an LH, Millar RA: Central sym. opane. Anesthesiology 1969 ; ympathetic excitation caused ; 32:202-9 ympathetic excitation caused 2:210-7
lionic sympathetic discharge s. Br J Anaesth 1966; 38:92-

Saeki Y, Shibamoto T, Hayashi patial and temporal differing ig hemorrhage. Am J Physiol

Anesthesiology
1996; 84:1205-14
© 1996 American Society of Anesthesiologists, Inc.
Lippincott-Raven Publishers
Antagonism of the Antinocifensive Action of Halothane by Intrathecal Administration of GABA $_{A}$ Receptor Antagonists
Peggy Mason, Ph.D., ${ }^{*}$ Casey A. Owens, \dagger Donna L. Hammond, Ph.D. \ddagger

Background: The hind brain and the spinal cord, regions that contain high concentrations of γ-aminobutyric acid (GABA) and GABA receptors, have been implicated as sites of action of inhalational anesthetics. Previous studies have established that general anesthetics potentiate the effects of γ aminobutyric acid at the $G A B A_{A}$ receptor. It was therefore hypothesized that the suppression of nocifensive movements during anesthesia is due to an enhancement of $G_{A B A}^{A}$ recep-tor-mediated transmission within the spinal cord.

Methods: Rats in which an intrathecal catheter had been implanted 1 week earlier were anesthetized with halothane. Core temperature was maintained at a steady level. After MAC determination, the concentration of halothane was adjusted to that at which the rats last moved in response to tail clamping. Saline, a GABA A, a $G A B A_{B}$, or a glycine receptor antagonist was then injected intrathecally. The latency to move in response to application of the tail clamp was redetermined 5 min later, after which the halothane concentration was increased by 0.2%. Response latencies to application of the noxious stimulus were measured at $7-\mathrm{min}$ intervals during the subsequent 35 min . To determine whether these antagonists altered baseline response latencies by themselves, another experiment was conducted in which the concentration of halothane was not increased after intrathecal administration of $\mathrm{GABA}_{\mathrm{A}}$ receptor antagonists.

Results: Intrathecal administration of the $G A B A_{A}$ receptor antagonists bicuculline $(0.3 \mu \mathrm{~g})$ or picrotoxin $(0.3,1.0 \mu \mathrm{~g})$ antagonized the suppression of nocifensive movement produced

- Assistant Professor, Department of Pharmacological and Physiological Sciences and the Committee on Neurobiology, University of Chicago.
\dagger Student, Macalester College, St. Paul, Minnesota.
\ddagger Associate Professor, Department of Anesthesia and Critical Care, and the Committee on Neurobiology, University of Chicago.

Received from the University of Chicago, Chicago, Illinois. Submitted for publication March 16, 1995. Accepted for publication January 22, 1996. Supported in part by the Louis Block Foundation, the Brain Research Foundation, PHS RO1 DA07861 (Dr. Mason), and DE1 1423 (Dr. Hammond). Owens was supported by a student research fellowship from the Pew Consortium.

Address reprint requests to Dr. Mason: Department of Pharmacological and Physiological Sciences and the Committee on Neurobiology, University of Chicago, MC 0926, 947 East 58th Street, Chicago, Illinois 60637.
by the small increase in halothane concentration. In contrast, the antinocifensive effect of the increase in halothane concentration was not attenuated by the $G_{A B A} A_{B}$ receptor antagonist CGP 35348 or the glycine receptor antagonist strychnine. By themselves, the GABA $_{A}$ receptor antagonists did not alter response latency in rats anesthetized with sub-MAC concentrations of halothane.

Conclusions: Intrathecal administration of bicuculline or picrotoxin, at doses that do not change the latency to pinchevoked movement when administered alone, antagonized the suppression of noxious-evoked movement produced by halothane concentrations equal to or greater than MAC. These results suggest that enhancement of GABA $_{A}$ receptor-mediated transmission within the spinal cord contributes to halothane's ability to suppress nocifensive movements. (Key words: Anesthetics, volatile: halothane. Receptors: GABA $_{A}$. Spinal cord: antinociception; pain.)

GENERAL anesthetics block the motor response to noxious stimulation at concentrations greater than those that suppress learning, consciousness, or thermoregulation and less than those that suppress autonomic responsiveness. ${ }^{1-4}$ This observation suggests that the antinocifensive component is mediated independently of the other components of general anesthesia. Recent studies of the site(s) within the central nervous system at which isoflurane or halothane act to suppress nocifensive movement suggest that this effect is independent of an action on forebrain structures because the antinocifensive potency of these inhalational anesthetics is unchanged in decerebrate rats ${ }^{5}$ or rats with focal cryogenic lesions of the parietal cortex. ${ }^{6}$ In addition, more than twice as much isoflurane is required to suppress nocifensive movement in goats in which the forebrain is preferentially anesthetized. ${ }^{7}$ The observation that acute spinal transection does not alter the antinocifensive potency of isoflurane suggests that inhalational anesthetics act at the level of the spinal cord to suppress nocifensive movement. ${ }^{8}$ This idea is supported by the recent finding that the isoflurane concentration required to suppress nocifensive movement is lower when the goat brain stem and spinal cord to-
esponse to appl
termined．The c creased by 0.2% at $7 . \mathrm{min}$ interva In 14 rats，the creased，but rer and responsiven lier to eva商uate baseline rè̀ ${ }^{\circ}$ ppor dose of a dợg a to the persi⿱宀女心． experimenen hydrate o $\frac{\text { 耪 }}{\text { p }}$ pen cation and $\stackrel{\substack{\text { ®̈ }}}{p}$ pate inspectiol and Althoug敡 the by conve商tion preclude $\stackrel{\circ}{6} \mathrm{a}$ CO intrathec觡 dr requires oiohat overs be © B bai case of hẩlloth This requeqrem short dutâtior drugs．In ̨̆ेhe to effect © A ccu by 15 m 骨 aft drugs is ${ }^{\circ} \mathrm{i}$ ubs
 nists woinild MAC，the ${ }^{\text {en }}$ ap ered un ${ }^{\text {i }}$ kely volume En th noid späce consistex．ely a periodof 3 beyond the （3）did not that produc response lat poses of thi change in M the decrease increase in
MAC to just

Drugs

All drugs
Louis，MO），
was obtaine

INTRATHECAL GABA ANTAGONISTS AND HALOTHANE ANTAG

1-1.5\% halothane was The halothane concen hout the experiment br tic Monitor (Helsinki, e average of concentra: $1-\mathrm{min}$ period. monitored via a rectal $0-39.0^{\circ} \mathrm{C}$ for the dura a warm water blanket, np. Although core body ats, each individual rat C of its core body tem. min after anesthetic in. ibration period at $1.0-$ tested for a motor re $1-\mathrm{cm}$ serrated alligator the tail. Application of cape response in awake y painful when applied skin. The clip was os. e rat responded by purmore of its limbs. In urrence of nocifensive jvement was measured which application of ensive movement were 60 s . If application of hen the halothane con$.2 \%$. If no response 0 c alothane was decreased allowed for equilibraon of halothane, after cation of the clip was letermination, the clip less than 40 min . The until two independent e obtained. The average each crossover was desthetic concentration
the halothane concen. ned at or adjusted to and t which the rat had most ation. The rat was then eness to application of of halothane. Within 15 se, either saline, 0.3 Hg g or $1.0 \mu \mathrm{~g}$ picrotoxin, e minutes later, the rals
response to application of the alligator clip was redetermined. The concentration of halothane was then increased by 0.2% and responsiveness was redetermined at $7-\mathrm{min}$ intervals for the subsequent $35-\mathrm{min}$ period. In 14 rats, the concentration of halothane was not increased, but remained at the sub-MAC concentration, and responsiveness was redetermined as described earlier to evaluate the effects of saline or antagonist on baseline responsiveness. Each rat received only one dose of a drug and the identity of the drug was unknown to the person testing the rat. At the conclusion of the experiment, rats were killed with an overdose of chloral hydrate or pentobarbital, exsanguinated, and the location and patency of the catheter was verified by visual inspection and injection of india ink.
Although the initial determination of MAC was made by conventional methods, pharmacodynamic factors precluded a conventional redetermination of MAC after intrathecal drug administration. MAC determination requires that two independent move-no move crossovers be obtained, a process that can take $3-4 \mathrm{~h}$ in the case of halothane with its $40-\mathrm{min}$ equilibration time. This requirement was at odds with the comparatively short duration of action of intrathecally administered drugs. In the case of the agents used in this study, onset to effect occurs within 5 min with peak effect observed by 15 min after administration. ${ }^{15,21}$ The effect of these drugs is substantially diminished 40 min after administration. Although continuous infusion of the antagonists would enable a conventional determination of MAC, this approach was not attempted. It was considered unlikely that the doses (both molar amount and volume) of the antagonists in the spinal cord subarachnoid space could be titrated to levels that (1) were consistently just sufficient for receptor antagonism for a period of $3-4 \mathrm{~h}$, (2) did not eventually redistribute beyond the lumbar segments of the spinal cord, and (3) did not eventually accumulate to concentrations that produce allodynia or seizures, or alter baseline response latency. Thus, it was necessary for the purposes of this study to forgo a determination of the change in MAC and rather examine the drug effects on the decrease in motor responses produced by a small increase in halothane concentration from just below MAC to just above MAC.

Drugs

All drugs were obtained from Sigma Chemical (St. Louis, MO), with the exception of CGP 35348 , which was obtained from Ciba-Geigy (Basel, Switzerland). The
solutions were freshly prepared, passed through a 0.2 $\mu \mathrm{m}$ filter and their $p \mathrm{H}$ was adjusted to a range of 6.97.2. Drugs were administered in a volume of $10 \mu \mathrm{l}$ followed by $10 \mu \mathrm{l}$ saline to clear the catheter. The doses of antagonists were based on their ability to antagonize the effects of their respective receptor agonists in the spinal cord of the rat without altering responsiveness to noxious or non-noxious stimuli. For example, 0.3 $\mu \mathrm{g}$ bicuculline produces a 3.4 -fold rightward shift in the dose-response curve of intrathecally administered isoguvacine but does not alter response latency to noxious thermal stimuli or produce touch-evoked allodynia in awake rats ${ }^{15}$ (unpublished observations, DL Hammond). Intrathecal administration of $30 \mu \mathrm{~g}$ CGP 35348 shifts the dose-response curve of intrathecally administered baclofen tenfold to the right but does not alter response latency to noxious thermal stimuli or produce touch-evoked allodynia ${ }^{21,22}$ (unpublished observations, DL Hammond). Analogous information was not available for either strychnine or picrotoxin. Therefore, the doses of these antagonists were based on literature reports, and confirmed in preliminary dose-ranging experiments, of doses that were submaximal for the production of touch-evoked allodynia and overt "pain" or motor behaviors such as scratching, vocalization, or myoclonic twitches after intrathecal administration in the rat. In the case of picrotoxin, this dose corresponded to $1.0 \mu \mathrm{~g}^{24}$ (unpublished observations, DL Hammond). In the case of strychnine, intrathecal administration of $2.8 \mu \mathrm{~g}$ was reported not to produce significant biting, scratching, twitching, or vocalization in the rat. ${ }^{24}$ However, in our preliminary studies, 1.5 or $3.0 \mu \mathrm{~g}$ strychnine produced myoclonic seizures, biting of the flanks, and distress vocalization; the intensity was dose-dependent in nature. The dose of $1.0 \mu \mathrm{~g}$ was thus chosen because it was just subthreshold for these effects and for touch-evoked allodynia (unpublished observations, DL Hammond).

Statistical Analysis

The effects of the GABA or glycine receptor antagonists on the latency to response were compared to that of saline by two-way analysis of variance for repeated measures. Post hoc comparisons of individual mean values were made by Newman-Keuls test. Fisher's exact test was used to compare the percentage of rats in the saline- and drug-treated groups that moved in response to application of the alligator clip. A P value of less than or equal to 0.05 was considered significant.

Results

Core Body Temperature and MAC

During early experiments, it became evident that core temperature influenced the probability of movement in response to application of the alligator clip. Examination of the relationship between core temperature and response to application of the alligator clip during MAC determination indicated that rats were more likely to move at warmer temperatures than at colder temperatures. ${ }^{25}$ As shown in figure 1, core temperature had the greatest effect on the probability of nocifensive movement at intermediate concentrations of halothane At $1.20-1.39 \%$ halothane, rats with temperatures of $37.0-37.5^{\circ} \mathrm{C}$ moved in only 23% of trials whereas rats with a core temperature of $38.5-39.0^{\circ} \mathrm{C}$ moved in 75% of trials. Because of this trend, core body temperature was recorded at the time of each stimulus trial and was maintained at a steady level throughout the experiment. The mean temperature deviation over time within each treatment group was less than $0.1^{\circ} \mathrm{C}$. Two-way analysis of variance for repeated measures showed no significant difference in core body temperature among the different treatment groups and no significant difference within each treatment group over time. Under conditions in which core body temperature was controlled within a range of $37.0-39.0^{\circ} \mathrm{C}$, the mean MAC of halothane was $1.10 \pm 0.02(\mathrm{n}=49)$ and did not differ among drug treatment groups $(P>0.2)$. This value is in good agreement with previous reports. ${ }^{6,26,27}$

Effect of GABA and Glycine Receptor Antagonists on Responses at Sub-MAC Concentrations of
 Halothane

Responsiveress to application of the alligator clip was redetermined 5 min after the intrathecal administration of saline or antagonist and before the concentration of halothane was increased, i.e., while the rats were still at a sub-MAC concentration of anesthetic. Within treatment group comparisons revealed that intrathecal administration of saline did not alter either the latency to respond or the percentage of rats that moved in response to the alligator clip as compared to its baseline value (figs. 2A and 2B). Similarly, intrathecal injection of $0.3 \mu \mathrm{~g}$ picrotoxin (figs. 2A and 2B) or $1.0 \mu \mathrm{~g}$ strychnine (figs. 3A and 3B) did not alter the latency to response or the percentage of rats that moved in response to application of the alligator clip as compared to their respective baseline values. In rats that received $30 \mu \mathrm{~g}$ CGP 35348, a modest increase ($P<$

Fig. 1. Histogram of the relationship between core body temperature, inspired halothane concentration, and the percentage of rats that responded to application of an alligator clip to the proximal third of the tail. No rats with a core temperature of greater than $38.0^{\circ} \mathrm{C}$ were tested at an anesthetic concentration of $0.80-0.99 \%$.
$0.01)$ in response latency, but no decrease in the percentage of rats that moved occurred (fig. 3A and 3B). This increase could be attributed to one rat whose latency increased to 55 s at this one time. However, in rats receiving intrathecal injections of either $0.3 \mu \mathrm{~g}$ bicuculline or $1.0 \mu \mathrm{~g}$ picrotoxin a significant decrease in response latency occurred 5 min later as compared to their respective baseline values (figs. 2A and 2B). Importantly, between-group comparisons indicated that none of the antagonist treatment groups differed from the saline control group with respect to the latency to movement or the percentage of rats that moved at either the baseline timepoint or 5 min after intrathecal injection.
Nonetheless, these results prompted an ancillary study to further examine whether bicuculline or picrotoxin decreased baseline response latency when administered by themselves to a rat maintained at a subMAC concentration of halothane and whether repetitive application of the alligator clip induced sensitization in saline-treated rats. For this experiment, either saline, $0.3 \mu \mathrm{~g}$ bicuculline, or $1.0 \mu \mathrm{~g}$ picrotoxin was administered intrathecally and responsiveness to application of the alligator clip was redetermined for the subsequent 40 min in the absence of an increase in halothane concentration, i.e., while the rats remained at a sub-
ig. 2. Effect o $.3 \mu \mathrm{~g}$ picroto he antinocife f these drug cation of an al Percentage of the clip. "B" i min before $t h$ (arrowhead).
which the cor
Symbols repr ible were enc ponse latenc from those o point (${ }^{\boldsymbol{P}} \boldsymbol{P}<\mathbf{0}$.

p between core body tem intration, and the percent ication of an alligator clip o rats with a core temper ested at an anesthetic con.
no decrease in the perurred (fig. 3A and 3B). ed to one rat whose laone time. However, in tions of either $0.3 \mu \mathrm{~g}$ n a significant decrease min later as compared lues (figs. 2A and 2B) comparisons indicated atment groups differed with respect to the la ntage of rats that moved or 5 min after intrathe.
prompted an ancillan por bicuculline or pic rat matency when ad e and whether repetitive p induced sensitization periment, either saline. picrotoxin was admin. nsiveness to application ermined for the subsean increase in halothane rats remained at a sub-

Fig. 2. Effect of saline $(O ; \mathbf{n}=5), 0.3 \mu \mathrm{~g}$ bicuculline $(\bullet ; \mathbf{n}=\mathbf{8})$, $0.3 \mu \mathrm{~g}$ picrotoxin $(\square ; n=6)$, or $1.0 \mu \mathrm{~g}$ picrotoxin $(\square ; n=5)$ on the antinocifensive effect of halothane in the rat. (A) Effects of these drugs on latency to movement in response to application of an alligator clip to the proximal third of the tail. (B) Percentage of rats that moved in response to application of the clip. " B " indicates the baseline measure determined 5-15 \min before the intrathecal administration of drug at time zero (arrowhead). The dashed vertical line indicates the time at which the concentration of halothane was increased by 0.2% Symbols represent the mean \pm SE. Error bars that are not visible were encompassed by the symbol. Asterisks indicate re sponse latencies or percentages that are significantly different from those of saline-treated rats at the corresponding time point (${ }^{*} P<0.05 ;{ }^{*} \boldsymbol{P}<0.01$).

MAC concentration of halothane. Although withintreatment group comparisons to baseline latency indicated that latency to movement decreased 19-33 min after intrathecal administration of picrotoxin ($P<$ 0.05), latency to movement was similarly decreased $26-40 \mathrm{~min}$ after the intrathecal administration of saline ($P<0.05$). No significant change in latency to movement occurred after intrathecal administration of picrotoxin. Importantly, between-group comparisons indicated that response latencies in picrotoxin- or bi-cuculline-treated rats did not differ from those of salinetreated rats at any time (fig. 4).

Effect of GABA and Glycine Receptor Antagonists

 on the Antinocifensive Action of HalothaneAfter redetermination of responsiveness 5 min after intrathecal drug administration, the concentration of halothane was then increased by approximately 0.2%. The mean increase in halothane concentration for all animals was $0.22 \pm 0.01 \%$ and did not differ among the treatment groups $(P>0.5)$. In saline-treated rats, the latency to movement increased and the percentage of rats responding to the alligator clip decreased at 12 min after the increase in halothane concentration (figs. 2 A and 2B). These effects stabilized by 19 min at which time none of the saline-treated rats moved in response to oscillation of the alligator clip for 1 min . The 12 and $19-$ min postinjection time points corresponded to 7 and 14 min , respectively, after the increase in halothane concentration.

The antinocifensive effects of the small increase in the concentration of halothane were attenuated in rats pretreated with either bicuculline or picrotoxin (fig. 2). In rats pretreated with $0.3 \mu \mathrm{~g}$ of bicuculline, the response latency determined at 12 and 19 min postinjection (corresponding to 7 and 14 min after the increase in halothane) was significantly less than in salinetreated rats (fig. 2A). In rats pretreated with $0.3 \mu \mathrm{~g}$ picrotoxin, the response latency determined after the increase in halothane concentration was significantly less than in saline-treated rats at 12 and 19 min (fig. $2 \mathrm{~A})$. Increasing the dose of picrotoxin to $1.0 \mu \mathrm{~g}$ resulted in a more prolonged attenuation of the effects of halothane. Response latency was significantly less than that in saline-treated rats at 19,26 , and 33 min (fig. 2A). By comparison, intrathecal pretreatment with either 1 $\mu \mathrm{g}$ strychnine, a glycine receptor antagonist, or $30 \mu \mathrm{~g}$ CGP 35348, a $\mathrm{GABA}_{\mathrm{B}}$ receptor antagonist, did not attenuate the antinocifensive effects of halothane (figs. $3 A$ and 3B).

Fig．3．Effect of saline（ $O ; n=5$ ）， $30 \mu \mathrm{~g}$ CGP $35348(* ; n=6)$ ， or $1.0 \mu \mathrm{~g}$ strychnine（ $\diamond ; \mathbf{n}=5$ ）on the antinocifensive effect of halothane in the rat．（A）Effects of these drugs on latency to movement in response to application of an alligator clip to the proximal third of the tail．（B）Percentage of rats that moved in response to application of the clip．＂B＂indicates the baseline measure determined $\mathbf{5 - 1 5} \mathbf{~ m i n}$ before the in－ trathecal administration of drug at time zero（arrowhead）． The dashed vertical line indicates the time at which the con－ centration of halothane was increased by 0.2% ．Symbols rep－ resent the mean \pm SE．Error bars that are not visible were encompassed by the symbol．Asterisks indicate response la－ tencies or percentages that are significantly different from those of saline－treated rats at the corresponding time point （ ${ }^{*} \boldsymbol{P}<\mathbf{0 . 0 5} ;{ }^{* *} \boldsymbol{P}<\mathbf{0 . 0 1}$ ）．

The antinocifensive effect of the $\mathrm{GABA}_{\mathrm{A}}$ receptor an－ tagonists also was evident from comparisons of the per－ centage of rats that moved at each time point（figs．2B and 3B）．At 19 min postinjection，a significantly greater percentage $(P<0.05)$ of rats treated with $0.3 \mu \mathrm{~g}$ pic－ rotoxin moved in response to application of the alli－ gator clip when compared to saline－treated rats（fig． $2 \mathrm{~B})$ ．Increasing the dose of picrotoxin to $1.0 \mu \mathrm{~g}$ in－ creased the duration of antagonism．Thus，between 19 and 33 min postinjection， $80-100 \%$ of rats treated with $1.0 \mu \mathrm{~g}$ picrotoxin moved in response to the alligator clip，whereas none of the saline－treated rats moved in response to this stimulus at these times（fig．2B）．The effect of bicuculline on the percentage of rats that moved in response to application of the alligator clip was not statistically different from that of saline $(P<$ $0.1)$ ．However，the inability to detect a significant effect of bicuculline is likely attributable to the poor power of the analysis (0.46) and therefore represents a type II statistical error（failure to detect a difference that exists）．Neither strychnine nor CGP 35348 significantly increased the percentage of rats that moved in response to the alligator clip（fig．3B）．

Fig．4．Effect of saline $(\mathrm{O} ; \mathrm{n}=5), 0.3 \mu \mathrm{~g}$ bicuculline $(\bullet ; n=5)$ ， or $1.0 \mu \mathrm{~g}$ picrotoxin $(\square ; n=4)$ on the latency to movement in response to application of an alligator clip to the proximal third of the tail at sub－MAC concentrations of halothane．＂B＂ indicates the baseline measure determined 5－15 min before the intrathecal administration of drug at time zero（arrow－ head）．Symbols represent the mean \pm SE．Error bars that are not visible were encompassed by the symbol．

Discussion

The current $\mathrm{GABA}_{\mathrm{A}}$ receptor sive effects of 1 a spinal site of well as insight thane＇s actêtons

Role of tibe S

 Effects of Ha Several gtudi spinal cortin is ffect of i ịhala agents，inciclud ropyl pilieno nonosyn解ptic solated क्ष़大 int spinal trâhsec potency that intrax̂hec onists attềnua provides action otivinh based on ôthe antagonisiss us cord．Su宕stan tion for iontrat min perî̀d a which inticlud distributiono cal admennist drug effẹ̆ct o has beet rev 0.5% of ${ }^{3} \mathrm{H}$ of $[3 \mathrm{H}]$－morp intrathecal ir more than 1. the $1.0 \mu \mathrm{~g} \mathrm{pi}$ would be ex amounts are siveness wh sites．${ }^{35-37}$ Adceptor antag antinocicept the unlikely amounts（4 were to reac

expected to

 nocifensiveINTRATHECAL GABA A_{A} ANTAGONISTS AND HALOTHANE
the $\mathrm{GABA}_{\mathrm{A}}$ receptor an comparisons of the perach time point (figs. 2B on, a significantly greater treated with $0.3 \mu \mathrm{~g}$ pic. application of the alli. saline-treated rats (fig. icrotoxin to $1.0 \mu \mathrm{~g}$ inhism. Thus, between 19 00% of rats treated with sponse to the alligator e-treated rats moved in ese times (fig. 2B). The eercentage of rats that on of the alligator clip rom that of saline $(P<$ letect a significant effect able to the poor power efore represents a type letect a difference that GP 35348 significantly that moved in response

20
30
40 (min)
$3 \mu \mathrm{~g}$ bicuculline ($0 ; \mathrm{n}=5$), elatency to movement in ator clip to the proximal "" trations of halothane. " B " rermined 5-15 min before drug at time zero (arrofi $\mathbf{n} \pm \mathbf{S E}$. Error bars that art he symbol.

Discussion

The current finding that intrathecally administered $\mathrm{GABA}_{\mathrm{A}}$ receptor antagonists attenuate the antinocifensive effects of halothane provides direct evidence for a spinal site of action of inhalational anesthetics, as well as insight into a pharmacologic basis for halothane's actions within the spinal cord.

Role of the Spinal Cord in the Antinocifensive Effects of Halothane

Several studies now support the contention that the spinal cord is an important site for the antinocifensive effect of inhalational anesthetics. A variety of anesthetic agents, including isoflurane, barbiturates, 2,6-diisopropyl phenol, and ether, are reported to depress monosynaptic and polysynaptic reflex activity in the isolated or intact spinal cord. ${ }^{28-31}$ Furthermore, acute spinal transection does not alter the antinocifensive potency of isoflurane in the rat. ${ }^{8}$ The current finding that intrathecally administered $\mathrm{GABA}_{\mathrm{A}}$ receptor antagonists attenuate the antinocifensive effect of halothane provides additional, direct support for a spinal site of action of inhalational anesthetics. This conclusion is based on the premise that the actions of the receptor antagonists used in this study were limited to the spinal cord. Substantial evidence supports a spinal site of action for intrathecally administered drugs during the 40 min period after their administration. This evidence, which includes analyses of the spinal and supraspinal distribution of radiolabeled compounds after intrathecal administration and studies of the dependence of drug effect on the segmental level of administration, has been reviewed at length. ${ }^{32}$ For example, less than 0.5% of $\left[{ }^{3} \mathrm{H}\right]$-naloxone or $\left[{ }^{14} \mathrm{C}\right]$-urea, and less than 0.1% of $\left[{ }^{3} \mathrm{H}\right]$-morphine is found at supraspinal levels after intrathecal injection. ${ }^{23,33,34}$ It therefore is unlikely that more than 1.5 ng of the $0.3 \mu \mathrm{~g}$ bicuculline or 5 ng of the $1.0 \mu \mathrm{~g}$ picrotoxin administered in the current study would be expected to reach supraspinal sites. These amounts are insufficient to alter nociceptive responsiveness when administered directly to supraspinal sites. ${ }^{35-37}$ Additionally, local application of GABA $_{A}$ receptor antagonists at several supraspinal sites produces antinociception, rather than nociception. ${ }^{35-39}$ Thus, in the unlikely event that pharmacologically relevant amounts ($40-100 \mathrm{ng}$) of bicuculline or picrotoxin were to reach supraspinal sites, these drugs would be expected to enhance, rather than attenuate the antinocifensive effects of halothane.

Although anesthetic actions within the spinal cord appear to be sufficient to block nocifensive movement, ${ }^{40}$ an additional action of inhalational anesthetics at supraspinal structures cannot be excluded. For example, activation of $\mathrm{GABA}_{\mathrm{A}}$ receptors in the periaqueductal gray or raphe magnus results in an enhanced responsiveness to noxious stimuli, ${ }^{35-37,41}$ presumably by inhibiting the activity of neurons in these nuclei that project to the spinal cord and inhibit nociceptive transmission. ${ }^{42-44}$ As halothane and other inhalational anesthetics potentiate the actions of GABA at the GABA A_{A} receptor, ${ }^{10}$ it is likely that halothane can act supraspinally at sites in the periaqueductal gray or raphe magnus to inhibit the activity of these neurons and so enhance spinal nociceptive transmission by decreasing tonic descending inhibition. Indeed, nociceptive inhibitory neurons in the raphe magnus are inhibited by supraMAC concentrations of isoflurane. ${ }^{45}$ By comparison, in the spinal cord, enhancement of GABAergic transmission results in antinociception. Selective antagonism of the actions of halothane at spinal $\mathrm{GABA}_{\mathrm{A}}$ receptors may concomitantly permit the expression of or unmask the pronociceptive actions of halothane at supraspinal sites. Thus, the ability of intrathecally administered $\mathrm{GABA}_{\mathrm{A}}$ receptor antagonists to attenuate the antinocifensive effects of inhalational anesthetics may reflect both a direct antagonism of the actions of halothane at $G_{A B A}^{A}$ receptors in the spinal cord and an indirect unmasking of a pronociceptive action of halothane at supraspinal $\mathrm{GABA}_{\mathrm{A}}$ receptors. Clarification of the contribution of supraspinal sites of action must await complimentary studies of the effects of supraspinally administered $G A B A_{A}$ and $G A B A_{B}$ receptor ligands on the antinocifensive potency of halothane.

$G A B A_{A}$ Receptors Mediate the Antinocifensive Effects of Halothane in the Spinal Cord

This study used two $\mathrm{GABA}_{\mathrm{A}}$ receptor antagonists of different physicochemical structure and different mechanisms of action to assess the contribution of GABA_{A} receptors to the antinocifensive effects of halothane. Bicuculline is a competitive antagonist of GABA at the $G A B A_{A}$ receptor, whereas picrotoxin is a noncompetitive antagonist of the chloride channel associated with the $\mathrm{GABA}_{\mathrm{A}}$ receptor. ${ }^{46}$ Both bicuculline and picrotoxin effectively antagonized the antinocifensive effect of a small increase in halothane concentration. In contrast, antagonists for either the closely related glycine receptor or the $G A B A_{B}$ receptor were ineffective. These findings suggest that the antinocifensive ef-
fects of threshold concentrations of inhalational anes－ thetics result from an enhancement of the actions of $G A B A$ at $G A B A_{A}$ receptors within the spinal cord．
Intrathecal administration of $G A B A_{A}$ receptor antag－ onists similarly antagonized the suppression of noci－ ceptive reflexes by systemic barbiturates．${ }^{47}$ However， the large doses of bicuculline $(25 \mu \mathrm{~g})$ or picrotoxin $(12 \mu \mathrm{~g})$ used in that study induce seizures when ad－ ministered alone．${ }^{47}$ Thus，the antagonism of the anti－ nocifensive effects of the barbiturate may simply have been due to gross alterations of excitability in the spinal cord．This confounder was not an issue in the current study because the doses of $\mathrm{GABA}_{\mathrm{A}}$ receptor antagonists were carefully chosen to be just sufficient for antago－ nism of their receptor，yet too low to enhance sensi－ tivity to innocuous mechanical stimuli，augment base－ line nociceptive motor responses，or produce myo－ clonic twitches in awake rats．Although intrathecal administration of $\mathrm{GABA}_{\mathrm{A}}$ receptor antagonists can pro－ duce allodynia and hyperalgesia，the minimum doses that produce such effects are threefold－to tenfold higher ${ }^{15}$（unpublished observations，DL Hammond） than those used to antagonize halothane in the current study．The allodynia，hyperalgesia，and spontaneous myoclonic twitches that are commonly reported after intrathecal administration of $\mathrm{GABA}_{\mathrm{A}}$ receptor antago－ nists in unanesthetized rats，${ }^{19,20}$ occur after adminis－ tration of doses of $30-60 \mu \mathrm{~g}, 100$－to 200 －fold higher than the doses used in the current study．Administration of these high doses also causes an increase in the spon－ taneous activity of dorsal horn cells．${ }^{48}$

The lack of effect of the low doses of $\mathrm{GABA}_{\mathrm{A}}$ receptor antagonists used in this study was further verified in rats anesthetized with sub－MAC concentrations of halo－ thane，a condition in which the actions of GABA at the $\mathrm{GABA}_{\mathrm{A}}$ receptor may be enhanced ${ }^{49}$ and so might be more sensitive to antagonism by bicuculline or picro－ toxin．Although initial experiments indicated that the latency to nocifensive movement in rats anesthetized with sub－MAC concentrations of halothane was signif－ icantly decreased 5 min after intrathecal administration of $0.3 \mu \mathrm{~g}$ bicuculline or $1.0 \mu \mathrm{~g}$ picrotoxin，this obser－ vation was not replicated in an ancillary study．In this study，rats treated with $0.3 \mu \mathrm{~g}$ bicuculline or $1.0 \mu \mathrm{~g}$ picrotoxin did not differ from saline－treated rats at any time before or after drug administration．The most par－ simonious explanation for this finding is that there is little or no potentiation of GABA_{A} receptor－mediated transmission in the lightly anesthetized condition and that an increase in the tonic activation of $\mathrm{GABA}_{\mathrm{A}}$ recep－
tor－mediated transmission occurs only at anesthetic levels equal to or greater than MAC．Taken together， these findings indicate that the antagonism of the an－ tinocifensive effects of halothane by intrathecal admin－ istration of low doses of bicuculline or picrotoxin can－ not be ascribed to a nonspecific excitation or a general reduction in inhibition in the spinal cord，but rather to selective antagonism of the $\mathrm{GABA}_{\mathrm{A}}$ receptor．

Possible Sites of Action Within the Spinal Cord

Although Bárány ${ }^{50}$ suggested that general anesthetics suppress central nervous system activity in proportion to the number of synapses in the pathway，general an－ esthetics preferentially suppress monosynaptic re－ flexes．${ }^{51}$ Thus，the effect of general anesthetics on so－ matomotor transmission is more likely due to the dif－ ferential vulnerability of specific synapses（i．e．the Ia afferent to α－motoneuron synapse $v s$ ．the polymodal nociceptor to dorsal horn cell synapse）to modulation by general anesthetics than to the cumulative number of synapses used．${ }^{51.52}$ The current results suggest that synapses with $\mathrm{GABA}_{\mathrm{A}}$ receptors，located either on the presynaptic terminal or on the postsynaptic membrane， may be selectively targeted for enhancement by halo－ thane at concentrations near the threshold for blocking nocifensive movements．The depression of somato－ motor activity by general anesthetics in the spinal cord may be mediated by inhibition of excitatory neuro－ transmitter release via $\mathrm{GABA}_{\mathrm{A}}$ receptors situated pre－ synaptically on the terminals of Ia afferents，${ }^{53-56}$ low threshold primary afferents，${ }^{57}$ and myelinated nocicep－ tors．${ }^{58,59}$ In addition， $\mathrm{GABA}_{\mathrm{A}}$ receptors located postsyn－ aptically may mediate inhibition of dorsal horn cells，${ }^{60,61}$ Ia interneurons，${ }^{62}$ and motoneurons．${ }^{63-65}$ Thus，activation or potentiation of $G A B A_{A}$ synaptic transmission，at numerous sites within the spinal cord， is likely to contribute to the suppression of somato－ motor transmission by inhalational general anesthetics．

In conclusion，the current results provide direct ev－ idence that the spinal cord is an important site of action for the antinocifensive action of inhalational anesthet－ ics．These results further indicate that enhancement of the action of $G A B A$ at spinal $G A B A_{A}$ receptors is one mechanism by which halothane exerts its antinocifen－ sive actions．

References

1．Zbinden AM，Petersen FS，Thomson DA：Anesthetic depth defined using multiple noxious stimuli during isoflurane／oxygen anesthesia． II．Hemodynamic responses．Anesthesiology 1994；80：261－7

2．Zbinden AM ，
2．Zbinder CE：An DA，Minder CE：An stimuli during iso ANETHESIOLOGY 199 3．Sessler DI：Pe in humans．FASEB J 4．Eger EI II，Sa thetic concentratior 1965；26：75菝－63
5．Rampil癹J，Ma dependent of forel 78：707－12
6．Todd $\frac{\text { 素M，W }}{}$ does not red in rats．Anes imesio 7．Antog ${ }_{3}^{6}$ ni JF in the prefef 1244－9
8．Ramp IJ：A mic spinal gord ti 10
9．Borge M，A sponses to $\frac{\text { 궁 }}{} 0 \times x i o$ slology 19 $4 ; 81$ 10．Tanesian I GABA $_{A}$ rece ${ }^{2}$ tor／ SIOLOGY $19 \frac{8}{3} 3 ; 78$ 11．Patrock JT GABA，aspatate 1983；10：审1 5－8 12．Miyghta Y ， aminobutydic ac synaptic irghibiti 13．Wagivoge Mohler H，OStreit ceptors in inthe h nohistochêmica Neurosciemice 1 14．Bowery site distrib？Ôtion 20：365－83
15．Mc䒠 microinjeqtion rat：Mediation b 96
16．Hwang A receptors and st Ther 1989； 24
17．Aanonse acidA receptors J Pharmacol Ex 18．Wilson F intrathecal spa 19．Yaksh T evoked allodyn modulatory rec Pain 1989； 37 ： 20．Roberts altered GABAer 74

INTRATHECAL GABA ANTAGONISTS AND HALOTHANE $^{\text {ANT }}$
curs only at anesthetic n MAC. Taken together e antagonism of the an. ne by intrathecal admin. alline or picrotoxin can. c excitation or a general spinal cord, but rather $\mathrm{GABA}_{\mathrm{A}}$ receptor.
bin the Spinal Cord that general anesthetics m activity in proportion he pathway, general an. ress monosynaptic re neral anesthetics on sore likely due to the dif. fic synapses (i.e. the la pse vs. the polymodal synapse) to modulation the cumulative number ent results suggest that s, located either on the postsynaptic membrane, - enhancement by halothreshold for blocking depression of somato. netics in the spinal cord n of excitatory neuro. receptors situated preof Ia afferents, ${ }^{53-66}$ low nd myelinated nocicep. eptors located postsyn. ition of dorsal hom and motoneurons. ${ }^{63-6}$ on of $G A B A_{\Lambda}$ synaptic within the spinal cord, suppression of somato. nal general anesthetics. sults provide direct erimportant site of action of inhalational anesther. the that enhancement of GABA $_{A}$ receptors is one e exerts its antinocifenisoflurane/oxygen anestheciil ology 1994; 80:261-7
2. Zbinden AM, Maggiorini M, Petersen FS, Lauber R, Thomson DA, Minder CE: Anesthetic depth defined using multiple noxious stimuli during isoflurane/oxygen anesthesia. I. Motor reactions. Anesthesiology 1994; 80:253-60
3. Sessler DI: Perianesthetic thermoregulation and heat balance in humans. FASEB J 1993; 7:638-44
4. Eger EI II, Saidman LJ, Brandstater B: Minimum alveolar anesthetic concentration: A standard of anesthetic potency. Anesthesiology 1965; 26:756-63
5. Rampil IJ, Mason P, Singh H: Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 1993; 78:707-12
6. Todd MM, Weeks JB, Warner DS: A focal cryogenic brain lesion does not reduce the minimum alveolar concentration for halothane in rats. Anesthesiology 1993; 79:139-43
7. Antognini JF, Schwartz K: Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology 1993; 79: 1244-9
8. Rampil IJ: Anesthetic potency is not altered after hypothermic spinal cord transection in rats. Anesthesiology 1994; 80:60610
9. Borges M, Antognini JF: Does the brain influence somatic responses to noxious stimuli during isoflurane anesthesia? AnestheSIOLOGY 1994; 81: 1511-1515
10. Tanelian DL, Kosek P, Mody I, MacIver MB: The role of the GABA $_{\text {A }}$ receptor/chloride channel complex in anesthesia. AnestheSIOLOGY 1993; 78:757-76
11. Patrick JT, McBride WJ, Felten DL: Distribution of glycine, GABA, aspartate and glutamate in the rat spinal cord. Brain Res Bull 1983; 10:415-8
12. Miyata Y, Otsuka M: Quantitative histochemistry of gammaaminobutyric acid in cat spinal cord with special reference to presynaptic inhibition. J Neurochem 1975; 25:239-44
13. Waldvogel HJ, Faull RL, Jansen KL, Dragunow M, Richards JG, Mohler H, Streit P: GABA, GABA receptors and benzodiazepine receptors in the human spinal cord: An autoradiographic and immunohistochemical study at the light and electron microscopic levels. Neuroscience 1990; 39:361-85
14. Bowery NG, Hudson AL, Price GW: GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 1987; 20:365-83
15. McGowan MK, Hammond DL: Antinociception produced by microinjection of L-glutamate into the ventromedial medulla of the rat: Mediation by spinal GABA ${ }_{\wedge}$ receptors. Brain Res 1993; 620:8696
16. Hwang AS, Wilcox GL: Baclofen, gamma-aminobutyric acid B receptors and substance P in the mouse spinal cord. J Pharmacol Exp Ther 1989; 248:1026-33
17. Aanonsen LM, Wilcox GL: Muscimol, gamma-aminobutyric acidA receptors and excitatory amino acids in the mouse spinal cord. J Pharmacol Exp Ther 1989; 248:1034-8
18. Wilson PR, Yaksh TL: Baclofen is antinociceptive in the spinal intrathecal space of animals. Eur J Pharmacol 1978; 51:323-30
19. Yaksh TL: Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: Effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 1989; 37:111-23
20. Roberts LA, Beyer C, Komisaruk BR: Nociceptive responses to altered GABAergic activity at the spinal cord. Life Sci 1986; 39:166774
21. Hammond DL, Washington JD: Antagonism of L-baclofen-induced antinociception by CGP 35348 in the spinal cord of the rat. Eur J Pharmacol 1993; 234:255-62
22. Hao JX, Xu XJ, Wiesenfeld HZ: Intrathecal gamma-aminobutyric acidB (GABAB) receptor antagonist CGP 35348 induces hypersensitivity to mechanical stimuli in the rat. Neurosci Lett 1994; 182:299-302
23. Yaksh TL, Rudy TA: Analgesia mediated by a direct spinal action of narcotics. Science 1976; 192:1357-8
24. Frenk H, Bossut D, Urca G, Mayer DJ: Is substance P a primary afferent neurotransmitter for nociceptive input? I. Analysis of painrelated behaviors resulting from intrathecal administration of substance P and 6 excitatory compounds. Brain Res 1988; 455:223-31
25. Munson ES: Effect of hypothermia on anesthetic requirement in rats. Lab Anim Care 1970; 20:1109-13
26. McFarlane C, Warner DS, Todd MM, Nordholm L: AMPA receptor competitive antagonism reduces halothane MAC in rats. ANEsthesiology 1992; 77:1165-70
27. White PF, Johnston RR, Eger EI II: Determination of anesthetic requirement in rats. Anesthesiology 1974; 40:52-7
28. Savola MK, Woodley SJ, Maze M, Kendig JJ: Isoflurane and an alpha 2-adrenoceptor agonist suppress nociceptive neurotransmission in neonatal rat spinal cord. Anesthesiology 1991; 75:489-98
29. Jewett BA, Gibbs LM, Tarasiuk A, Kendig JJ: Propofol and barbiturate depression of spinal nociceptive neurotransmission. ANEs. thesiology 1992; 77:1148-54
30. de Jong R, Freund FG, Robles R, Morikawa KI: Anesthetic potency determined by depression of synaptic transmission. ANESTHEsIology 1968; 29:1139-44
31. Somjen G: Effects of anesthetics on spinal cord of mammals. Anesthesiology 1967; 28:135-43
32. Hammond DL: Intrathecal administration: Methodological considerations. Prog Brain Res 1988; 77:313-20
33. Yaksh TL, Rudy TA: Studies on the direct spinal action of narcotics in the production of analgesia in the rat. J Pharmacol Exp Ther 1977; 202:411-28
34. Tang AH, Schoenfeld MJ: Comparison of subcutaneous and spinal subarachnoid injections of morphine and naloxone on analgesic tests in the rat. Eur J Pharmacol 1978; 52:215-23
35. Drower EJ, Hammond DL: GABAergic modulation of nociceptive threshold: Effects of THIP and bicuculline microinjected in the ventral medulla of the rat. Brain Res 1988; 450:316-24
36. Heinricher MM, Kaplan HJ: GABA-mediated inhibition in rostral ventromedial medulla: Role in nociceptive modulation in the lightly anesthetized rat. Pain 1991; 47:105-13
37. Moreau JL, Fields HL: Evidence for GABA involvement in midbrain control of medullary neurons that modulate nociceptive transmission. Brain Res 1986; 397:37-46
38. Poore LH, Helmstetter FJ: Forebrain modulation of nociceptive reflexes: Effects of GABA antagonists in the amygdala. Soc Neurosci Abstr 1994; 20:767
39. Ueda H, Ge M, Satoh M, Takagi H: Subconvulsive doses of intracisternal bicuculline methiodide, a GABAA receptor antagonist, produce potent analgesia as measured in the tail pinch test in mice. Eur J Pharmacol 1987; 136:129-31
40. Collins JG, Kendig JJ, Mason P: Anesthetic actions within the spinal cord: Contributions to the state of general anesthesia. Trends Neurol Sci 1995; 18:549-53
41. Depaulis A, Morgan MM, Liebeskind JC: GABAergic modulation of the analgesic effects of morphine microinjected in the
ventral periaqueductal gray matter of the rat. Brain Res 1987; 436:223-8
42. Jones SL: Descending control of nociception, The Initial Processing of Pain and Its Descending Control: Spinal and Trigeminal Systems. Edited by Light AR. Basel, Karger, 1992, pp 203-95
43. Hammond DL: Control systems for nociceptive afferent processing

The descending inhibitory pathways, Spinal Afferent Processing. Edited by Yaksh TL. New York, Plenum Press, 1986, pp 363-90
44. Gebhart GF: Modulatory effects of descending systems on spinal dorsal horn neurons, Spinal Afferent Processing, Edited by Yaksh TL. New York, Plenum Press, 1986, pp 391-416
45. Leung CG, Mason P: Effects of isoflurane concentration on the activity of pontomedullary raphe and medial reticular neurons in the rat. Brain Res 1995; 699:71-82
46. Macdonald RL, Olsen RW: GABA ${ }_{\wedge}$ receptor channels. Ann Rev Neurosci 1994; 17:569-602
47. Stein C, Morgan MM, Liebeskind JC: Barbiturate-induced inhibition of a spinal nociceptive reflex: Role of GABA mechanisms and descending modulation. Brain Res 1987; 407:307-11
48. Dickenson AH, Brewer CM, Hayes NA: Effects of topical baclofen on C fibre-evoked neuronal activity in the rat dorsal horn. Neuroscience 1985; 14:557-62
49. Franks NP, Lieb WR: Molecular and cellular mechanisms of general anaesthesia. Nature 1994; 367:607-14
50. Bárány EH: A theoretical note concerning the action of drugs on the central nervous system. Arch Int Pharmacodyn Ther 1947; 75:222-226
51. de Jong R, Robles R, Corbin RW, Nace RA: Effect of inhalation anesthetics on monosynaptic and polysynaptic transmission in the spinal cord. J Pharmacol Exp Ther 1968; 162:326-30
52. Morris ME: Facilitation of synaptic transmission by general anaesthetics. J Physiol (Lond) 1978; 284:307-25
53. Maxwell DJ, Christie WM, Short AD, Brown AG: Direct observations of synapses between GABA-immunoreactive boutons and identified spinocervical tract neurons in the cat's spinal cord. J Comp Neurol 1991; 307:375-92
54. Stuart GJ, Redman SJ: The role of GABAA and GABAB receptors in presynaptic inhibition of Ia EPSPs in cat spinal motoneurones. J Physiol (Lond) 1992; 447:675-92
55. Peng YY, Frank E: Activation of GABAA receptors causes presynaptic and postsynaptic inhibition at synapses between muscle spindle afferents and motoneurons in the spinal cord of bullfrogs. J Neurosci 1989; 9:1516-22
56. Sastry BR: Gamma-Aminobutyric acid and primary afferent depolarization in feline spinal cord Can J Physiol Pharmacol 1979; 57:1157-67
57. Barber RP, Vaughn JE, Saito K, McLaughlin BJ, Roberts E: GABAergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of the rat spinal cord. Brain Res 1978; 141: 35-55
58. Bourgoin S, Pohl M, Benoliel JJ, Mauborgne A, Collin E, Hamon M, Cesselin F: Gamma-Aminobutyric acid, through GABAA receptors, inhibits the potassium-stimulated release of calcitonin gene-related peptide- but not that of substance P-like material from rat spinal cord slices. Brain Res 1992; 583:344-8
59. Alvarez FJ, Kavookjian AM, Light AR: Synaptic interactions between GABA-immunoreactive profiles and the terminals of functionally defined myelinated nociceptors in the monkey and cat spinal cord. J Neurosci 1992; 12:2901-17
60. Game CJ, Lodge D: The pharmacology of the inhibition of dorsal horn neurones by impulses in myelinated cutaneous afferents in the cat. Exp Brain Res 1975; 23:75-84
61. Willcockson WS, Chung JM, Hori Y, Lee KH, Willis WD: Effects of iontophoretically released amino acids and amines on primate spinothalamic tract cells. J Neurosci 1984; 4:732-40
62. Lodge D, Curtis DR, Brand SJ: A pharmacological study of the inhibition of ventral group Ia-excited spinal interneurones. Exp Brain Res 1977; 29:97-105
63. Krnjevic K, Puil E, Werman R: Bicuculline, benzyl penicillin, and inhibitory amino acids in the spinal cord of the cat. Can J Physiol Pharmacol 1977; 55:670-80
64. Ornung G, Shupliakov O, Ottersen OP, Storm MJ, Cullheim S: Immunohistochemical evidence for coexistence of glycine and GABA in nerve terminals on cat spinal motoneurones: An ultrastructural study. Neuroreport 1994; 5:889-92
65. Schneider SP, Fyffe RE: Involvement of GABA and glycine in recurrent inhibition of spinal motoneurons. J Neurophysiol 1992; 68:397-406

nesthesiology

1096; 84:1215-22
1996; 84:1215-22 © 1996 American Publ Lippincott-Raven Pub

Involven and Bic Conscio

Backgroừ $n d: ~ G$ inhibitory Ṇ̛eurs sensory pre్ర్రcess ministration of ceptor ant ${ }_{3} g g^{2}$ ported to iolduce allodynia $\frac{\circ}{\mathrm{W}}$ as $\mathbf{~ s 1}$ aspartate ${ }_{6} \mathbf{N M D}$ whether the bic the glutamimate \mathbf{r}
 Methods.0.0 Male study. A $2_{\text {㐓 }} \mathbf{G}$ st was insertét be ification of the were injected s mice at $2 \stackrel{\rightharpoonup}{8} \pm 2^{\circ}$ 5μ l. Studief on ing to thêémetl Results䀎The cucullineğ nonnoxiogus b1 induced by str injection ${ }^{\circ}$ but min afte

- Resident in Medical Eolleg \dagger Assistơnt Osaka Medical
\ddagger Professor, University.

Received fro College, Takats Kansai Medical cation July 5, Supported in p Areas, Scientifi of Young Scien ence, and Cul sociation, the dation, and Ta

