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Cent?"al Nervous System Sodium Channels Are
Significantly Suppressed at Clinical Concentrations

of Volatile Anesthetics

Benno Rehberg, M.D.,* Yong-Hong Xiao, M.D.,* Daniel S. Duch, Ph.D.t

Background: Although voltage-dependent sodium channels
have been proposed as possible molecular sites of anesthetic
action, they generally are considered too insensitive to be
likely molecular targets. However, most previous molecular
studies have used peripheral sodium channels as models. To
examine the interactions of volatile anesthetics with mam-
malian central nervous system voltage-gated sodium channels,
rat brain IIA sodium channels were expressed in a stably
transfected Chinese hamster ovary cell line, and their modi-
fication by volatile anesthetics was examined.

Methods: Sodium currents were measured using whole cell
patch clamp recordings. Test solutions were equilibrated with
the test anesthetics and perfused externally on the cells. An-
esthetic concentrations in the perfusion solution were deter-
mined by gas chromatography.

Results: All anesthetics significantly suppressed sodium cur-
rents at clinical concentrations. This suppression occurred
through at least two mechanisms: (1) a potential-independent
suppression of resting or open sodium channels, and (2) a
hyperpolarizing shift in the voltage-dependence of channel
inactivation resulting in a potential-dependent suppression
of sodium currents. The voltage-dependent interaction results
in IC,, values for anesthetic suppression of sodium channels
that are close to clinical concentrations at potentials near the
resting membrane potential.
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Conclusions: Contrary to the hypothesis that sodium chan-
nels are insensitive to general anesthetics, the results pre-
sented here indicate that current through central nervous
system sodium channels examined at physiologic membrane
potentials is significantly blocked by clinical concentrations
of volatile anesthetics. This anesthetic interaction with sodium
channels is voltage-dependent, consistent with a state-depen-
dent modulated receptor model in which anesthetics more
strongly affect the inactive state of the channel than the rest-
ing state. (Key words: Anesthetic mechanisms: anesthetic-
protein interaction. Anesthetics, volatile: desflurane; dieth-
ylether; enflurane; halothane; isoflurane; sevoflurane. Brain,
central nervous system: sodium channel inactivation, sodium
channels. Measurement techniques: patch clamp.)

VOLTAGE-GATED sodium channels are essential ele-
ments of neuronal function, mediating the rising phase
of depolarization during the propagation of action po-
tentials. Because of their central role in neuronal com-
munication and integration, these proteins have been
proposed as possible anesthetic targets,' > but exper-
imental evidence has not provided strong support for
this proposition. Sodium channels have been found to
be relatively insensitive to clinical doses of anesthetics.
However, some of these previous studies used periph-
eral nerve preparations, and during the past decade,
there has been increasing evidence of functional and
pharmacologic differences between sodium channels,
not only among different tissues, but within the same
tissue.®~® Additionally, most previous studies used hy-
perpolarizing potentials to remove channel inactivation
before examining anesthetic interactions”'’; if anes-
thetics strongly interact with the inactive state of the
channel, such interactions could be missed under these
conditions. Therefore, to understand these anesthetic
interactions more fully, it is important to examine so-
dium channels of central nervous system (CNS) origin
under a wider range of electrophysiologic conditions.

To investigate these interactions with CNS sodium
channels, we previously examined the effects of various
classes of anesthetics on human brain synaptosomal so-
dium channels incorporated into planar lipid bilayers.
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In these experiments, we found that anesthetics
blocked sodium current through these channels with
varying potencies, obeying the Meyer-Overton corre-
lation.’ Clinical concentrations of anesthetics blocked
about 10% of sodium channel currents, similar to what
was reported previously for the peripheral nerve prep-
arations.'® However, the bilayer experiments required
the use of sodium channel activators to remove or alter
channel inactivation, and possible interactions of an-
esthetics with the inactive state of the channel were
minimized under these conditions.

To examine the effects of anesthetics on sodium
channels of CNS origin with unmodified inactivation
properties, we investigated the anesthetic modification
of rat brain sodium channels stably transfected into
Chinese hamster ovary cells. The sodium channels ex-
pressed in this system have been examined thoroughly
both electrophysiologically and pharmacologically' Hi2
and were found to have similar functionality to sodium
channels in situ. Furthermore, these channels are
greater than 97% structurally identical to human brain
sodium channels.'> We used varying voltage-clamp
protocols to examine state-dependent anesthetic effects
on these channels. The relevance of these results to
understanding anesthetic actions is discussed.

Materials and Methods

Cell Culture

A stably transfected Chinese hamster ovary cell line
(CNalIA-1) was used. The vector used for transfection
contained a gene conferring resistance to the amino-
glycoside antibiotic G418.

The cells were grown in RPMI medium (Gibco, Grand
Island, NY) containing 10% fetal bovine serum and 1%
penicillin/streptomycin mixture (Gibco) as well as
200 pg/ml G418 to select for transfected cells. Cells
were cultured in 25 cm? polystyrene culture flasks
(Corning, Corning, NY) at 37°C in room air containing
5% CO, . For electrophysiologic recordings, cells were
transferred to 60 mm Petri dishes (Becton Dickinson,
Lincoln Park, NJ).

Electrophysiology

Cells were used 2-3 days after the transfer, before
the cell layer became confluent. For electrophysiologic
measurements, the culture medium was replaced by
an extracellular solution containing 130 mm NaCl, 4
mm KCl, 1.5 mm CaCl,, 1.5 mm MgCl,, 5 mm glucose,
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and 5 mm HEPES, adjusted to pH 7.4 with CsOH. All
solutions were filtered through 0.22 pm-filters (Milli-
pore, Bedford, MA) before use.

Recordings were made at room temperaturc (24.4 +
1.2°C). Because we expressed anesthetic potencies not
as minimum alveolar concentration (MAC) values
(strongly temperature-dependent) butas aqueous con-
centrations (relatively tcmperature-inscnsitivc' "), the
concentrations can be extrapolated to body tempera-
ture.

Sodium currents were studied using the whole-cell
configuration of the patch-clamp recording tech-
nique,'’ using a standard patch-clamp amplifier (Ax-
opatch 200, Axon Instruments, Foster City, CA) con-
trolled by commercially available software (pCLAMP,
Axon Instruments) on a standard personal computer.
Currents were filtered at 5 kHz, digitized, and recorded
to hard disk. Capacitive transients and series resistance
were measured and compensated using the amplifier’s
internal compensation circuitry; active series resistance
compensation was used to compensate 60-85% of the
series resistance. Average series resistance before com-
pensation was 3.5 = 1.5 MQ; the average cell capaci-
tance was 18.1 + 8.6 pF.

Patch-clamp pipettes were pulled from micropipette
glass (Drummond, Broomall, PA) and filled with an
intracellular solution containing 10 mm NaCl, 90 mM
CsF, 60 mm CsCl, and 6 mm HEPES, adjusted to pH 7.4
with CsOH.

Cells with currents larger than 6 nA and smaller than
0.5 nA were excluded because of increasing series re-
sistance error or possible contamination by possible
small endogenous sodium currents in Chinese hamster
ovary cells.!' The average current of the 75 cells in-
cluded in this study was 2.4 = 1.5 nA.

Anestbetic Solutions

Volatile anesthetic solutions were prepared by injec-
tion of defined amounts of anesthetics into PTFE-capped
glass vials filled with extracellular solution. The vials
were vigorously vortexed for 2 min and sonicated in a
bath sonicator for 1 h, yielding consistent anesthetic
concentrations. The anesthetic solutions were applied
via a glass-PTFE-perfusion system and a superfusion
pipette (flow rate 0.5-0.8 ml/min) close to the cell.
Anesthetic concentrations of halothane, isoflurane, en-
flurane, desflurane, and sevoflurane were measured in
some experiments in the perfusion reservoir at the start
of the perfusion and after 3 and 7 min using gas chro-
matography. The degree of evaporation from the open-
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perfusion reservoir is different for each anesthetic
(largest for desflurane with a decrease in aqueous con-
centration of 25% after 7 min). No correction was made
for this differential evaporation; all concentrations re-
ported are those at the beginning of perfusion, and ac-
tual anesthetic concentrations at the cells will be lower.

Solutions of diethylether and ethanol were prepared
in the same way, but concentrations were calculated
from the amount of anesthetic injected into the glass
vial.

Statistics

Curve fits were computed using a least-squares
algorithm (Marquardt-Levenberg) of commercially
available software (Sigmaplot, Jandel Scientific, Corte
Madera, CA). Data are +SEM, unless noted otherwise.

Results

Suppression of Brain Sodium Channels Follows

the Meyer-Overton Correlation

A standard way to calculate suppression of sodium
currents by drugs is to determine peak inward current
from current-voltage plots.”'° Sodium currents are
elicited by voltage steps to various test potentials (here
=60 to +100 mV) from a hyperpolarized holding po-
tential (here —120 mV), at which channel inactivation
is removed. Sodium currents elicited with this protocol
are inhibited by volatile anesthetics, as exemplified by
desflurane (fig. 1). The suppression occurs within sec-
onds and can be reversed by washing out the anesthetic
with anesthetic-free extracellular solution. Reversal
was complete in most experiments, even after repeated
drug application. Higher concentrations of anesthetic
tended to lead to incomplete reversal and, therefore,
were applied last in experiments in which multiple
concentrations were applied. The voltage dependence
of sodium current activation was unchanged by the an-
esthetics.

Concentration-response curves were established from
averaged suppression data from at least six cells for
each anesthetic (fig. 2). Suppression was calculated as
the reduction of the maximum inward current (which
occurs, depending on the cell, in the test potential
range of —10 to +10 mV), expressed as percent of con-
trol. Data for all anesthetics were fit with simple hy-
perbolic curves, assuming 100% maximum Suppres-
sion. The logarithm of the ICs, values obtained (table
1) correlates to the logarithm of the octanol/water par-
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tition coefficients'® in the same linear manner as the
Meyer-Overton correlation of MAC values (compare to
fig. 6). Ethanol, which can be used as an (intravenous)
anesthetic adjuvant,'” was included in the experiments
to extend the range of partition coefficients. For the
anesthetics studied, linear regression fits to the data
yielded slopes of —1.05 (r* = 0.956) for peak sodium
current suppression and —0.99 (r? = 0.996) for con-
centrations yielding anesthesia (represented as MAC
values, converted to aqueous concentrations'®). On
average for the anesthetics studied, 50% block of peak
sodium current requires threefold higher concentra-
tions than human MAC values.

Volatile Anestbetics Induce a Hyperpolarizing
Shift in Steady-State Sodium Channel
Inactivation

Steady-state inactivation is a physiologically impor-
tant property of sodium channels determining the
availability of the channels at a certain membrane po-
tential. The standard voltage protocol used to measure
steady-state inactivation comprises prepulses to varying
potentials (here, 500 ms to potentials between —150
and —10 mV) and a constant test pulse (here, —10
mV). Before application of an anesthetic, currents
(shown for an exemplary cell in fig. 3) decrease at
prepulse potentials positive to about —80 mV. This
phenomenon can be explained by a voltage-dependent
transition from closed to inactivated channels, the latter
being unavailable for opening. The voltage-dependent
distribution between the two states represents steady-
state inactivation and is described by a Boltzmann
function. Data were fitted to the function f(V) = L.«
— {Imax/€Xp [—2'F'(V — V,)/RT]}, which is character-
ized by three parameters, with I,,,, maximum current
at hyperpolarized potentials, z the slope parameter,
and V,, the midpoint potential at which the function
assumes its half-maximal value (average control value
for all experiments was —54.0 mV); F is the Faraday
constant, R the gas constant, and T the absolute tem-
perature. Currents are normalized to I, before addi-
tion of the anesthetic.

After application of an anesthetic (demonstrated for
ether in fig. 3B), currents are reduced at all potentials
as expected from the experiments described above, and
additionally, steady-state inactivation is shifted in the
hyperpolarizing direction (leftward).

These results reveal two effects of volatile anesthetics
on sodium currents: (1) a voltage-independent current
suppression at hyperpolarized potentials and (2) a hy-
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Fig. 1. Effect of desflurane on whole-cell sodium currents. (@)
Currents elicited by voltage steps from a holding potential of
—120 mV to test potentials varying from —60 to +100 mV. In-
terpulse duration was 1.5 s. Filter frequency 5 kHz. Traces are
before (left), during (upper right) superfusion with 2.6 mMm
desflurane, and after washout (lower right) with desflurane-
free extracellular solution from a cell expressing the rat brain
IIA sodium channel a subunits (cell B4522). A sustained out-
ward current at positive potentials was sometimes observed
after prolonged perfusion with high anesthetic concentrations
(lower right). Calibration bars are 300 pA and 0.9 ms. (B) Peak
current-voltage relationship for the current traces shown in
A (filled circles = control; triangles = superfusion with 2.6 mm
desflurane; open circles = washout).

perpolarizing (leftward) shift in steady-state inactiva-
tion, which leads to an additional, voltage-dependent
current reduction in the voltage range of channel in-
activation.
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The concentration-dependence of the shift in Vy, is
shown for the six anesthetics studied in figure 4. For
sevoflurane, the effect appears to saturate at higher
concentrations (fig. 4B). In most experiments, how-
ever, currents at high anesthetic doses became too small
for accurate determination of Vi, and it was not possible
to determine whether the effect saturated for all an-
esthetics.

In most experiments, no complete reversal of the shift
could be achieved during washout, probably because
of the limited time of washout (5-10 min) or irre-
versible anesthetic effects. A hyperpolarizing shift of
V,, in the absence of drugs has been reported for other
whole-cell preparations.'®'” However, in our cells, af-
ter the first 5 min of the experiment, no shift of steady-
state inactivation with time (up to 30 min, data not
shown) was found in control experiments without an-
esthetic application.

Potential-Dependence of Anesthetic Potency
Leads to ICs, Values at Resting Membrane
Potentials Comparable to Clinical Anesthetic
Concentrations

The hyperpolarizing shift of channel inactivation in-
duced by volatile anesthetics leads to a voltage-depen-
dence of anesthetic potency. From channel inactivation
plots normalized to I, before addition of the anes-
thetic (fig. 3B), concentration-response curves at each
potential can be calculated. Plotting the ICs, values
yielded by those calculations versus the prepulse po-
tential (fig. 5) demonstrates an increase in anesthetic
potency in the voltage region of channel inactivation.
The data in figure 5 imply that the voltage dependence
is similar for all anesthetics studied.

1Cs, values at —120 mV, at which no channels are
inactivated, and at —60 mV, near the resting potential
and firing threshold of neuronal cells, are compared in
table 1 with concentrations yielding anesthesia. At
—120 mV, ICs, values for sodium channel suppression
are much larger than clinical anesthetic potencies,
whereas at —60 mV, the values are similar.

Both at —60 and at —120 mV, the ICs, values correlate
well with octanol/water partition coefficients on log-
arithmic scales (fig. 6); slopes for the linear regression
fits are —1.05 (r> = 0.918) at —60 mV and —1.00 (r’
= 0.933) at —120 mV.

Use-dependent Block by Volatile Anesthetics
Under physiologic conditions, stimulation of a cell
rarely occurs as a single signal but rather as trains of
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frequent stimuli. Pharmacologic block of these fre-
quent stimuli can be quantitatively different from sta-
tionary block if channel recovery from inactivation is
slowed by a drug that interacts with the inactive state
of the channel. As indicated in figure 7 for halothane,
volatile anesthetics cause such a slowing of channel
recovery (i.e., returning to the resting channel confor-
mation) after a depolarization, consistent with fast as-
sociation and dissociation rates of anesthetic binding
to the inactive state of the channel. This effect was the
same for all anesthetics studied at comparable concen-
trations (data not shown). Channel recovery without
anesthetics and at low anesthetic concentrations could
be fitted well with single exponential functions,
whereas at higher concentrations, multiple exponen-
tials were necessary to fit the data.

Prolonged channel recovery after a depolarization,
such as shown in figure 7, leads to use-dependent block
if the intervals between depolarizing pulses become
too short to allow for complete recovery to the resting
state of the channel from the inactive state. We assessed
use-dependent block with trains of 20 depolarizations
from —85 to 0 mV applied at 5 Hz. All examined an-
esthetics caused use-dependent block; figure 8B shows
desflurane as an example: Increasing anesthetic con-
centrations caused more pronounced use-dependent
current reduction and a decrease in the time constant
of this use-dependent block.

To further investigate the mechanism underlying use-
dependent block, we studied its dependence on the
parameters of the pulse protocol (fig. 9). Higher pulse
frequency (fig. 9A), longer pulse duration (fig. 9B),
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more depolarized holding potential, and more depo-
larized pulse potential all lead to more pronounced
use-dependent block. These manipulations increase the
fraction of time sodium channels spend in the inacti-
vated state, and the more pronounced block is therefore
consistent with a preferential interaction of volatile
anesthetics with inactivated sodium channels.

Discussion

Mechanisms of Anesthetic Suppression of Sodium

Channel Currents

The results presented here indicate that volatile an-
esthetics can significantly suppress sodium currents
through voltage-gated sodium channels at clinically
relevant concentrations. There are at least two distinct
mechanisms by which these anesthetics suppress CNS
sodium channel currents: (1) a potential-independent
suppression of resting or open sodium channels and
(2) a hyperpolarizing shift in the voltage-dependence
of sodium channel inactivation. This latter modification
of sodium channel function causes channels to inac-
tivate at more hyperpolarized potentials, resulting in
a voltage-dependent anesthetic suppression of sodium
channel currents. As a consequence of these combined
interactions, 1Cs, values for sodium channel suppres-
sion are much lower at potentials close to neuronal
resting membrane potentials (—60 mV?") than at the
more hyperpolarized potentials used to determine peak
current reduction. At the depolarized potentials, cur-
rent suppression occurs at anesthetic concentrations
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Table 1. Comparison of MAC and ICs,

values for Sodium Current Suppression Measured with Different Protocols

ICso at —120 mV (mm) I1Cso at —60 mV (mm)

Anesthetic Log pc(oct/water) MAC (vol %) MAC Aqueous (mm) ICs0 lpea (MM)

Ethanol -0.32 — 190 (tadpole) 635 690 292
Diethylether 0.89 1.9 9.3 65.2 63.7 19.9
Desflurane 1.46 6.0 2.7 3.98 4.97 1.79
Sevoflurane 1.67 2.0 1.4 3.74 3.48 0.56
Enflurane 219 1.68 0.58 0.68 0.75 0.34
Isoflurane 2.46 1.15 0.28 0.85 1.45 0.25
Halothane 2.70 0.77 0.22 0.75 1.13 0.46

similar to those yielding anesthesia (fig. 6 and ta-
ble 1).

Several factors need to be considered when inter-
preting the anesthetic concentrations used in the pres-
ent experiments. These experiments were conducted
at room temperature, allowing a direct comparison with
previous pharmacologic examinations of these chan-
nels,'? as well as with other anesthetic studies of so-
dium channels that generally have been carried out at
room or lower temperatures.'*~>%'® Although we re-
ported aqueous anesthetic concentrations, which are
relatively temperature-insensitive,'* sodium channel
properties may shift with temperature. For example, it
has been shown in peripheral and/or nonmammalian
sodium channel preparations that sodium channel ki-
netics change with higher temperatures and that steady-

-10 mV
)=
-150mV

p————————— |

prepulse 1.0

normalized current

Octanol/water partition coefficients (pc) for the volatile anesthetics were calculated as pc(octanol/water) = pc(octanol/gas)/pc(water/gas)‘5-3"; value for ethanol®®
and data for human MAC (both vol % and aqueous.® For ethanol the value for loss of the righting reflex in tadpoles was used for comparison.® In humans, ethanol
blood concentrations of about 50 mm induce sleep.'” To our knowledge, no human data are available for the loss of response to a surgical stimulus, comparable
to an MAC value. MAC values were converted to aqueous concentrations using the water/gas partition coefficients (MAC,qq, = MACg,s pc(water/gas)*10/22.4).'®

state inactivation is shifted toward more depolarized
potentials.?'?* However, these experiments were con-
ducted with animals whose body temperature is lower
than mammals, and thus, it is difficult to predict how
such changes might affect the anesthetic interactions
reported here.

The voltage-independent anesthetic suppression of
sodium channels at hyperpolarized potentials is similar
to that found in previous studies examining peak cur-
rent reduction® ' and occurs at similar anesthetic con-
centrations. The volatile anesthetic modification of so-
dium channels found in the current experiments is
consistent with a state-dependent interaction best de-
scribed by the modulated receptor hypothesis of drug
interaction.?*?* In this model, different channel states
(at least three for sodium channels: resting, open, and

Fig. 3. Effect of volatile anesthetics (here
diethylether as an example, cell R4343)
on sodium channel steady-state inacti-
vation. (4) Sodium currents were elicited
by test pulses to —10 mV after 500 ms-
prepulses to potentials varying from
—150 to —10 mV. (B) Normalized peak
currents are plotted as a function of pre-
v 100 mM pulse potential (circles = control; trian-
& 200 mM gles = —100 mm ether, diamonds = —200

ether mM ether; squares = washout). Lines are
fits to two-level Boltzmann distributions.
Currents were normalized to the maxi-
mum current before addition of the an-
esthetic, obtained from the Boltzmann-
fits. The midpoint of channel inactiva-
tion, obtained from the Boltzmann-fits,
shifted from —58.8 mV (control—circles)
to —72.0 and —89.1 mV during perfusion
with 100 mm (triangles) and 200 mM

e control

washout

-100
1ms B
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prepulse potential (mV)

(diamonds) diethylether, respectively.
After washout (squares), it returned to
a value of —55.0 mV.
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Fig. 4. Concentration-dependent shift of 310 ° -10 -10}s ¢
the midpoint of steady-state channel in- ~ =20 & —20t ¢t _20 3
activation (obtained from Boltzmann fits 5 -30 ¢ 136 L ¢ L if
as shown in fig. 4) by volatile anesthetics. % —40 0 —40 ! l %0 I
Concentration scales are same as in figure £ _5o s [aap
2. (A) Halothane (averages of 5-6 cells), " _, 4 -50
(B) sevoflurane (averages of 3-9 cells), (C) -60 —60
isoflurane (averages of 3-10 cells, data- A
point at 8.5 mm single cell), (D) desflurane B c
(averages of 6-9 cells, datapoint at 10.6 0o 2 [de:”w:“] 4 10 12 o [sdgmylféger] Ts% 200 0.0 0.5 EGSH:H;";]O o5 3.0 3.5
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inactivated) are assumed to have different affinities for
drug binding. The hyperpolarizing shift of steady-state
inactivation (fig. 4), the use-dependent block of the
channels (figs. 8 and 9), and the slowing of the rate of
recovery from inactivation (fig. 7) can be explained
qualitatively by assuming that anesthetics bind more
strongly to the inactivated state of the channel rather

1.0*5%

A
A
0.8 | goA
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£0.4t Q
A
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0.2 4 0 o
. " 8.
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prepulse potential (mV)

Fig. 5. IC,, of volatile anesthetics plotted as a function of pre-
pulse potential. Values are normalized to the ICso at —140 mV
for comparison of the voltage-dependent changes between
anesthetics. Averaged data of 3-6 cells for halothane (open
circles), 3-11 cells for sevoflurane (solid diamonds), 4-7 cells
for isoflurane (open downward triangles), 3-8 cells for des-
flurane (filled circles), 3-9 cells for diethylether (open
Squares), and 3-5 cells for enflurane (filled upward triangles)
were used.
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than to its resting state.*> The observed use-dependent
block could be due to binding to the open state of the
channel, but the increasing inhibition found when in-
creasing the time the channel spends in the inactivated
state (longer depolarizations, fig. 9B) indicates pref-
erential binding to the inactivated state. The modulated
receptor model has been proposed to explain the in-
teractions of other drugs, such as local anesthetics, an-
tiarrhythmics, and anticonvulsants, with the sodium
channel,?® and these agents may share common or
overlapping binding sites.

Fther

Desflurane
. ) v
Sevoflurane

Enflurane
[soflurane”
Halothane
1 2 3

log pc(oct/water)

log (IC50 / MACaqu.)

=11 0

Fig. 6. Linear correlation of the logarithm of the ICs, values
for sodium current block at two different prepulse potentials
(—120 mV = solid triangles; —60 mV = open triangles) and the
logarithm of the octanol/water partition coefficients. For
comparison, human MAC values converted to aqueous con-
centrations are plotted on the same scale (filled circles). Lines
are linear regression fits to the data.
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0.6 t 5
3 11
_J ! L -100 mV
0.2 1-20ms

relative current

0 5 10 15 20
recovery interval (ms)

Fig. 7. Slowing of channel recovery from inactivation by vol-
atile anesthetics. Shown here as an example is the effect of
halothane. The pulse protocol for recovery from inactivation
included a reference pulse to —10 mV, a recovery interval of
variable duration at —100 mV, and a test pulse to —10 mV (in-
sef). Relative currents (Neest/Lreterence) are plotted versus the
length of the recovery interval. In this example, the time con-
stant of recovery is increased from a control value of 1.26 ms
(open circles) to 3.09 ms by 0.5 mm halothane (filled circles)
and to 4.55 ms by 1.1 mm halothane (open triangles).

0.0

A less specific type of interaction also could take
place. For example, a change in the physicochemical
properties of the cellular lipid membrane could result
in an alteration of the free energy differences between
the inactivated state of the channel and either its resting
or its open state. In this case, the steady-state equilib-
rium between the channel conformations would be al-
tered. With either explanation, anesthetic potency
would depend on the available conformational states
of the channel at different membrane potentials and
thereby result in the potential-dependent anesthetic
potencies reported here.

Comparison of Anestbetic Suppression of Sodium

Channels from Different Tissues

In this study, we examined the effects of anesthetics
on rat brain Ila sodium channel « subunits expressed
in stably transfected Chinese hamster ovary cells. The
type Ila sodium channel is the most prominent sodium
channel type in adult brain, although two other sub-
types of sodium channel have been found.'? The
expression of this a-subunit in mammalian cell lines,
without coexpression of § subunits, is sufficient to ob-
tain the normal physiologic'' and pharmacologic'? be-
havior of sodium channels found in sétu. Further, this
rat brain sodium channel has greater than 97% struc-
tural identity with the parallel human brain sodium
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pulse 20
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*
—-1000 W
<
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Fig. 8. Use-dependent block of sodium currents by volatile an-
esthetics (desflurane shown as an example). Trains of 20 de-
polarizations from —85 to 0 mV at 5 Hz were applied. On per-
fusion with desflurane, the current is increasingly suppressed
during the pulse train. (4) Voltage protocol and current traces
elicited by the first and last pulse before and during super-
fusion with 2.6 mm desflurane. (B) Peak sodium currents plot-
ted versus pulse number, before (circles) and during super-
fusion with 1.3 mm (diamonds), 2.6 mm (squares), and 5.3 mM
(triangles) desflurane. Same cell as in (A4). Lines are least-
squares fits to a single exponential function: I, = L, + {(Ii —
I, )*exp(—[t —1]/7)}, yielding the parameters I,, the current of
the first pulse; I, the limiting current at the n-th pulse; and
7, the time constant. Time constants for use-dependent block
at 1.3, 2.6, and 5.3 mMm desflurane are 6.0, 3.2 and 2.7 ms, re-
spectively. The 1, /1,-ratios for the respective concentrations
are 0.84, 0.72, and 0.45.
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Fig. 9. Determinants of use-dependent block by volatile an-
esthetics. Currents are normalized to the first pulse. Lines are
least-square fits of a single exponential to the data, yielding
alimiting current and a time constant as parameters. Data are
from separate exemplary cells for each protocol. (4) Influence
of pulse frequency. Plotted are currents elicited by trains of
20 pulses to 0 mV from a holding potential of —85 mV. At 2
Hz (circles), 1.2 mm halothane reduces the limiting current to
0.50 with a time constant of 0.66 ms. At 5 Hz (squares), 1.2
mu halothane leads to a limiting current of 0.09 and a time
constant of 0.34 ms. (B) Influence of pulse duration. Pulses
from a holding potential of —85 mV to 0 mV were used, the
duration of the depolarizing pulses was varied from 4 ms (cir-
cles) to 20 ms (downward triangles), 40 ms (squares), and 100
ms (upward triangles). The recovery interval was kept con-
stant at 500 ms, corresponding to a frequency of approxi-
mately 2 Hz. The cell was superfused with 1.2 mm sevoflurane.

channel,'? indicating that the results obtained should
be pertinent to the human CNS channel and making it
aviable experimental model for examining ancsthetif
interactions with sodium channels. A recent report:

indicated that the 81 subunit, when coexpressed with
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the « subunit in these cells, did not significantly shift
channel inactivation.

The anesthetic effects on the expressed CNS sodium
channels found in these experiments are quantitatively
different from those previously reported. This parallels
the finding that volatile anesthetics have larger effects
on conduction in mammalian brain axons than periph-
eral nonmammalian preparations.* The concentrations
needed to suppress peak inward sodium current when
inactivation is removed by a hyperpolarized holding
potential are somewhat lower than those reported for
suppression of peak sodium currents in the squid giant
axon.’ However, in common with previous findings in
squid axon,' suppression of rat brain sodium channels
by volatile anesthetics follows the Meyer-Overton cor-
relation with anesthetic solubility in lipophilic sol-
vents.

The anesthetics studied also had a much larger effect
on the voltage-dependence of inactivation of brain so-
dium channels compared to that reported for the squid
giant axon® or the toad sciatic nerve.”® In this latter
preparation, diethylether exhibited no use-dependent
block,?® whereas halothane did so only at high stimulus
frequencies.?’ These differences may reflect species
variability in anesthetic modification of channel inac-
tivation, as has been reported for n-alkanols."®

Clinical Significance of Anesthbetic Block of

Sodium Channels

In determining the contributions of potential molec-
ular targets to general anesthesia, it is generally assumed
that “‘significant” targets must have a k, , of action close
the clinical concentrations of anesthetics.'* The voltage
dependence of anesthetic effects on sodium channels
complicates the comparison of clinical anesthetic po-
tency with sodium current suppression. At potentials
close to the threshold potential of action potential firing
(around —55 mV at the axon hillock®?), about 50% of
the sodium current is suppressed by clinical concen-
trations of volatile anesthetics, and therefore by the
criterion given above, sodium channels should be re-
considered as a possible anesthetic target.

However, the relevance of this or any other molecular
anesthetic action to anesthesia also needs to be related
to changes occurring at the cellular level.'* The as-
sumption of a correlation between a 50% effect on a
given target and its relevance to anesthesia may not be
correct.

Further complicating the interpretation of molec-
ular anesthetic actions on sodium channels, these
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proteins have several cellular physiologic functions

that may be differentially affected by a common mo-

lecular anesthetic modification. Despite the signif-

icant anesthetic suppression of sodium channel

current found in the present study, it has been es-

tablished at the cellular level that anesthetics have

only minor effects on axonal conduction at these

same concentrations.?”?*' This may be due to the

“safety factor,”” defined as the ratio of current sup-

plied by incoming action potentials to that required

to sustain propagation, which is normally quite

high.3? It has been estimated that more than 70% of
sodium channels must be blocked to prevent action

potential firing.** Further, a block of sodium chan-

nels in nerve and muscles would be fatal, as found

in cases of puffer fish poisoning.** Nonetheless, the
use-dependent block of sodium channels at higher
stimulation frequencies leads to anesthetic impair-
ment of axonal conduction.?” At lower stimulus fre-
quencies, use-dependent block would increase the
threshold for action potential firing, with concom-
itant changes in neuronal firing patterns and fre-
quencies.

Additionally, suppression of sodium currents
should lead to an elevation in neuronal firing
threshold,?® and consistent with our results, volatile
anesthetics have been shown to elevate the threshold
potential of neurons at clinical concentrations.*337
Changes in threshold are probably most effective in
disrupting neuronal function in the region of the
axon hillock, although changes in the excitability
of the axon have been implicated in general anes-
thesia.?

Finally, information in the CNS is encoded not as the
amplitude or duration of action potentials but as their
frequency,?® and thus, increasing the threshold poten-
tials needed to fire an action potential, added to use-
dependent anesthetic block, could disrupt the flow of
information in the CNS and thereby contribute to the
clinical state of anesthesia.

In summary, we have presented evidence that clinical
concentrations of volatile anesthetics significantly sup-
press currents through sodium channels at physiologic
membrane potentials. The relevance of these molecular
interactions to the clinical state of anesthesia needs to
be further examined at the cellular level.
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