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Circulatory Effects of Hypoxia, Acute Normouvolemic
Hemodilution, and Their Combination in

Anesthbetized Pigs

Henning Schou, M.D.,* Valéria Perez de S4, M.D.,* Maria Sigurdardéttir, M.D., * Roger Roscher, M.D.,*

Christer Jonmarker, M.D., Ph.D.,t Olof Werner, M.D., Ph.D.t

Background: Because hemodilution decreases the oxygen-
carrying capacity of blood, it was hypothesized that severe
hemodilution would decrease the tolerance to alveolar hyp-
oxia.

Methods: Hemodynamics, oxygen transport, and blood lac-
tate concentrations were compared in ten pigs with normal
hematocrit (33 + 4%), and ten hemodiluted pigs (hematocrit
11 + 1%; mean + SD) anesthetized with ketamine-fentanyl-
pancuronium during stepwise decreases in inspired oxygen
fraction (Fi,; 1.0, 0.35, 0.21, 0.15, 0.10, 0.05).

Results: Median systemic oxygen delivery (DO,sy) became
critical (the DO,sy value when arterial lactate exceeded 2.0
mmol-1") at 10.4 ml-kg '-min ' (range 6.9-16.1) in hemo-
diluted animals and at 11.8 ml-kg '-min ' (5.9-32.2) in ani-
mals with normal hematocrits (NS). The relationship between
mixed venous oxygen saturation and arterial lactate values
was less consistent and median critical mixed venous oxygen
saturation was higher (P < 0.05) in the hemodiluted group
(35%, range 21-64), than in animals with normal hematocrits
(21%, 7-68%). In animals with normal hematocrit, decreasing
Fi,, from 1.0 to 0.10 resulted in a decrease in DO,sy from 26.3
£911093 + 3.9 ml-kg '-min ' (P < 0.01). Cardiac output
did not change, systemic oxygen extraction ratio increased
from 0.23 + 0.081t0 0.68 + 0.13 (P < 0.01), and arterial lactate
from0.9 + 0.2to0 3.4+ 3.0 mmol-1 ' (P < 0.05). Cardiac venous
blood flow, as measured by retrograde thermodilution, in-
creased from 5.7 + 29t0 12.6 + 5.7 ml-kg "-min ' (P < 0.01).
When Fi,, was reduced to 0.05, three animals became hypo-
tensive and died. In the second group, hemodilution increased
cardiac output and systemic oxygen extraction ratio (P < 0.01).
1.7 to 9.8 +
0.01), and cardiac venous oxygen sat-

Cardiac venous blood flow increased from 4.1 +
51ml-kg "-min ' (P-
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uration from 22 + 5 to 41 + 10% (P < 0.01). During the sub-
sequent hypoxia, cardiac output and DO,sy were maintained
until Fiy, = 0.15 (DO,sy = 10.1 + 3.3 ml-kg '-min "). Cardiac
venous blood flow was then 18.5 + 10.7 ml-kg '-min ' (P <
0.01), but in spite of this, myocardial lactate production oc-
curred. At Fi,, = 0.10 (DO,sy = 7.7 + 3.0 ml-kg '-min '), ar-
terial lactate concentration increased to 8.5 + 2.3 mmol -1’
(P < 0.01), and most animals became hypotensive. All he-
modiluted animals died when Fi,, was decreased to 0.05 (P <
0.01 when compared to animals with normal hematocrit).

Conclusions: Systemic and myocardial lactate production
occurred at similar systemic oxygen delivery rates in hemo-
diluted and nonhemodiluted animals. Mixed venous oxygen
saturation may be a less reliable indicator of inadequate oxy-
gen delivery during hemodilution. (Key words: Blood, he-
modilution: lactate; oxygen consumption. Heart: coronary ar-
tery blood flow. Oxygen: hypoxia.)

THE risk of transmitting disease by allogenic blood
transfusion has promoted an interest in acute normo-
volemic hemodilution during surgical procedures. Al-
though the hematocrit is usually kept above 25%, val-
ues of 15-18% have been reported, and otherwise
healthy children may tolerate intraoperative hemoglo-
bin concentrations of 30 + 9 g-1 ' (hematocrit 9%)
without signs of tissue hypoxia.'””> During hemodilu-
tion, the decrease in hemoglobin concentration, and
the concomitant decrease in oxygen-carrying capacity,
is partially compensated for by increases in blood flow
and oxygen extraction.””” Anemia does, however, in-
fringe on physiologic margins—marked hypotension,
for example, is associated with an increased risk for
cerebral anoxic damage when occurring during severe
hemodilution.'”

Cain studied the effect of anemia and hypoxia sepa
rately in dogs, and found a critical oxygen delivery
value of 9.8 ml-kg '-min ' in both groups, corre
sponding to a hematocrit of 10% or an inspired oxygen
fraction (Fi,,,) of 0.09,"" but the effects of hypoxia and
hemodilution combined has not been reported previ

ously. The current study was designed to assess the

¥20¢ Idy 0} uo 3sanb Aq 4pd°1.2000-00090966 | -Z7S0000/60806€/E 7 1/9/8/HPd-801e/ABO|0ISAU)SBUE/WOD JIEUYDIBA|IS ZESE//:d)Y WOl) papeojumoq




1444

SCHOU ET AL.

—

cardiac and systemic response to progressive arterial
desaturation in severely hemodiluted pigs without cor-
onary artery disease. Our main objective was to clarify
to what extent the tolerance to hypoxia is affected by
hemodilution. We hypothesized that pigs exposed to
severe hemodilution would show decreased tolerance
to hypoxia, when judged by systemic oxygen uptake
and arterial lactate concentration.

Materials and Methods

Animal Preparation

After approval of the local Animal Investigations
Committee, 20 Swedish landrace pigs (weighing 33.7
+ 4.2 kg) were studied. The pig was chosen because
its cardiovascular anatomy and physiology is similar to
that of humans.'* " The animals were fasted overnight
but had free access to water. They were premedicated
with 15 mg intramuscular midazolam and anesthesia
was induced with 7-10 mg - kg ' intravenous thiopen-
tal, and 1-2 mg - kg ' intravenous ketamine, and main-
tained with an infusion of 5 mg-kg '-h ' ketamine,
10 ug-kg '-h ! fentanyl, and 0.3 mg-kg '-h ' pan-
curonium. Additional fentanyl (10 ug-kg ') and local
lidocaine were administered before insertion of central
catheters.

A cuffed endotracheal tube was placed through a tra-
cheostomy, and the lungs were mechanically ventilated
with a Servo 900 ventilator (Siemens-Elema, Sweden)
initially set to deliver an Fi,, of 0.35, a respiratory rate
of 20 breaths/min, and 5 cm H,O of positive end-ex-
piratory pressure.

Inspired oxygen fraction was measured with a Servo
Gas Monitor 910 (Siemens-Elema) that had been cali-
brated with a series of precise oxygen-nitrogen mix-
tures. End-tidal CO, monitoring (Servo gas monitor
930, Siemens-Elema) and intermittent blood gases were
used to adjust ventilation so that arterial carbon dioxide
tension was 34-38 mmHg. Core temperature was
maintained in the normal range (in pigs 38.5-39.5°C)
with blankets and a heat-reflecting foil. Ringers’ acetate,
to which 20 g glucose was added per liter, was infused
intravenously ata rate of 10 ml-kg ' -h™' and a bladder
catheter was inserted via a cystostomy.

Catheters were placed in the cranial caval vein for
the administration of anesthetics and blood replace-
ment, and in the left carotid and pulmonary arteries
(thermodilution catheter, Abbott Laboratories, Illinois)
for blood sampling, and measurements of blood pres-
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sure and cardiac output. A catheter with a tip-transducer
(Millar Instruments, Houston, Texas) was placed in the
left ventricle via the superficial femoral artery, to mea-
sure left ventricular pressure. Its time derivative was
obtained electronically. Finally, a thermistor catheter
(Webster Laboratories, California) was placed for meag
surements of cardiac venous flow and for sampling of
blood. The catheter tip was positioned in the great carg
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diac vein, 3—5 c¢cm upstream of its confluence with thg
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azygos vein. =
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Catheters were inserted through peripheral cuts

7

downs and their positions were confirmed by fluoross
copy. Catheter position in the great cardiac vein wasg
also verified by aspirating blood with a hcm()gl()hilg’_
oxygen saturation of approximately 25%. ()cczlsi()na§
ventricular arrhythmia during catheter placement wzlgg
treated with intravenous lidocaine. With the exceptiorg
of the left ventricular pressure, pressures were mc;l%
sured by fluid transmission and Hewlett-Packard HIE
1290 transducers. The pressures and the time dcrivutivq%
curve were recorded on an inkjet recorder (Mingograpl’%
7, Siemens-Elema), with a flat frequency response ugs
to 80 Hz.

IIs

Measurements

Cardiac output was measured in triplicate by ther
modilution, using 10-ml injectates of ice-cold isotonig
glucose. Flow in the great cardiac vein that mainl@
drains the left ventricle,'> was measured by continuou$
retrograde thermodilution as described by Ganz et al. I
A CF-300 flow meter (Webster Laboratories) was uscd%
This technique has a good reproducibility if the flovd
rate of the indicator is sufficiently high and the cathctc%r
is not dislocated between measurements.'® We thered
fore used a constant rate infusion pump (Sage 5512
Orion Research, Cambridge, MA) delivering 5%
ml - min ' of isotonic saline at room temperature oveg
approximately 20 seconds, and fixed the catheter witht
a ligature at its entrance into the external jugular vein.
The temperature of the indicator, and that of blood in
the great cardiac vein, was used to calculate cardiac
venous flow (see later). Corrections were not made for
possible underestimation of flow caused by thermo-
conductivity within the catheter.'”

Blood samples were drawn simultaneously from the
carotid artery, the pulmonary artery, and the great car-
diac vein, and analyzed at 37°C for partial pressure of
oxygen, partial pressure of carbon dioxide, and pH (ABL
30, Radiometer, Denmark). Hemoglobin concentration
and oxygen saturation were obtained spectrophoto-
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metrically (OSM 3 hemoxymeter, Radiometer, Den-
mark). The arterial hematocrit was obtained with a mi-
crohematocrit centrifuge (Hettich, Germany). Arterial
and cardiac venous blood samples were frozen in liquid
nitrogen and stored at —80°C for later analysis of lactate
concentrations by an enzymatic-fluorometric method.'®

Calculations

Flow in the great cardiac vein (ml-min ') was cal-
culated assuming that heat lost from the indicator was
gained by blood'® as:

Fecv = F;-1.08 - (Chans I)a(ls Tl = 1),

where F, indicates indicator flow, and T the temper-
ature of indicator (1), blood (B), and the indicator and
blood mixture (M), respectively. The value 1.08 is the
relationship between the density (S) and the specific
heat (C) of blood and indicator((S;- C,):(Sg* Cy)).

The oxygen content of blood, ml -1
from:

' was obtained

GO, Hb-1.39-5,0, + 0.03-P,0,

where x denotes arterial (a), great cardiac venous
(GCV), or mixed venous (v) blood.

Systemic and myocardial (left ventricular) oxygen
delivery, ml-min ', were calculated as:

DO sy CO - Cag, and DO,LV

Foev® ('uo_,

and systemic and myocardial (left ventricular) oxygen

uptake, ml-min ', as

VO,sy = CO+ (Ca0; — C,0,)

and VO, 1Lv Foov* (Ca0; — CiecvO5)

These values, including Fiy, were indexed to body
weight

Systemic and myocardial (left ventricular) oxygen
extraction ratio were calculated as

ERg, VO ,sv:DO, and ER;y = VO,Lv:DO,LV

I'he values for systemic oxygen delivery and mixed
venous oxygen saturation, respectively, at which an
arterial lactate of 2 mmol -1 " was exceeded (defined
as critical systemic oxygen delivery and critical Sv,,),
was determined in each animal by linear interpolation
I'he cutoff value of 2 mmol -1 ' was the mean baseline

value +2 SD. In three animals with normal hematocrit,

this threshold was not exceeded even at Fi,, 0.10
In these, critical oxygen delivery and critical Sv,,, were
approximated as the measured values at Fi,, 0.10

(lactate concentrations were not measured at Fi,,
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0.05 because of technical problems). The estimates
(8, 14, and 16 ml-kg '-min ' for systemic oxygen
delivery, and 16, 21, and 31% for mixed venous oxygen
saturation) were thus an unknown amount above the
true critical value.

Experimental Protocol

After preparation, which lasted 60-90 min, the animals
were left undisturbed for at least 45 min. Inspired oxygen
fraction was then increased from 0.35 to 1.0 and after
waiting 10 min to achieve steady state, baseline mea-
surements were obtained. The animals were then assigned
randomly to either of two groups of ten animals each.
One group (weight 32 + 4 kg) was immediately exposed
to decreasing Fi,, (see later), while the other group
(weight 35 + 4 kg) was first hemodiluted. To ensure that
systemic oxygen delivery would be reduced to a critical
level (Z.e., to about 10 ml-kg '+ min "), the hematocrit
was reduced to 11%.'"'°

Hemodilution was performed by removing blood from
the arterial catheter, and simultaneously replacing this
with a warmed (38°C) 1:1 mixture of 6% dextran-70
(Pharmacia, Sweden) and Ringers’ acetate. A similar mix-
ture (3% dextran-60) gives isovolemic plasma expansion
in man.”” Each liter of the mixture contained: Na' 142
mMm, K" 1 mm, CI™ 132 mm, Ca** 1 mm, Mgt 0.5 mm,
acetate 15 mm, and dextran-70 30 g. The exchanged vol-
ume (mean + SD) to achieve a hematocrit of 11 + 1%
was 66 + 10 ml-kg ' (range, 48-78 ml-kg ). Because
the hemodilution procedure took approximately 1 h, the
two groups were not time-matched. Ten minutes after
completing the hemodilution, new measurements were
performedat Fi,, = 1.0.

The hypoxic challenge was accomplished through a
stepwise reduction in Fip,: 1.0 — 0.35 — 0.21 — 0.15

0.10 — 0.05. Measurements and blood samples were
performed at each level after 10 min at constant Fig,,
Because adjusting the oxygen concentration to a smaller
value usually took 5 min, and the measurements about
15 min, the pigs were exposed to each Fig, for ap-
proximately 30 min. At Fi,,
came hemodynamically unstable and measurements

0.05, many animals be-

therefore could only be obtained in seven animals, all
with normal hematocrits. Animals that were still alive
0.05, were killed
by an intravenous bolus of thiopental

after 30 min of ventilation at Fig,,

Statistics
Two-way (group and stage) analysis of variance
with repeated measures was applied for continuous
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variables (saturation, Fgcy, etc.), to determine mmol/L
whether there was any significant overall group effect Arterial lactate
or interaction between group and stage. If so, pos- e
sible differences between groups at specific stages .
were analyzed with the two-sided ¢ test for unpaired a5 ) 2
data. Changes between baseline and the following ::o gU
stages, within groups, were similarly assessed with o s g
one-way analysis of variance and the two-sided 7 test Gl B P, ’ 8
for paired data. Group differences in critical systemic ia:. &; L §
oxygen delivery and Sv,, were assessed by a gener- 0 : &S i °°’§&:,P L4 o 4 g
alization of Mann-Whitney’s rank sum test. Fisher’s 0 10 20 30 40 50 2
exact test was used to assess whether mortality dif- Systemic oxygen delivery , ml/kg/min ®
fered between groups. Probability values less than §
0.05 were considered significant. Data are reported mmol/L f
as mean + SD when not otherwise indicated. ] S
el e Arterial lactate g
Results ey . :
8 b . %
. 2
Critical Systemic Oxygen Delivery and Critical 2 . et z
Mixed Venous Oxygen Saturation 44° e ...’ ., ’%
Arterial lactate levels and systemic oxygen delivery = -t ; -" .8"%!?& - §
were closely related (fig. 1). In hemodiluted animals, ” A i’ 'I° g Sio Sl S
systemic oxygen delivery became critical when less 0 20 40 60 80 100 g
than 10.4 (6.9-16.1) ml-kg '-min ' (median and Sv0,,% g
range). This was not significantly different from the mmol/L 8
value of 11.8 ml-kg '-min ' in the group with nor- ' Myocardial lactate uptake g
mal hematocrit (5.9-32.5 ml-kg '-min '). As men- 27 g
tioned in the section titled Calculations, the value 15 % S
for critical DO,sy was approximated in three animals (FM? %l ol0iige S
in the control group by a figure that was an unknown e & 0%, : a 8
amount above the true critical value, but even if one e 2
makes the unrealistic assumption that the true DO,sy 27 :Z
values in these three pigs were also the smallest ones 3 . %
of the entire material, this would give a median value b 3 Y i ] y , 2
of 8.75 ml - kg ' - min ', still not significantly differ- 0.0 1.0 2.0 3.0 z
ent from that of the hemodiluted animals. Myocardial oxygen delivery , ml/kg/min é

The relationship between arterial lactate levels and
SVo, was less consistent (fig. 1). Median critical Sv,
was 35% (range 21-64%) in hemodiluted animals, and
21% (range 7-68%) in animals with normal hemato-
crits (P < 0.05). As concerns the Sv,, approximations,
the between-group difference would have been even
larger if critical DO,sy values had been determined in
all animals with normal hematocrits.

Effects of Decreasing Inspired Oxygen Fraction in

Animals with Normal Hematocrits

Systemic Circulation and Oxygenation. The de-
crease in arterial oxygen content occurring during the

Anesthesiology, V 84, No 6, Jun 1996

Fig. 1. Arterial lactate and myocardial lactate uptake (arterialE
minus cardiac venous lactate concentration) versus systemic
oxygen delivery, and arterial lactate versus mixed venous ox-
ygen saturation in hemodiluted animals (®) and in animals
with normal hematocrit (O).

hypoxic challenge, was predominantly compensated
for by an increase in systemic oxygen extraction ratio.
Except for an increase in mean pulmonary arterial
pressure (P < 0.01) and pulmonary vascular resistance
(P < 0.01), only minor hemodynamic changes were
observed as long as Fi,, was greater than 0.10 (tables
1 and 2). At Fip, = 0.10 (Sap, = 38 £ 11%), systemic
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oxygen delivery had decreased to 9.3 + 3.9
ml-kg '-min ' (P < 0.01) and arterial lactate in-
creased to 3.4 £ 3.0 mmol-1"' (P < 0.05), in spite of
a maintained systemic oxygen uptake.

When Fi,, was further decreased to 0.05 (Sap, = 15
+ 3%, systemic oxygen delivery = 3.6 = 1.4
ml-kg '-min ") the decreased arterial oxygen content
was not compensated for by further increases in oxygen
extraction and the animals showed signs of progressive
circulatory failure with decreases in cardiac output and
increasing mean central venous pressure and pulmo-
nary capillary wedge pressure. Three pigs developed
severe hypotension and bradycardia and died, two of
these had shown markedly increased arterial lactate
levels at Fi,, = 0.10. In the remaining seven animals,
arterial pressure and cardiac output decreased and heart
rate and wedge-pressure increased, but all survived 30
min at Fi,, = 0.05

Myocardial Hemodynamics and Oxygenation.
There was no myocardial lactate production during the
decrease in Fi,, from 1.0 to 0.15 (table 3). Left ven-
tricular time derivative increased and the oxygen re-
quirements of the heart were met by an increase in
coronary blood flow. Although the cardiac venous oxy-
gen saturation decreased, the oxygen extraction ratio
was unchanged. When Fi,, was decreased from 0.15
to 0.10, myocardial lactate production was observed
At Fi,, = 0.05 myocardial oxygen delivery decreased
from 0.65 + 0.37 to 0.30 + 0.16 ml-kg '-min ' (P
<0.01)

Acute Normovolemic Hemodilution at Inspired

Oxygen Fraction of 1.0

Systemic Circulation and Oxygenation. Follow-
ing hemodilution from hematocrit 33 to 11% there was
a 56% decrease in systemic oxygen delivery (P < 0.01)
Mixed venous oxygen saturation decreased (P<0.01),
and the systemic oxygen extraction ratio increased from
0.24+0.09t00.45+0.08 (P <0.01), but there were
no changes in arterial lactate concentration, systemic
oxygen uptake, or pH (fig. 2 and tables 1 and 2). Mean
arterial pressure and systemic vascular resistance de
creased by 12 and 38% (P < 0.05 and P < 0.01. re
spectively), and cardiac output increased by 24% (P

0.01)

Myocardial Hemodynamics and Oxygenation.
Cardiac venous blood flow increased by 140% after he
modilution (P < 0.01). Mvocardial oxygen delivery
and uptake were unchanged (table 3). Cardiac venous
oxygen saturation increased from 22+ 5% to 41 + 10%
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(P < 0.01), and the oxygen extraction ratio of the
myocardium decreased from 0.79 + 0.04 to 0.67 +
0.08 (P < 0.01). Myocardial lactate uptake was unaf-
fected (figh2)"

Effects of Decreasing Inspired Oxygen Fraction in

Hemodiluted Animals

Systemic Circulation and Oxygenation. As was
the case in animals with normal hematocrit, the de-
crease in arterial oxygen content caused by hypoxia
was mainly compensated for by an increase in sys-
temic oxygen extraction (£ < 0.01), but Sv,,, was
less than in pigs with normal hematocrit until Fi,, =
0.10 (p<0.01; tables 1 and 2). In contrast to animals
with normal hematocrit, pulmonary vascular resis-
tance did not increase in hemodiluted animals when
Fi,, was decreased, which could be owing to the low
viscosity. Mean arterial pressure decreased (P <
0.01), largely because of a decrease in systemic vas-
cular resistance (P < 0.05). At Fig, 0.15 (Sao,
72+ 16%) systemic oxygen delivery was maintained
(10.1 £ 3.3 ml-kg '-min "), there was an increase
in arterial lactate to 4.2 + 2.1 mmol-1"' (P<0.01),
and arterial base excess became negative (P < 0.05;
table 2). At Fip,

[p—

creased to 7.7 = 3.0 ml-kg

0.10 systemic oxygen delivery de-
'“min™' (P < 0.01).
Arterial lactate increased to 8.5 + 2.3 mmol-L ' (P
< 0.01), and arterial base excess decreased further
(P < 0.01). Simultancously, cardiac output de-
creased, and central venous pressure and pulmonary
capillary wedge pressure increased, indicating cir-
culatory failure

No animal survived ventilation with an Fi,,, of 0.05
(P < 0.01 compared with the animals with normal
hematocrit). Eight animals died within 10 min, and
the other two within 30 min. Death occurred after
a period of progressive hypotension and bradycar
dia

Myocardial Hemodynamics and Oxygenation.
During the hypoxic challenge, flow in the great cardiac

vein increased from 9.8 £ 5.1 ml-kg '-min ' at Fi,,

" min

1.0 to a maximum of 18.5 + 10.7 ml-kg
at = 0.15 (P < 0.01). Myocardial blood flow remained
greater in hemodiluted animals than in animals with
normal hematocrit (fig. 3 and table 3), until Fi,, was
decreased to 0.10, and there continued to be a net
0.15 (fig. 2)

Myocardial lactate uptake versus myocardial oxygen

myocardial uptake of lactate until Fi,,

delivery is given in figure |
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Discussion

Critical Systemic Oxygen Delivery and Critical
Mixed Venous Oxygen Saturation

The determination of critical oxygen delivery was
In contrast to
systemic oxygen uptake, which is mathematically cou-
pled to oxygen delivery and Svg,,, lactate is an inde-
pendent indicator of inadequate oxygen delivery. We

based on arterial lactate measurements

found increased arterial lactate concentrations at sim-
ilar oxygen delivery in the two groups (about 10
ml-kg "-min ' fig. 1), which suggests that the effects
of hemodilution and of hypoxia were additive. This
agrees with studies in dogs, in which systemic oxygen
uptake decreased when systemic oxygen delivery be-
than 10 b

whether the decrease in oxygen delivery was caused
11,241

came less ml-kg '-min regardless of
by anemia, hypoxia, or low cardiac output

A problem during clinical hemodilution is how to
detect early signs of inadequate oxygen delivery. When
analyzing the data obtained in our animals during the
stages preceding death, it was dificult to discern a re-
liable indicator of impending decompensation. Al-
though close circulatory monitoring is mandatory dur-
ing hemodilution, circulatory changes are not specific

and hemodynamic collapse may occur rapidly once

Anesthesiology, V 8B4, No 6, Jun 1996

signs of circulatory decompensation appear®'** and
resuscitation may be difficult.”* Lactate, standard bi-
carbonate, base excess and Sv,, measurements are more
specific indicators of inadequate systemic oxygen de-
livery. Of these, Svy,, is clinically appealing because it
can easily be monitored continuously. Several studies
have found good correlation between oxygen uptake
and Sv,,, values,?*%° but to our knowledge, no study
has related Sv,, and an independent measure of tissue
oxygenation (e.g., lactate concentration). The useful-
ness of Sv,, as a monitor during hemodilution is un-
certain. In a recent case report of a patient hemodiluted
to a hematocrit of 8%, critical oxygen delivery, defined
as the DO sy value below which the VO,sy gradually

decreased, was about 184 ml-m %+ min '

?7 Sv, values
were not presented but Py, was the same (31 mmHg)
before anesthetic induction and 8 h after surgery,
although DO ,sy 339 to 78

ml-m .

decreased  from
‘. min

None of our animals had increased lactate concentra
tions as long as Sv,, was >70%. When hypoxia was in
creased, however, the relationship between Sv,, and ar
terial lactate concentrations was different in animals that
We
have no certain explanation for the greater critical

had been diluted, and those who had not (fig. 1)

Svg,, in hemodiluted animals (35% wvs. 21% in animals
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Fig. 3. Cardiac output and cardiac venous flow in hemodiluted
animals (@) and in animals with normal hematocrit (O). Data
are mean + SE. Significant differences between groups are in-
dicated: *P < 0.05, and *P < 0.01.

with normal hematocrit). A poor correlation has been
demonstrated between regional venous saturation and
Svo, in hemodiluted pigs (hematocrit 15%) undergoing
cardiopulmonary bypass.*® It is possible that a low he-
matocrit may affect the accuracy of Sv,, determina-
tions.

Effects of Decreasing Inspired Oxygen Fraction in

Animals with Normal Hematocrit

There were no signs of circulatory decompensation
when Fi,,, was decreased from 1.0 to 0.15. Cardiac output
remained stable and the decrease in systemic oxygen de-
livery was compensated for by an increase in oxygen ex-
traction. These findings confirm previous studies in dogs
and lambs.*'~**2? Increased arterial lactate concentration
was observed at Fi,, = 0.10 when oxygen delivery was
9.3 ml-kg '-min ' (fig. 2 and table 2).

Initially during the hypoxic challenge, myocardial
oxygen delivery was maintained by a more than dou-
bled myocardial blood flow. This is consistent with
carlier reports in dogs and lambs and indicates that
hypoxia is a strong coronary vasodilator, perhaps be-
cause of its effect on regional pH and lactate lev-

Anesthesiology, V 84, No 6, Jun 1996

els.?*2?3% Myocardial lactate production occurred

when Fi1,, was decreased from 0.15 to 0.10, corre-
sponding to a decrease in Sa,, from 78% to 38% (table
2). This is in agreement with the finding of a switch to
myocardial lactate production at an Sa,, of 57% *+ 5%
in pigs exposed to stepwise reduction in Fig,.** 4

We used a ketamine-fentanyl-pancuronium anestheti%:
because previous experience indicated that it Woulgi
provide hemodynamic stability during long exper%«
ments. Ketamine and pancuronium increase cardlai
output, heart rate, and arterial blood pressure, where@
fentanyl may partly antagonize these effects by decrca%
ing the same measures. Neither fentanyl nor kctamm“t
affect coronary vascular tone in pigs.*'~** It is possiblg
that the sympathetic stimulation provided by ketaming
positively influenced survival in both groups: White &
al.** exposed pigs to progressive hypoxia during hal(g
thane anesthesia, and found that all animals died wheﬁ
Sap, was 23 £ 3%, whereas seven of our ten anima%
with normal hematocrit survived ventilation with
Fip, = 0.05 (Sap, 15 = 3%) for longer than 30 min.

o,

2]

d-g)

Effects of Acute Normovolemic Hemodilution at

Inspired Oxygen Fraction of 1.0

The anesthetic technique also may explain som
other findings. Except for the anesthetic, our anim
model is similar to the one used by van Woerkens
al. and by Risinen.'”?> These groups studied mida
zolam-fentanyl-'> and pentobarbital-anesthetized’3
pigs, hemodiluted to a hematocrit of 9-11% during
normoxic ventilation, and found that the decrease ig
oxygen content was compensated for by an increase ié
cardiac output of 100% and 39%, respectively. In ouf
study, cardiac output increased by 24%, but while theig
increase in cardiac output was mainly caused by af
increase in stroke volume, ours was caused solely b%;
an increase in heart rate (table 1).

Whereas these two groups used dextran-40 as ré"
placement fluid during hemodilution, we used 3%
dextran-70. In humans, 3% dextran-60 produces iso-
volemia when used to replace blood loss milliliter per
milliliter.? In the current study, the maintained central
venous pressure and wedge pressure after hemodilution
suggest that hemodilution was isovolemic. The blood
volume of 2-3-month old pigs is 67 + 4 mg-kg ', i.e
almost the same as our exchanged volume (66 + 10
ml - kg ").** If one assumes exponential hemodilution,
these figures imply a mean hematocrit reduction by a
factor of 2.7 Because the actual value was 3.0, this
is consistent with isovolemic, or even slightly hyper-

0806E/EV1/9/78/4P
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volemic, blood replacement. We chose to administer
a relatively large amount (10 ml- kg '-h™") of mainte-
nance fluid, and recorded a satisfactory diuresis (table
1). The maintenance fluid does not seem to have af-
fected the blood volume, because the hematocrit as
well as the hemoglobin values were constant in the
group with normal hematocrit until the final stage,
when it increased.

Because of the hemodilution sequence, the hemo-
diluted animals were anesthetized and exposed to an
Fii,, of 1.0 for 1 h longer than the animals with normal
hematocrit. In theory, this might have confounded the
comparison between groups. However, the animals
with normal hematocrit exhibited essentially un-
changed hemodynamics and lactate concentrations
during a comparable period, namely when they were
exposed to Fip, = 1.0, 0.35, and 0.21 (fig. 2 and tables
1 and 2)

In our animals, the flow in the great cardiac vein in-
creased by 140% after hemodilution (table 3), and the
current findings thus confirm earlier studies, reporting
twofold to fourfold increases in myocardial blood flow
as determined by '**Xenon washout, electromagnetic
flow probe, and microsphere techniques, during similar

7.10,19,25

degrees of hemodilution. > The large increase
in myocardial blood flow was probably the result of
both decreased blood viscosity, and of pH- and lactate-
mediated dilation of the coronary vessels, and reflect
the finding that the capacity of the myocardium for
It is

conceivable that the acetate in our replacement solu-

increasing the oxygen extraction is limited.”*"

tion temporarily increased coronary flow, but the va-
sodilatory effect of acetate lasts only 2 or 3 min, and
it is therefore unlikely that the observed increase in
coronary flow during the subsequent experiment was

influenced by this factor.**?

"The increase in coronary
venous saturation after hemodilution (from 22% to
11%, table 3) was greater than the increase reported
by Woerkens et al. (from 22% to 28%).'? It occurred
in the absence of myocardial lactate production, which
suggests that the blood flow was sufficient to meet
myocardial oxygen demand. It is possible that shunting
at the capillary level accounts for at least part of the
mcoreasce

Effects of Decreasing Inspired Oxygen Fraction

during Acute Normovolemic Hemodilution

In hemodiluted animals, the decrease in blood oxy
gen content during hypoxia was compensated for in a
similar manner as in animals with normal hematocrit,

Anesthesiology, V 84, No 6, Jun 1996

that is, by an increased oxygen extraction (table 2).
The gradual increase in hematocrit (from 11% to 15%;
table 1) did to some extent offset the effect of arterial
desaturation. As mentioned earlier, we do not think
that this increase in hematocrit was caused by hypo-
volemia, but believe that the cause was stress- or ket-
amine-induced release of erythrocytes from the spleen
by adrenergic mechanisms.**

Although the hemodiluted animals were hemody-
namically stable until Fi,, was 0.10, earlier studies
suggest that the hemodilution reduced DO,sy to a
critical value.'"** In anesthetized baboons breathing
room air, myocardial lactate production was observed
when the hematocrit was 10%.” Rasianen studied the
effect of gradual hemodilution (during ventilation
with air, personal communication) and noted that
oxygen delivery was insufficient to meet oxygen de-
mand at a hemoglobin value of 39 g+ 1" (hematocrit
~ 12%), an Sv,, of 38%, and a systemic oxygen ex-
traction ratio of 0.55.%° In 10-12-kg pigs, also ven-
tilated with air, the corresponding values found by
Trouwborst were 36 g+ 17" (hematocrit =~ 11%), 44%,
and 0.57.%° In the current study, similar low Svo, val-
ues were obtained at Fig, 0.35 (table 2) but all
animals survived longer than 1.5 h of ventilation at
a lower Fi,,. Hemodilution increased myocardial
blood flow, and reducing the Fi,,, from 1.0 to 0.15
caused a further increase (table 3). The severe he-
modilution thus did not exhaust the potential for
coronary vasodilation. All hemodiluted animals sur-
vived 30 min at Fi,, = 0.10 but at this stage oxygen
uptake decreased, and arterial lactate and myocardial
lactate production increased (figs. 1 and 2 and tables
2 and 3).

In conclusion, pigs hemodiluted to a hematocrit of

11% maintained a capacity for further increases in
coronary blood flow, and survived a decrease in
Fig, to 0.10. Increased systemic and myocardial lac-
tate production occurred at similar systemic oxygen
delivery rates in hemodiluted animals and in animals
with normal hematocrit. Our data suggest that mixed
venous oxygen saturation may be a less reliable in-
dicator of inadequate oxygen delivery during he
modilution
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