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Antagonism of the Antinocifensive Action of
Halothane by Intrathecal Administration of GABA,

Receptor Antagonists

Peggy Mason, Ph.D.,* Casey A. Owens,t Donna L. Hammond, Ph.D.1

Background: The hind brain and the spinal cord, regions
that contain high concentrations of y-aminobutyric acid
(GABA) and GABA receptors, have been implicated as sites of
action of inhalational anesthetics. Previous studies have es-
tablished that general anesthetics potentiate the effects of v-
aminobutyric acid at the GABA, receptor. It was therefore
hypothesized that the suppression of nocifensive movements
during anesthesia is due to an enhancement of GABA, recep-
tor-mediated transmission within the spinal cord.

Methods: Rats in which an intrathecal catheter had been im-
planted 1 week earlier were anesthetized with halothane. Core
temperature was maintained at a steady level. After MAC de-
termination, the concentration of halothane was adjusted to
that at which the rats last moved in response to tail clamping.
Saline, a GABA,, a GABAy, or a glycine receptor antagonist
was then injected intrathecally. The latency to move in re-
sponse to application of the tail clamp was redetermined 5
min later, after which the halothane concentration was in-
creased by 0.2%. Response latencies to application of the nox-
ious stimulus were measured at 7-min intervals during the
subsequent 35 min. To determine whether these antagonists
altered baseline response latencies by themselves, another
experiment was conducted in which the concentration of
halothane was not increased after intrathecal administration
of GABA, receptor antagonists.

Results: Intrathecal administration of the GABA, receptor
antagonists bicuculline (0.3 ug) or picrotoxin (0.3, 1.0 ug) an-
tagonized the suppression of nocifensive movement produced
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by the small increase in halothane concentration. In contrast,
the antinocifensive effect of the increase in halothane con-
centration was not attenuated by the GABA; receptor antag-
onist CGP 35348 or the glycine receptor antagonist strychnine.
By themselves, the GABA, receptor antagonists did not alter
response latency in rats anesthetized with sub-MAC concen-
trations of halothane.

Conclusions: Intrathecal administration of bicuculline or
picrotoxin, at doses that do not change the latency to pinch-
evoked movement when administered alone, antagonized the
suppression of noxious-evoked movement produced by halo-
thane concentrations equal to or greater than MAC. These re-
sults suggest that enhancement of GABA, receptor-mediated
transmission within the spinal cord contributes to halothane’s
ability to suppress nocifensive movements. (Key words: An-
esthetics, volatile: halothane. Receptors: GABA,. Spinal cord:
antinociception; pain.)

GENERAL anesthetics block the motor response to nox-
ious stimulation at concentrations greater than those
that suppress learning, consciousness, or thermoreg-
ulation and less than those that suppress autonomic
responsiveness.'™ This observation suggests that the
antinocifensive component is mediated independently
of the other components of general anesthesia. Recent
studies of the site(s) within the central nervous system
at which isoflurane or halothane act to suppress noci-
fensive movement suggest that this effect is indepen-
dent of an action on forebrain structures because the
antinocifensive potency of these inhalational anesthet-
ics is unchanged in decerebrate rats® or rats with focal
cryogenic lesions of the parietal cortex.® In addition,
more than twice as much isoflurane is required to sup-
press nocifensive movement in goats in which the fore-
brain is preferentially anesthetized.” The observation
that acute spinal transection does not alter the anti-
nocifensive potency of isoflurane suggests that inha-
lational anesthetics act at the level of the spinal cord
to suppress nocifensive movement.® This idea is sup-
ported by the recent finding that the isoflurane con-
centration required to suppress nocifensive movement
is lower when the goat brain stem and spinal cord to-
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gether, without the forebrain, are perfused than it is
with whole-body perfusion.” These studies suggest that
the spinal cord is at least as sensitive to isoflurane as is
the entire central nervous system.

Although these studies provide preliminary insight
into the sites at which inhalational anesthetics act to
suppress nocifensive movement, they offer little infor-
mation about the pharmacologic mechanism(s) of ac-
tion. A common property of a wide spectrum of general
anesthetics, including inhalational anesthetics, barbi-
turates, alcohols, and 2,6-diisopropyl phenol (propo-
fol) is their ability to enhance the actions of y-ami-
nobutyric acid (GABA) at the GABA, receptor. 19 GABA
plays an important role in the modulation of nocicep-
tive transmission in the spinal cord. The spinal cord
contains high concentrations of GABA'"'? and high
densities of both GABA, and GABA;, receptors.'>'* In-
trathecal administration of isoguvacine, a GABA, re-
ceptor agonist, or L-baclofen, a GABAg receptor agonist,
produces antinociception.'>”'® In contrast, GABA, re-
ceptor antagonists, and to some extent GABAg receptor
antagonists, produce hyperalgesia and allodynia when
intrathecally administered.'>'?7*? The current study
therefore examined whether the suppression of noci-
fensive movement by an inhalational general anesthetic
is mediated by an action at GABA, or GABAg receptors
in the spinal cord.

Methods and Materials

Male Sprague-Dawley rats weighing 250-375 g were
instrumented with intrathecal catheters that terminated
at the thoracolumbar junction of the spinal cord as de-
scribed by Yaksh and Rudy.?’ Briefly, rats were anes-
thetized with 2—3% halothane and, under aseptic con-
ditions, one end of a PE-10 catheter was introduced
through the atlantooccipital membrane and threaded
8.6 cm caudally in the spinal cord subarachnoid space.
The other end was externalized at the dorsum of the
head. Rats were allowed to recover for 1 week after
surgery, during which neurologic function and weight
were monitored daily. Rats exhibiting motor dysfunc-
tion as a consequence of catheter implantation were
excluded from the study.

Experimental Design

The acute experiments were performed 1 week af-
ter intrathecal catheter implantation. Rats were ini-
tially anesthetized with halothane in an airtight con-
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tainer. After induction, 1.1-1 .5% halothane was
administered by a nose cone. The halothane concen-
tration was monitored throughout the experiment by
a Datex Capnomac Anesthetic Monitor (Helsinki,
Finland) and measured as the average of concentra-
tions sampled at 3 Hz over a 1-min period.

Core body temperature was monitored via a rectal
probe and maintained at 37.0-39.0°C for the dura-
tion of the experiment using a warm watcr blanket,
a plastic cover, and a heat lamp. Although core body
temperature varied among rats, each individual rat
was maintained within 0.5°C of its core body tem-
perature determined 40-70 min after anesthetic in-
duction. After a 40-min equilibration period at 1.0-
1.4% halothane, the rat was tested for a motor re-
sponse to the application ofa 1-cm serrated alligator
clip to the proximal third of the tail. Application of
the clip evoked a vigorous escape response in awake
rats and was judged to be very painful when applied
to a fold of the investigator’s skin. The clip was os-
cillated for 1 min or until the rat responded by pur-
poseful movement of one or more of its limbs. In
addition to recording the occurrence of nocifensive
movement, the latency to movement was measured
to the nearest second. Rats in which application of
the clip did not elicit nocifensive movement were
assigned the cutoff latency of 60 s. If application of
the clip evoked a movement, then the halothane con-
centration was increased by 0.2%. If no response oc-
curred, the concentration of halothane was decreased
by 0.2%. Forty minutes were allowed for equilibra-
tion at each new concentration of halothane, after
which the response to application of the clip was
redetermined. During MAC determination, the clip
was not applied at intervals less than 40 min. The
above process was repeated until two independent
move-no move crossovers were obtained. The average
of the midpoints obtained in each crossover was de-
fined as the minimum anesthetic concentration
(MAC) .*

After determination of MAC, the halothane concen-
tration was then either maintained at or adjusted to and
then equilibrated at the level at which the rat had most
recently responded to stimulation. The rat was then
tested to confirm its responsiveness to application of
the clip at this concentration of halothane. Within 15
min of the confirmatory response, either saline, 0.3 ©8
bicuculline methiodide, 0.3 ug or 1.0 ug picrotoxin,
1.0 ug strychnine hemisulfate, or 30 ug CGP 35348
was injected intrathecally. Five minutes later, the rat’s
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response to application of the alligator clip was rede-
termined. The concentration of halothane was then in-
creased by 0.2% and responsiveness was redetermined
at 7-min intervals for the subsequent 35-min period.
In 14 rats, the concentration of halothane was not in-
creased, but remained at the sub-MAC concentration,
and responsiveness was redetermined as described ear-
lier to evaluate the effects of saline or antagonist on
baseline responsiveness. Each rat received only one
dose of a drug and the identity of the drug was unknown
to the person testing the rat. At the conclusion of the
experiment, rats were killed with an overdose of chloral
hydrate or pentobarbital, exsanguinated, and the lo-
cation and patency of the catheter was verified by visual
inspection and injection of india ink.

Although the initial determination of MAC was made
by conventional methods, pharmacodynamic factors
precluded a conventional redetermination of MAC after
intrathecal drug administration. MAC determination
requires that two independent move-no move Cross-
overs be obtained, a process that can take 3—4 h in the
case of halothane with its 40-min equilibration time.
This requirement was at odds with the comparatively
short duration of action of intrathecally administered
drugs. In the case of the agents used in this study, onset
to effect occurs within 5 min with peak effect observed
by 15 min after administration.'>' The effect of these
drugs is substantially diminished 40 min after admin-
istration. Although continuous infusion of the antago-
nists would enable a conventional determination of
MAC, this approach was not attempted. It was consid-
ered unlikely that the doses (both molar amount and
volume) of the antagonists in the spinal cord subarach-
noid space could be titrated to levels that (1) were
consistently just sufficient for receptor antagonism for
a period of 3—4 h, (2) did not eventually redistribute
beyond the lumbar segments of the spinal cord, and
(3) did not eventually accumulate to concentrations
that produce allodynia or seizures, or alter baseline
response latency. Thus, it was necessary for the pur-
poses of this study to forgo a determination of the
change in MAC and rather examine the drug effects on
the decrease in motor responses produced by a small
increase in halothane concentration from just below
MAC to just above MAC.

Drugs

All drugs were obtained from Sigma Chemical (St.
Louis, MO), with the exception of CGP 35348, which
was obtained from Ciba-Geigy (Basel, Switzerland). The
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solutions were freshly prepared, passed through a 0.2-
pm filter and their pH was adjusted to a range of 6.9-
7.2. Drugs were administered in a volume of 10 ul
followed by 10 ul saline to clear the catheter. The doses
of antagonists were based on their ability to antagonize
the effects of their respective receptor agonists in the
spinal cord of the rat without altering responsiveness
to noxious or non-noxious stimuli. For example, 0.3
pg bicuculline produces a 3.4-fold rightward shift in
the dose-response curve of intrathecally administered
isoguvacine but does not alter response latency to nox-
ious thermal stimuli or produce touch-evoked allodynia
in awake rats'> (unpublished observations, DL Ham-
mond). Intrathecal administration of 30 ug CGP 35348
shifts the dose-response curve of intrathecally admin-
istered baclofen tenfold to the right but does not alter
response latency to noxious thermal stimuli or produce
touch-evoked allodynia?"** (unpublished observations,
DL Hammond). Analogous information was not avail-
able for either strychnine or picrotoxin. Therefore, the
doses of these antagonists were based on literature re-
ports, and confirmed in preliminary dose-ranging ex-
periments, of doses that were submaximal for the pro-
duction of touch-evoked allodynia and overt “‘pain’’ or
motor behaviors such as scratching, vocalization, or
myoclonic twitches after intrathecal administration in
the rat. In the case of picrotoxin, this dose correspon-
ded to 1.0 pg®* (unpublished observations, DL Ham-
mond). In the case of strychnine, intrathecal admin-
istration of 2.8 ug was reported not to produce signif-
icant biting, scratching, twitching, or vocalization in
the rat.?* However, in our preliminary studies, 1.5 or
3.0 pg strychnine produced myoclonic seizures, biting
of the flanks, and distress vocalization; the intensity
was dose-dependent in nature. The dose of 1.0 ug was
thus chosen because it was just subthreshold for these
effects and for touch-evoked allodynia (unpublished
observations, DL Hammond).

Statistical Analysis

The effects of the GABA or glycine receptor antag-
onists on the latency to response were compared to
that of saline by two-way analysis of variance for re-
peated measures. Post hoc comparisons of individual
mean values were made by Newman-Keuls test. Fish-
er’s exact test was used to compare the percentage
of rats in the saline- and drug-treated groups that
moved in response to application of the alligator clip.
A Pvalue of less than or equal to 0.05 was considered
significant.
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Results

Core Body Temperature and MAC

During early experiments, it became evident that core
temperature influenced the probability of movement
in response to application of the alligator clip. Exam-
ination of the relationship between core temperature
and response to application of the alligator clip during
MAC determination indicated that rats were more likely
to move at warmer temperatures than at colder tem-
peratures.?® As shown in figure 1, core temperature had
the greatest effect on the probability of nocifensive
movement at intermediate concentrations of halothane.
At 1.20-1.39% halothane, rats with temperatures of
37.0-37.5°C moved in only 23% of trials whereas rats
with a core temperature of 38.5-39.0°C moved in 75%
of trials. Because of this trend, core body temperature
was recorded at the time of each stimulus trial and was
maintained at a steady level throughout the experiment.
The mean temperature deviation over time within each
treatment group was less than 0.1°C. Two-way analysis
of variance for repeated measures showed no significant
difference in core body temperature among the differ-
ent treatment groups and no significant difference
within each treatment group over time. Under condi-
tions in which core body temperature was controlled
within a range of 37.0-39.0°C, the mean MAC of halo-
thane was 1.10 = 0.02 (n = 49) and did not differ
among drug treatment groups (P > 0.2). This value is
in good agreement with previous reports.®***’

Effect of GABA and Glycine Receptor Antagonists
on Responses at Sub-MAC Concentrations of
Halothane

Responsiveress to application of the alligator clip
was redetermined 5 min after the intrathecal admin-
istration of saline or antagonist and before the concen-
tration of halothane was increased, i.e., while the rats
were still at a sub-MAC concentration of anesthetic.
Within treatment group comparisons revealed that in-
trathecal administration of saline did not alter either
the latency to respond or the percentage of rats that
moved in response to the alligator clip as compared to
its baseline value (figs. 2A and 2B). Similarly, intrathe-
cal injection of 0.3 ug picrotoxin (figs. 2A and 2B) or
1.0 pg strychnine (figs. 3A and 3B) did not alter the
latency to response or the percentage of rats that moved
in response to application of the alligator clip as com-
pared to their respective baseline values. In rats that
received 30 pug CGP 35348, a modest increase (P <
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100 1~

Response (% that moved)

Fig. 1. Histogram of the relationship between core body tem-
perature, inspired halothane concentration, and the percent-
age of rats that responded to application of an alligator clip
to the proximal third of the tail. No rats with a core temper-
ature of greater than 38.0°C were tested at an anesthetic con-
centration of 0.80-0.99%.

0.01) in response latency, but no decrease in the per-
centage of rats that moved occurred (fig. 3A and 3B).
This increase could be attributed to one rat whose la-
tency increased to 55 s at this one time. However, in
rats receiving intrathecal injections of either 0.3 ug
bicuculline or 1.0 pg picrotoxin a significant decrease
in response latency occurred 5 min later as compared
to their respective baseline values (figs. 2A and 2B).
Importantly, between-group comparisons indicated
that none of the antagonist treatment groups differed
from the saline control group with respect to the la-
tency to movement or the percentage of rats that moved
at either the baseline timepoint or 5 min after intrathe-
cal injection.

Nonetheless, these results prompted an ancillary
study to further examine whether bicuculline or pic-
rotoxin decreased baseline response latency when ad-
ministered by themselves to a rat maintained at a sub-
MAC concentration of halothane and whether repetitive
application of the alligator clip induced sensitization
in saline-treated rats. For this experiment, either saline,
0.3 pg bicuculline, or 1.0 ug picrotoxin was admin-
istered intrathecally and responsiveness to application
of the alligator clip was redetermined for the subse-
quent 40 min in the absence of an increase in halothane
concentration, #.e., while the rats remained at a sub-
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Fig. 2. Effect of saline (O; n = 5), 0.3 ug bicuculline (®; n = 8),
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the antinocifensive effect of halothane in the rat. (4) F,ffect‘s
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cation of an alligator clip to the proximal third of th'e ta'll. (B)
Percentage of rats that moved in response to app]l'CHtl()l'l of
the clip. “B” indicates the baseline measure determtr.led 5-15
min before the intrathecal administration of drug at time zero
(arrowhead). The dashed vertical line indicates the time at
which the concentration of halothane was increased by 0.2?6.
Symbols represent the mean * SE. Error bars that .are.not vis-
ible were encompassed by the symbol. Asterisks indicate re-
sponse latencies or percentages that are significantly (.ilﬂeltf:nt
from those of saline-treated rats at the corresponding time
point (*P < 0.05; **P < 0.01).
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MAC concentration of halothane. Although within-
treatment group comparisons to baseline latency in-
dicated that latency to movement decreased 19-33 min
after intrathecal administration of picrotoxin (P <
0.05), latency to movement was similarly decreased
26-40 min after the intrathecal administration of saline
(P < 0.05). No significant change in latency to move-
ment occurred after intrathecal administration of pic-
rotoxin. Importantly, between-group comparisons in-
dicated that response latencies in picrotoxin- or bi-
cuculline-treated rats did not differ from those of saline-
treated rats at any time (fig. 4).

Effect of GABA and Glycine Receptor Antagonists

on the Antinocifensive Action of Halothane

After redetermination of responsiveness 5 min after
intrathecal drug administration, the concentration of
halothane was then increased by approximately 0.2%.
The mean increase in halothane concentration for all
animals was 0.22 + 0.01% and did not differ among
the treatment groups (P > 0.5). In saline-treated rats,
the latency to movement increased and the percentage
of rats responding to the alligator clip decreased at 12
min after the increase in halothane concentration (figs.
2A and 2B). These effects stabilized by 19 min at which
time none of the saline-treated rats moved in response
to oscillation of the alligator clip for 1 min. The 12-
and 19-min postinjection time points corresponded to
7 and 14 min, respectively, after the increase in halo-
thane concentration.

The antinocifensive effects of the small increase in
the concentration of halothane were attenuated in rats
pretreated with either bicuculline or picrotoxin (fig.
2). In rats pretreated with 0.3 ug of bicuculline, the
response latency determined at 12 and 19 min post-
injection (corresponding to 7 and 14 min after the in-
crease in halothane) was significantly less than in saline-
treated rats (fig. 2A). In rats pretreated with 0.3 ug
picrotoxin, the response latency determined after the
increase in halothane concentration was significantly
less than in saline-treated rats at 12 and 19 min (fig.
2A). Increasing the dose of picrotoxin to 1.0 ug resulted
in a more prolonged attenuation of the effects of halo-
thane. Response latency was significantly less than that
in saline-treated rats at 19, 26, and 33 min (fig. 2A).
By comparison, intrathecal pretreatment with either 1
ug strychnine, a glycine receptor antagonist, or 30 ug
CGP 35348, a GABAy receptor antagonist, did not at-
tenuate the antinocifensive effects of halothane (figs.
3A and 3B).
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Fig. 3. Effect of saline (O; n = 5), 30 ug CGP 35348 (#; 0 =0),
or 1.0 ug strychnine (O3 n = 5) on the antinocifensive effect
of halothane in the rat. (4) Effects of these drugs on latency
to movement in response to application of an alligator clip to
the proximal third of the tail. (B) Percentage of rats that
moved in response to application of the clip. “B” indicates
the baseline measure determined 5-15 min before the in-
trathecal administration of drug at time zero (arrowhead).
The dashed vertical line indicates the time at which the con-
centration of halothane was increased by 0.2%. Symbols rep-
resent the mean + SE. Error bars that are not visible were
encompassed by the symbol. Asterisks indicate response la-
tencies or percentages that are significantly different from

those of saline-treated rats at the corresponding time point
(P <0.05;*P<0.01).
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The antinocifensive effect of the GABA, receptor an-
tagonists also was evident from comparisons of the per-
centage of rats that moved at each time point (figs. 2B
and 3B). At 19 min postinjection, a significantly greater
percentage (P < 0.05) of rats treated with 0.3 ug pic-
rotoxin moved in response to application of the alli-
gator clip when compared to saline-treated rats (fig.
2B). Increasing the dose of picrotoxin to 1.0 ug in-
creased the duration of antagonism. Thus, between 19
and 33 min postinjection, 80-100% of rats treated with
1.0 pg picrotoxin moved in response to the alligator
clip, whereas none of the saline-treated rats moved in
response to this stimulus at these times (fig. 2B). The
effect of bicuculline on the percentage of rats that
moved in response to application of the alligator clip
was not statistically different from that of saline (P <
0.1). However, the inability to detect a significant effect
of bicuculline is likely attributable to the poor power
of the analysis (0.46) and therefore represents a type
II statistical error (failure to detect a difference that
exists). Neither strychnine nor CGP 35348 significantly
increased the percentage of rats that moved in response
to the alligator clip (fig. 3B).
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Fig. 4. Effect of saline (O; n = 5), 0.3 ug bicuculline (®; n = 5),
or 1.0 ug picrotoxin (W; n = 4) on the latency to movement in
response to application of an alligator clip to the proximal
third of the tail at sub-MAC concentrations of halothane. “B”
indicates the baseline measure determined 5-15 min before
the intrathecal administration of drug at time zero (arrow-
head). Symbols represent the mean + SE. Error bars that are
not visible were encompassed by the symbol.
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INTRATHECAL GABA, ANTAGONISTS AND HALOTHANE

Discussion

The current finding that intrathecally administered
GABA, receptor antagonists attenuate the antinocifen-
sive effects of halothane provides direct evidence for
a spinal site of action of inhalational anesthetics, as
well as insight into a pharmacologic basis for halo-
thane’s actions within the spinal cord.

Role of the Spinal Cord in the Antinocifensive

Effects of Halothane

Several studies now support the contention that the
spinal cord is an important site for the antinocifensive
effect of inhalational anesthetics. A variety of anesthetic
agents, including isoflurane, barbiturates, 2,6-diiso-
propyl phenol, and ether, are reported to depress
monosynaptic and polysynaptic reflex activity in the
isolated or intact spinal cord.*®*=*! Furthermore, acute
spinal transection does not alter the antinocifensive
potency of isoflurane in the rat.® The current finding
that intrathecally administered GABA, receptor antag-
onists attenuate the antinocifensive effect of halothane
provides additional, direct support for a spinal site of
action of inhalational anesthetics. This conclusion is
based on the premise that the actions of the receptor
antagonists used in this study were limited to the spinal
cord. Substantial evidence supports a spinal site of ac-
tion for intrathecally administered drugs during the 40-
min period after their administration. This evidence,
which includes analyses of the spinal and supraspinal
distribution of radiolabeled compounds after intrathe-
cal administration and studies of the dependence of
drug effect on the segmental level of administration,
has been reviewed at length.** For example, less than
0.5% of [*H|-naloxone or ['*CJ-urea, and less than 0.1%
of *H]-morphine is found at supraspinal levels after
intrathecal injection.?*3*3* It therefore is unlikely that
more than 1.5 ng of the 0.3 ug bicuculline or 5 ng of
the 1.0 pg picrotoxin administered in the current study
would be expected to reach supraspinal sites. These
amounts are insufficient to alter nociceptive respon-
siveness when administered directly to supraspinal
sites.*>=*7 Additionally, local application of GABA, re-
ceptor antagonists at several supraspinal sites produces
antinociception, rather than nociception.’>=*? Thus, in
the unlikely event that pharmacologically relevant
dmounts (40-100 ng) of bicuculline or picrotoxin
were to reach supraspinal sites, these drugs would l)@
expected to enhance, rather than attenuate the anti-
nocifensive effects of halothane.
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Although anesthetic actions within the spinal cord
appear to be sufficient to block nocifensive move-
ment,*® an additional action of inhalational anesthetics
at supraspinal structures cannot be excluded. For ex-
ample, activation of GABA, receptors in the periaque-
ductal gray or raphe magnus results in an enhanced
responsiveness to noxious stimuli,?*=*7*! presumably
by inhibiting the activity of neurons in these nuclei
that project to the spinal cord and inhibit nociceptive
transmission.*?~** As halothane and other inhalational
anesthetics potentiate the actions of GABA at the GABA,
receptor,'® it is likely that halothane can act supraspi-
nally at sites in the periaqueductal gray or raphe magnus
to inhibit the activity of these neurons and so enhance
spinal nociceptive transmission by decreasing tonic
descending inhibition. Indeed, nociceptive inhibitory
neurons in the raphe magnus are inhibited by supra-
MAC concentrations of isoflurane.*> By comparison, in
the spinal cord, enhancement of GABAergic transmis-
sion results in antinociception. Selective antagonism
of the actions of halothane at spinal GABA, receptors
may concomitantly permit the expression of or unmask
the pronociceptive actions of halothane at supraspinal
sites. Thus, the ability of intrathecally administered
GABA, receptor antagonists to attenuate the antinoci-
fensive effects of inhalational anesthetics may reflect
both a direct antagonism of the actions of halothane at
GABA, receptors in the spinal cord and an indirect un-
masking of a pronociceptive action of halothane at su-
praspinal GABA, receptors. Clarification of the contri-
bution of supraspinal sites of action must await com-
plimentary studies of the effects of supraspinally
administered GABA, and GABA; receptor ligands on the
antinocifensive potency of halothane.

GABA, Receptors Mediate the Antinocifensive

Effects of Halothane in the Spinal Cord

This study used two GABA, receptor antagonists of
different physicochemical structure and different
mechanisms of action to assess the contribution of GA-
BA, receptors to the antinocifensive effects of halo-
thane. Bicuculline is a competitive antagonist of GABA
at the GABA, receptor, whereas picrotoxin is a non-
competitive antagonist of the chloride channel asso-
ciated with the GABA, receptor.*® Both bicuculline and
picrotoxin effectively antagonized the antinocifensive
effect of a small increase in halothane concentration.
In contrast, antagonists for either the closely related
glycine receptor or the GABA; receptor were ineffec-
tive. These findings suggest that the antinocifensive ef-
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fects of threshold concentrations of inhalational anes-
thetics result from an enhancement of the actions of
GABA at GABA, receptors within the spinal cord.
Intrathecal administration of GABA, receptor antag-
onists similarly antagonized the suppression of noci-
ceptive reflexes by systemic barbiturates.*” However,
the large doses of bicuculline (25 pg) or picrotoxin
(12 ug) used in that study induce seizures when ad-
ministered alone.*” Thus, the antagonism of the anti-
nocifensive effects of the barbiturate may simply have
been due to gross alterations of excitability in the spinal
cord. This confounder was not an issue in the current
study because the doses of GABA, receptor antagonists
were carefully chosen to be just sufficient for antago-
nism of their receptor, yet too low to enhance sensi-
tivity to innocuous mechanical stimuli, augment base-
line nociceptive motor responses, or produce myo-
clonic twitches in awake rats. Although intrathecal
administration of GABA, receptor antagonists can pro-
duce allodynia and hyperalgesia, the minimum doses
that produce such effects are threefold- to tenfold
higher!®> (unpublished observations, DL Hammond)
than those used to antagonize halothane in the current
study. The allodynia, hyperalgesia, and spontanecous
myoclonic twitches that are commonly reported after
intrathecal administration of GABA, receptor antago-
nists in unanesthetized rats,'”*° occur after adminis-
tration of doses of 30-60 ug, 100- to 200-fold higher
than the doses used in the current study. Administration
of these high doses also causes an increase in the spon-
taneous activity of dorsal horn cells.*®

The lack of effect of the low doses of GABA, receptor
antagonists used in this study was further verified in
rats anesthetized with sub-MAC concentrations of halo-
thane, a condition in which the actions of GABA at the
GABA, receptor may be enhanced?? and so might be
more sensitive to antagonism by bicuculline or picro-
toxin. Although initial experiments indicated that the
latency to nocifensive movement in rats anesthetized
with sub-MAC concentrations of halothane was signif-
icantly decreased 5 min after intrathecal administration
of 0.3 ug bicuculline or 1.0 ug picrotoxin, this obser-
vation was not replicated in an ancillary study. In this
study, rats treated with 0.3 ug bicuculline or 1.0 ug
picrotoxin did not differ from saline-treated rats at any
time before or after drug administration. The most par-
simonious explanation for this finding is that there is
little or no potentiation of GABA, receptor-mediated
transmission in the lightly anesthetized condition and
that an increase in the tonic activation of GABA, recep-
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tor-mediated transmission occurs only at anesthetic
levels equal to or greater than MAC. Taken together,
these findings indicate that the antagonism of the an-
tinocifensive effects of halothane by intrathecal admin-
istration of low doses of bicuculline or picrotoxin can-
not be ascribed to a nonspecific excitation or a general
reduction in inhibition in the spinal cord, but rather
to selective antagonism of the GABA, receptor.

Possible Sites of Action Within the Spinal Cord

Although Barany®° suggested that general anesthetics
suppress central nervous system activity in proportion
to the number of synapses in the pathway, general an-
esthetics preferentially suppress monosynaptic re-
flexes.5! Thus, the effect of general anesthetics on so-
matomotor transmission is more likely due to the dif-
ferential vulnerability of specific synapses (i.e. the Ia
afferent to a-motoneuron synapse vs. the polymodal
nociceptor to dorsal horn cell synapse) to modulation
by general anesthetics than to the cumulative number
of synapses used.’'>* The current results suggest that
synapses with GABA, receptors, located either on the
presynaptic terminal or on the postsynaptic membrane,
may be selectively targeted for enhancement by halo-
thane at concentrations near the threshold for blocking
nocifensive movements. The depression of somato-
motor activity by general anesthetics in the spinal cord
may be mediated by inhibition of excitatory neuro-
transmitter release via GABA, receptors situated pre-
synaptically on the terminals of Ia afferents,> > low
threshold primary afferents,’” and myelinated nocicep-
tors.>®>? In addition, GABA, receptors located postsyn-
aptically may mediate inhibition of dorsal horn
cells, ¢! Ia interneurons,’?> and motoneurons.®*™®’
Thus, activation or potentiation of GABA, synaptic
transmission, at numerous sites within the spinal cord,
is likely to contribute to the suppression of somato-
motor transmission by inhalational general anesthetics.

In conclusion, the current results provide direct ev-
idence that the spinal cord is an important site of action
for the antinocifensive action of inhalational anesthet-
ics. These results further indicate that enhancement of
the action of GABA at spinal GABA, receptors is on¢
mechanism by which halothane exerts its antinocifen-
sive actions.
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