” We demonstrated recently
that halothane, isoflurane, and propofol produce dif-
ferential actions on LV afterload evaluated with ZpeAs
The current investigation tested the hypothesis that
desflurane and sevoflurane produce differential actions
on indexes of LV afterload derived from Z;, quantified
using the three-element Windkessel model of the ar-
terial circulation in chronically instrumented dogs.

Materials and Methods

All experimental procedures and protocols used in
this investigation were reviewed and approved by the
Animal Care Committee of the Medical College of Wis-
consin. All procedures conformed to the Guiding
Principles in the Care and Use of Animals of the
American Physiological Society and were performed in

accordance with the Guide for the Care and Use of

Laboratory Animals.§

General Preparation

Surgical implantation of instruments has been de-
scribed previously in detail.'® Briefly, under general
anesthesia and aseptic surgical conditions, dogs (n =
8) underwent a left thoracotomy, and a high-fidelity
micromanometer was inserted into the left ventricle
for measurement of continuous LV pressure and the
maximum rate of increase in LV pressure (dP/dt,..).
Heparin-filled catheters were placed in the proximal
descending thoracic aorta, the right atrium, and the
left atrium for measurement of aortic pressure, fluid
administration, and calibration of the LV micromanom-
eter, respectively. An ultrasonic transit-time flow probe
Wwas positioned around the ascending thoracic aorta for
mcasurement of continuous aortic blood flow. A pair
of miniature ultrasonic segment length transducers
were implanted in the LV subendocardium for mea-
surement of changes in regional contractile function.

e e et

§ Guide for the Care and Use of Laboratory Animals, Department
of Health and Human Services publication NIH 85-23. Washington,
DC, Department of Health, Education, and Welfare, 1985.

/\ncmh(-si()l()g}. V 85, No 1, Jul 1996

113

All instrumentation was secured, tunneled between the
scapulae, and exteriorized via several small incisions.
The pericardium was left wide open, the chest wall
closed in layers, and the pneumothorax evacuated by
a chest tube.

All dogs received systemic analgesics (fentanyl) as
needed after surgery. Dogs were allowed to recover a
minimum of 7 days before experimentation during
which time all were treated with intramuscular anti-
biotics (40 mg/kg cephalothin and 4.5 mg/kg genta-
micin) and were trained to stand quietly in an animal
sling during recording of hemodynamics. An ultrasonic
amplifier was used to monitor segment length signals.
End-systolic and end-diastolic segment lengths were
measured at 30 ms before maximum negative LV dp/
dt and just prior to the onset of LV isovolumic con-
traction, respectively. Percent segment shortening was
calculated using the equation: percent segment short-
ening = (end-diastolic segment length — end-systolic
segment length) - 100 - end-diastolic segment length™".
Hemodynamic data were continuously recorded on a
polygraph and digitized by a computer interfaced with
an analog to digital converter.'®

Calculation of Aortic Input Impedance Z,, (w)

Spectra

Aortic input impedance spectra were obtained from
digitized, steady-state aortic blood pressure and aortic
blood flow waveforms.*" ! Briefly, data files consisting
of 4,096 points were sampled at 100 Hz and divided
into five 2,048-point bins with 1,536 point overlap.'®
A Hamming window was applied to each bin to reduce
side lobe leakage. The autopower spectrum of the aor-
tic blood pressure [Ppp(w)], aortic blood flow [Pg(w)]
and cross power spectrum between aortic pressure and
blood flow wave forms [Ppr(w)] were determined using
a Welch periodogram technique.?*?* Each Z;,(w) spec-
trum was calculated as a function of frequency (w)
using the formula: Z,,(w) = P,,(w) *[Py(w)] ' and cor-
rected for the phase response and position of the aortic
flow probe and aortic pressure transducer as described
previously.'® Typical Z,,(w) magnitude and phase
spectra in the conscious state and during desflurane
and sevoflurane anesthesia are depicted in figures 1
and 2, respectively. Correlation of aortic pressure
and flow waveforms at each frequency of Z;,(w) was
determined using the magnitude squared coherence
(MSC), where magnitude squared coherence (w) =
|Por(w) |+ [Ppp(w) * Pr(w)] . All Z,,(w) data with mag-
nitude squared coherence values < 0.8 were discarded.
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windkessel model parameters were derived from the
calculated Z,,(w) spectra.'® Characteristic aortic
impedance (Z.) was determined as the mean of the
magnitude of Z;,(w) ( |Zin(w)|) between 2 and 15
Hz.2'>%25 Total arterial resistance (R) was calculated
as the difference between the value of |Z,,(w)| at zero
frequency and Z..

The magnitude of Z,,(w) at zero frequency was equal
to systemic vascular resistance determined as the ratio
of mean arterial pressure and mean aortic blood flow."”
Total arterial compliance (C) was calculated using the
formula: C = (Aq- MAQ) - [MAP - (P., — P.y)] ', where
A, = the area under the diastolic portion of the arterial

__ 4000
2 i b

(8]

4

[ =4

g

w

& 2000

=)

=

z

G}

-

0 ]
0 150 150 150
FREQUENCY (Hz)

2

o

o

3

15}

0

<

I

o

CONSCIOUS 1.1 1.3 1.5
SEVOFLURANE (MAC)

Anesthesiology, V 85, No 1, Jul 1996

Fig. 1. Aortic input impedance spec-
trum consisting of magnitude (fop)
and phase components (bottom) ob-
tained in the conscious state and dur-
ing desflurane anesthesia at 1.1, 1.3,
1.5, and 1.7 minimum alveolar con-
centration in a typical experiment.

pressure curve, MAQ = mean aortic blood flow, MAP
= mean arterial pressure, and P, and P,y = end-systolic
and end-diastolic aortic pressure, respectively.?® The
diastolic period used for the calculation of C was de-
fined as the time between the dichrotic notch and min-
imal aortic pressure. The value of C was determined
from the average of five consecutive beats for each in-
tervention.

Experimental Protocol

Dogs were assigned to receive desflurane or sevo-
flurane in a random manner on separate experimental
days. Fluid deficits were replaced with 0.9% saline (500

Fig. 2. Aortic input impedance spec-
trum consisting of magnitude (top)
and phase components (bottom) ob-
tained in the conscious state and dur-
ing sevoflurane anesthesia at 1.1, 1.3,
1.5, and 1.7 minimum alveolar con-
centration in a typical experiment.
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Table 1. Systemic Hemodynamic Effects of Desflurane

Desflurane (MAC)

Control 1.1 1.3 1.5 17
HR (beats/min) 86 + 2 142 + 6* 140 + 6* 140 + 6* 143 + 6*
SBP (mmHg) 125+ 6 102 + 3* 91 + 3* 89 + 3* 1 84 + 5* 1
DBP (mmHg) 905 85+ 3 76 + 4* 72 + 4* 62 + 5"T
MBP (mmHg) 100 + 4 90 + 3* 83 + 4* 7k 3%5 1 68 + 5*:T
LVSP (mmHg) 126 + 7 104 + 4* 95 + 5* 90 + 5* 1 84 + 3*
LVEDP (mmHg) 9= 6 + 1 6+ 1 8+1 8 +1
dP/dt, .. (MMHg-s™") 2,457 + 124 1,880 + 105* 1,601 + 108*,1 1,427 + 94* 1 1,297 + 102*,1.,¢
CO (L-min™") 24 +0.2 23+0.2 23+0.1 21 +£10.1 21+0.2*
SVR (dyne-s-cm™®) 3,424 + 234 3,152 + 202 2,884 + 162 2,995 + 226 2,763 + 281*
SV (ml) 28 +2 7 et Al O 15/52%
SS (%) 22+ 2 17 + 2* 16 + 2* 126234 1225+

Data are mean + SEM; n = 8.

HR = heart rate; SBP = systolic blood pressure; DBP = diastolic blood pressure; MBP = mean blood pressure; LVSP = left ventricular systolic pressure; LVEDP
= left ventricular end-diastolic pressure; dP/dt,., = maximum rate of change of left ventricular pressure; CO = cardiac output; SVR = systemic vascular resistance:

SV = stroke volume: SS = segment shortening.

* Significantly (P < 0.05) different from control.

1 Significantly (P < 0.05) different from 1.1 MAC desflurane.
1 Significantly (P < 0.05) difference from 1.3 MAC desflurane.

ml), and maintenance fluids (0.9% saline) were con-
tinued (3 ml-kg '-h™") for the duration of each ex-
periment. After instruments were calibrated, baseline
systemic hemodynamics were recorded under steady-
state conditions in the conscious state. Continuous
aortic blood pressure and aortic blood flow waveforms
were recorded for later generation and analysis of
Zi,(w). After inhalational induction and tracheal intu-
bation, anesthesia was maintained during positive
pressure ventilation at 1.1, 1.3, 1.5, or 1.7 minimum
alveolar concentration (MAC; end-tidal) desflurane or
sevoflurane in an air and oxygen (25%) mixture. The
order of MAC was assigned randomly. The canine MAC
values for desflurane and sevoflurane used in this in-
vestigation were 7.20 and 2.36%, respectively. End-
tidal concentrations of desflurane and sevoflurane were
mceasured at the tip of the endotracheal tube by an in-
frared gas analyzer (Datex Capnomac, Helsinki, Fin-
land) that was calibrated with known standards before
and during experimentation. Hemodynamics and aortic
pressure and blood flow waveforms were recorded after
30 min of equilibration at each anesthetic concentra-
tion. Arterial blood gas tensions were maintained at
conscious levels by adjustment of air and oxygen con-
centrations and respiratory rate throughout the exper-
iment. Emergence was allowed to occur at the com-
pletion of each experiment. Dogs were allowed to re-
Cover at least 2 days before subsequent experi-
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mentation. Thus, a total of 16 experiments were per-
formed in 2 groups (desflurane and sevoflurane) using
the same 8 dogs.

Statistical Analysis

Statistical analysis of data within and between groups
in the conscious state and during anesthetic interven-
tions were performed by multiple analysis of variance
with repeated measures followed by application of
Student’s ¢ test with Duncan’s correction for multi-
plicity. The slope of the total arterial compliance-MAP
relationship was determined by linear regression for
each anesthetic. Parallelism of the linear slopes of the
compliance-pressure data also was determined using
the method of Tallarida and Murray.?” Changes within
and between groups were considered significant when
P < 0.05. The data were expressed as mean + SEM.

Results

Desflurane caused a significant (P < 0.05) increase
in heart rate (86 + 2 during control to 143 *+ 6 beats/
min at 1.7 MAC) and dose-related decreases in systolic,
diastolic, and MAP (100 * 4 during control to 68 + 5
mmHg at 1.7 MAC), LV systolic pressure, and stroke
volume (table 1). No change in LV end-diastolic pres-
sure was observed. Dose-related decreases in dP/dt,,,,
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(2457 = 124 during control to 1297 = 102 mmHg/s
at 1.7 MAC) and percent segment shortening were ob-
served in desflurane-anesthetized dogs, consistent with
a negative inotropic effect. Desflurane also caused sig-
nificant reductions in cardiac output and systemic vas-
cular resistance at 1.7 MAC. A dose-related decrease in
R (3,170 = 188 during control to 2441 =* 220
dynes - second - centimeter 5> at 1.7 MAC; fig. 3) oc-
curred. However, no changes in total arterial compli-
ance (C) and characteristic aortic impedance (Z.) were
observed during anesthesia with desflurane (fig. 3).

Sevoflurane produced hemodynamic actions that
were somewhat different than those produced by des-
flurane (table 2). Sevoflurane also caused an increase
in heart rate (88 + 4 during control to 129 £ 4 beats/
min at 1.7 MAC). Dose-related decreases in systolic,
diastolic, and MAP (99 * 5 during control to 61 * 4
mmHg at 1.7 MAC), LV systolic pressure, and stroke
volume were observed in dogs anesthetized with sev-
oflurane. These sevoflurane-induced decreases in sys-
tolic, diastolic, and MAPs and LV systolic pressure were
greater than those produced by desflurane. No changes
in LV end-diastolic pressure occurred. Sevoflurane de-
creased myocardial contractility as indicated by dose-
related declines in dP/dt,,,, (2,343 £ 161 during con-
trol to 1,051 = 80 mmHg/s at 1.7 MAC) and percent
segment shortening. These sevoflurane-induced nega-
tive inotropic effects were similar to those observed
with desflurane. In contrast to the findings with des-
flurane, sevoflurane produced dose-related decreases
in cardiac output (2.4 = 0.2 during control to 1.5 *
0.2 I/min at 1.7 MAC). Systemic vascular resistance
and R were also unchanged in sevoflurane-anesthetized
dogs. Sevoflurane caused dose-related increases in Z,
(139 = 10 during control to 194 *= 14 dynes-
second - centimeter ° at 1.7 MAC) and C (0.57 £ 0.05
during control to 0.79 + 0.05 ml/mmHg at 1.7 MAC;
fig. 3), suggesting that alterations in the mechanical
properties of the aorta were primarily responsible for
changes in LV afterload during administration of this
volatile anesthetic. No difference in the slope of the
compliance-pressure relationship was observed be-
tween sevoflurane (—1.87-10° ml-mmHg *) and
desflurane (—1.67+-107° ml-mmHg ?, t= —0.18, P>
0.05) groups.

Discussion
Calculated systemic vascular resistance (the ratio of

MAP to mean arterial blood flow) is used commonly to

Anesthesiology, V 85, No 1, Jul 1996
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R (dyn.s.cm-2+103)

Zc (dynes.cm5.102)
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Fig. 3. Histograms depicting the effects of volatile anesthetics
on total arterial resistance (R; top), characteristic aortic
impedance (Z; middle) and total arterial compliance (C; bot-
tom) in the conscious (C) state and at 1.1, 1.3, 1.5, and 1.7
minimum alveolar concentration desflurane (DES) and sevo-
flurane (SEV). *Significantly (P < 0.05) different from con-
scious; tSignificantly (P < 0.05) different from sevoflurane.

estimate LV afterload in vivo. Although this index pro-
vides a qualitative description of arterial resistance to
LV ejection, systemic vascular resistance cannot be used
to strictly quantify alterations in afterload because this
index ignores the mechanical properties of the arterial
wall, fails to account for the potential effects of arterial
wave reflection, and does not consider the dynamic,
pulsatile nature of arterial blood pressure and blood
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Table 2. Systemic Hemodynamic Effects of Sevoflurane

117

Sevoflurane (MAC)
Control 1.1 1.3 1.5 L

| HR (beats/min) 88 + 4 131 + 6* 132 + 6* 128 + 5* 129 + 4*
SBP (mmHg) 120 £°5 92 + 3 § 86 + 3* 81 +3+ 69 + 2' 1 4.§
DBP (mmHg) 86 +5 74 + 3*§ 69 + 2* 63 + 3*‘1 52 + 5'VT’¢‘
MBP (mmHg) 99 + 5 80 + 3*,§ 75 + 2* 67 + 3"'T § 61 + 4'1{1
LVSP (mmHg) 19507 93 + 3* § 87 + 3* 82+ 31 70 + 4" 14§
LVEDP (mmHg) 9+1 6+ 1 6+1 8+1 g+1
dP/dty.x (MMHg-s™") 2,343 + 161 1,496 + 52* § 1,320 + 78* 1,176'=53* 1 1,051 5 80*,1.,+
CO(L-min") 24+02 2.0+ 0.2* 1.9+02"§ 1.6 +0.1*1,§ 15402 T t
SVR (dyne-s-cm™®) 3,344 + 224 3,438 + 377 3,315 + 218 3,417 + 214 3,466 ; 2.66’ l
SV (ml) 28 + 2 16 + 2~ 14 + 1+ 18+ 1 12 =%
SS (%) 23 +2 16 + 2* 15 + 1* 11 +1* .4 11+ 21t

Data are mean + SEM; n = 8.

SV = stroke volume; SS = segment shortening.

* Significantly (P < 0.05) different from control.

t Significantly (P < 0.05) different from 1.1 MAC sevoflurane.

1 Significantly (P < 0.05) different from 1.3 MAC sevoflurane.

§ Significantly (P < 0.05) different from same MAC desflurane (table 1).

*

|

flow.*® In contrast, Z,,(w) has been shown to be a quan-
titative measure of LV afterload that incorporates ar-
terial viscoelasticity, frequency-dependence, and wave
reflection.'” Vasoactive drugs, including volatile and
intravenous anesthetics, have been shown to alter
Zi,(w) by affecting the mechanical properties of the
arterial vascular tree.'®'?***Y However, changes in
Zin(w) produced by pharmacologic agents are difficult
to quantify in a physiologically relevant way because
analysis of Z,,(w) is conducted in the frequency do-
main. As a result, Z;,(w) often is interpreted using a
simplified electrical model of the arterial system known

2
%
T
1.4

nesthetics as the three-clement Windkessel ?' The Windkessel
‘ic(é‘f’;:)i:_ model displays most of the frequency-dependent fea-
Sc,ean& 1.7 tures of 7, (w).*” Windkessel-derived variables can be
and sevor used to estimate Z,,(w) as a function of frequency:
rom S8 Ziy(w) =Z.+R-(1 + jew-C-R)" ', where Z. = char-
fucai acteristic aortic impedance, R = total arterial resistance,

C = total arterial compliance, and j = (=1)"?3" Z_ is
dex pro- determined by the Poiseullian resistance of the aorta
stance 10 and the compliance of this vessel. Characteristic aortic
t be used impedance is represented as a resistor in the model for
ause this simplicity and because its value does not vary signifi-
¢ arterial cantly with frequency.?”** R represents the combined
)farterial Poiseullian resistances of the entire arterial vascular
{ynamic, tree. The sum of R and Z. is mathematically cquivulu_n
1;1 blood 0 systemic vascular resistance calculated as the ratio
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HR = heart rate; SBP = systolic blood pressure; DBP = diastolic blood pressure; MBP = mean blood pressure; LVSP = left ventricular systolic pressure; LVEDP
= left ventricular end-diastolic pressure/ dP/dt,., = maximum rate of change of left ventricular pressure; CO = cardiac output; SVR = systemic vascular resistance:

of MAP to mean aortic blood flow. The magnitude of
Z. is small in relation to R owing to the relative con-
tributions to systemic vascular resistance of the aorta
and the remaining arterial circulation, respectively.
Total arterial compliance is the energy storage com-
ponent of the Windkessel. These elements of the arterial
system interact with the mechanical properties of the
left ventricle to determine overall cardiovascular per-
formance.

In the current investigation, Windkessel variables
were used to quantify Z;,(w) spectra in the conscious
state and during desflurane and sevoflurane anesthesia.
The results indicate that desflurane caused a dose-re-
lated reduction in R concomitant with decreases in cal-
culated systemic vascular resistance. These findings
confirm and extend the results of previous studies
demonstrating that desflurane-induced decreases in
systemic vascular resistance contribute to declines in
MAP.*7* Decreases in total arterial and systemic vascular
resistance caused by desflurane were similar to those
observed with isoflurane and propofol (table 3) in pre-
vious investigations from our laboratory.'®'? In contrast
to the findings with isoflurane and propofol, however,
desflurane did not alter C and Z,. . These results indicate
that desflurane reduces LV afterload by affecting resis-
tance arterioles and not the mechanical properties of
the aorta. Total arterial compliance is primarily deter-
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Table 3. Relative Effects of Anesthetics and Sodium Nitroprusside on Indices of Lef

t Ventricular Afterload

Halothane Isoflurane Desflurane Sevoflurane Propofol Nitroprusside
R “— v v — v }
Z t i) s t t ©
C t t g t t 4

R = total arterial resistance; Z. = characteristic aortic impedance; C = total arterial compliance; t = increase; | = decrease; «» = no change.

3334 and is

mined by the compliance of the aorta itself
inversely related to intraluminal pressure and ra-
dius.?>3° Changes in characteristic aortic impedance
also are determined by the inherent viscoelastic prop-
erties of the aorta and are inversely related to the fourth
power of its radius.”” A pressure-induced decrease in
aortic diameter may result in increases in both C and
Z.. When compared to the results of our previous
study,'® desflurane maintained mean aortic pressure to
a relatively greater degree than isoflurane at approxi-
mate end-tidal concentrations of 1.3, 1.5, and 1.7 MAC.
Thus. the failure of desflurane to increase C or Z . at
higher anesthetic concentrations in the current study
is probably related to the less pronounced reductions
in mean aortic pressure and, presumably aortic diam-
eter, produced by this agent when compared to its
structural analog.

In contrast to the findings with desflurane, no changes
in R and systemic vascular resistance occurred during
administration of sevoflurane. These findings are similar
to those observed previously with halothane'® and in-
dicate that sevoflurane does not affect LV afterload by
altering peripheral arteriolar tone in dogs. Unlike des-
flurane, sevoflurane also increased C and Z, suggesting
that this inhalational agent affects aortic compliance
and impedance. However, sevoflurane caused relatively
greater declines in mean aortic pressure than desflurane
in dogs. These findings suggest that sevoflurane-induced
increases in C and Z. were determined primarily by
pressure-dependent reductions in aortic diameter and
not by alterations in the fundamental mechanical prop-
erties of this great vessel. The slopes of the compliance-
pressure relationship for sevoflurane and desflurane
observed in the current investigation were not different
than those of isoflurane (—1.41-10* ml-mmHg *;
t = 1.02 vs. desflurane, P > 0.05; t = 1.13 vs. sevo-
flurane, P > 0.05) and halothane (—1.43:107°
ml-mmHg % t = 0.68 vs. desflurane, P > 0.05; t =
0.79 vs. sevoflurane, P> 0.05) as found in our previous
study.'® These results indicate that volatile anesthetics
produce similar compliance-pressure relationships that
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remain relatively flat between MAPs of 50 and 100
mmHg. In contrast, propofol and sodium nitroprusside
cause significant increases in the slope of the compli-
ance-pressure relation over this range of MAPs, "' in-
dicating that these arterial vasodilators probably exert
direct actions on the mechanical properties of the aorta.

Total arterial compliance represents an important
component of afterload that has recently been shown
to directly influence LV wall stress and myocardial ox-
ygen consumption independent of alterations in sys-
temic vascular resistance.?” Thus, although desflurane,
isoflurane,'® and propofol'” cause dose-related reduc-
tions in R, propofol may have the most beneficial effects
on LV afterload because of simultaneous and more pro-
found increases in C (table 3). Such an increase in C
may improve the rectifying characteristics of the aorta,
a feature that could theoretically reduce LV energy ex-
penditure during ejection, maintain diastolic arterial
pressure, and enhance coronary perfusion under these
conditions. The sevoflurane-induced increases in Z that
occurred at 1.5 and 1.7 MAC may indicate a greater
resistance to LV ejection at these concentrations. These
increases in Z, result in wasted LV energy transfer and
less efficient coupling between the left ventricle and
arterial circulation.?” These effects of changes in Z
should be observed relative to the changes in the mag-
nitude of R and C. The impact of changes in Z is small
in comparison to changes in R and C.

The current results must be interpreted within the
constraints of several possible limitations. The calcu-
lation of Z;, (w) was performed with arterial pressure
waveforms measured using a chronically implanted,
fluid-filled catheter. Despite the use of appropriate
corrections for the magnitude and phase of Z;, (w)."
an improved frequency response may have been ob-
tained with a high-fidelity micromanometer placed at
the aortic root. Z;, (w) magnitude spectra obtained in
anesthetized dogs were somewhat less continuous than
those obtained in the conscious state because more fre-
quencies between the fundamental and corresponding
harmonics were excluded on the basis of mean squared
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DESFLURANE, SEVOFLURANE, AND LV AFTERLOAD

coherence criteria. Generation of multiple heart rates
by random cardiac pacing during anesthesia would have
provided a greater number of fundamental and har-
monic frequencies, resulting in more continuous Z;,
(w) magnitude spectra in the presence of desflurane or
sevoflurane. However, the observed spectral disconti-
nuity resembles spectra generated with standard Fourier
series analysis, an established method for evaluating
aortic input impedance under a variety of physiologic
conditions.'”*?

In summary, desflurane and sevoflurane produce dif-
ferential effects on LV afterload determined with Z,
(w) and interpreted using a three-element Windkessel
model. Desflurane, but not sevoflurane, caused dose-
related reductions in R and Systemic vascular resistance,
indicating that this new volatile anesthetic decreases
LV afterload by affecting peripheral arteriolar tone. In
contrast, sevoflurane, but not desflurane, increased C
and Z at higher anesthetic concentrations concomitant
with greater reductions in MAP. The results indicate
that desflurane and sevoflurane cause changes in Z,,
(w) that are similar to those described previously with
isoflurane and halothane, respectively, in chronically
instrumented dogs.'®

The authors thank Dave Schwabe and John Tessmer, for technical
assistance, and Angela Barnes, for preparation of the manuscript.
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