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Synthase

Background: Inhalational anesthetics inhibit the nitric ox-
ide-guanylyl cyclase signaling pathway, but the site of this
inhibition is not yet clear. This study was designed to test the
hypothesis that receptor activation or downstream signaling
events leading to nitric oxide synthase activation are impor-
tant sites for this inhibition by comparing the effect of an-
esthetics on vasodilation caused by the calcium-dependent
constitutive endothelial nitric oxide synthase versus the cal-
cium-independent inducible nitric oxide synthase.

Methods: Endothelium-intact or -denuded rat thoracic aorta
rings preincubated with or without lipopolysaccharide were
mounted for isometric tension measurement, constricted with
phenylephrine, then relaxed with methacholine in the pres-
ence or absence of halothane (1-3%) or isoflurane (1-3%)-
The cyclic guanosine 3,5-monophosphate content in the en-
dothelium-denuded rings preincubated with or without li-
popolysaccharide in the presence or absence of 3% halothane
or 3% isoflurane was quantified by radioimmunoassay. The
activity of partially purified inducible nitric oxide synthase
from activated mouse macrophage was assayed in the presence
or absence of halothane (1-4%) or isoflurane (1-5%) by the
conversion of *H-L-arginine to *H-L-citrulline.

Results: Halothane and isoflurane inhibited methacholine-
stimulated, nitric oxide-mediated vasorelaxation in endothe-
lium-intact aortic rings. Neither halothane nor isoflurane af-
fected the vasorelaxation caused by basal endothelial nitric
oxide synthase or inducible nitric oxide synthase activity.
Neither anesthetic altered the cyclic guanosine 3,5-mono-
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Halothane and Isoflurane Inhibit Vasodilation Due
10 Constitutive but Not Inducible Nitric Oxide

Implications for the Site of Anestbetic Inhibition of the Nitric
Oxide/Guanylyl Cyclase Signaling Pathway

Zhiyi Zuo, M.D., Ph.D.,* Alexandra Tichotsky, M.S.,t Roger A. Johns, M.D.%

phosphate increase caused by inducible nitric oxide synthase
in the lipopolysaccharide-treated rings.

Conclusions: The results demonstrate that halothane and
isoflurane inhibit only receptor/ calcium-activated nitric oxide
synthase action and that direct inhibition of nitric oxide syn-
thase, soluble guanylyl cyclase, or an interaction with nitric
oxide are not responsible for anesthetic inhibition of endo-
thelium-dependent vasorelaxation. (Key words: Anesthetics,
volatile: halothane; isoflurane. Artery, endothelium: endo-
thelium-derived relaxing factor; nitric oxide. Enzymes, nitric
oxide synthase: endothelial; inducible. Nucleotides: cyclic
guanosine 3,5-monophosphate. Vascular smooth muscle: va-
sodilation.)

ENDOTHELIUM-DERIVED relaxing factor, first discov-
ered as a potent vasodilator produced by endothelium'
is now known as nitric oxide or a chemically related
compound.? Extensive studies have demonstrated that
nitric oxide is an agonist for soluble guanylyl cyclase
and that this nitric oxide-guanylyl cyclase signaling
pathway is present in a variety of tissues.>* The enzymes
responsible for the synthesis of nitric oxide from L-
arginine in mammalian tissue are known as nitric oxide
synthase.* There are three major isoforms of nitric oxide
synthase.’ Two are constitutive enzymes, one normally
expressed in the endothelium and one in neurons. A
third inducible isoform can be produced in a variety
of cells including smooth muscle cells® and
macrophages7 only after induction by endotoxin or CY-
tokines such as tumor necrosis factor-« and interferon-
v. Both constitutive and inducible isoforms contain a
heme moiety and require $-nicotinamide adenine di-
nucleotide phosphate (reduced form, NADPH), flavin
adenine dinucleotide, flavin mononucleotide, and tet-
rahydrobiopterin as cofactors.>8 The constitutive iS0-
forms also are calcium and calmodulin dependent,
whereas the inducible isoform has a tightly bound cal-
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ANESTHETICS AND NITRIC OXIDE-GUANYLYL CYCLASE PATHWAY

modulin subunit and does not require calcium for ac-
tivation (fig. 1).>?

Nitric oxide is an important mediator for the excit-
atory synaptic transmission of N-methyl-D-aspartate,
glutamate, and kainate in the brain.'~'? It is proposed
that some anesthetics may suppress excitatory trans-
mission to achieve anesthesia through inhibiting the
formation or action of nitric oxide. Johns et al.'®> have
demonstrated that nitro®-L-arginine methyl ester (L-
NAME), a specific nitric oxide synthase inhibitor, dose
dependently and reversibly reduces the minimum al-
veolar concentration of halothane anesthesia in rats,
suggesting an important relationship between the nitric
oxide-guanylyl cyclase signaling pathway and anes-
thesia or level of consciousness. In addition, inhala-
tional anesthetics such as halothane, enflurane, isoflu-
rane, and sevoflurane have been demonstrated to in-
hibit endothelium-dependent vasodilation in arterial
rings.'*~'° However, the mechanisms underlying these
effects are controversial.'” Early studies suggest that
the site of inhibition is proximal to soluble guanylyl
cyclase activation.'*'>'®12 Some more recent reports,
however, indicate that inhalational anesthetics may also
inhibit the formation or release of nitric oxide or may
work as a scavenger to inactivate nitric oxide after its
formation or may even interfere with the activation of
soluble guanylyl cyclase by nitric oxide.?*~** Our recent
studies, using partially purified enzymes, however,
clearly demonstrate that inhalational anesthetics nei-
ther affect the basal or agonist-stimulated soluble or
particulate guanylyl cyclase activity nor directly inhibit
the endothelial or brain nitric oxide synthase activity
in vitro.”**> Our study, using an endothelium-smooth
muscle coculture model, further excluded the possi-
bility of the activation of guanylyl cyclase by nitric ox-
ide as the inhibitory site for inhalational anesthetics.*®

In light of these observations, we hypothesized that
the receptor activation or downstream signaling events
leading to nitric oxide synthase activation are sites of
inhibition for inhalational anesthetics on the nitric ox-
ide-guanylyl cyclase signaling pathway. Because the
signaling pathway after the activation of constitutive
or inducible nitric oxide synthase is identical, the lack
of inhibition of inducible nitric oxide synthase-induced
vasorelaxation by anesthetics would imply that anes-
thetics do not affect activated nitric oxide synthase en-
zymatic function, nitric oxide itself, guanylyl cyclase
activation, or effects of cyclic guanosine 3,5-mono-
phosphate (cGMP) in causing vasorelaxation (fig. 1).
We therefore tested our hypothesis by comparing the
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effects of inhalational anesthetics on calcium-/calmod-
ulin-dependent and calcium-/calmodulin-independent
nitric oxide synthase activation in rat aortic rings
preincubated with or without lipopolysaccharide
(LPS), measuring the agonist-stimulated constriction
and relaxation as well as cGMP changes. The effect of
inhalational anesthetics on partially purified inducible
nitric oxide synthase activity also was investigated to
confirm the results of our aortic ring study.

Materials and Methods

Preparation of Vascular Rings

Male Sprague-Dawley rats (weighing 300-350 g)
were killed in accordance with our institutional Re-
search and Animal Welfare Committee standards. The
descending thoracic aorta was gently removed and
placed in ice-cold modified Krebs’ buffer (all in mm:
NaCl 111, KC1 5, NaH,PO4 1, MgCl, 0.5, NaHCO; 25,
CaCl; 2.5, dextrose 11.1). The aorta was then dissected
clean of fat and surrounding connective tissue and cut
into 2.5-3.0-mm ring segments. The rings were then
incubated in Dulbecco’s Modified Eagle’s Medium
(Gibco, Grand Island, NY) containing 4,500 mg/l D-
glucose and L-glutamine either with or without 500
ng/ml LPS for 5 h at 37°C and continuously gassed
with air and 5% CO,.?’

Isometric Tension Measurements

The rings were either left with their endothelia intact
or denuded of endothelium by gentle rotation on a for-
ceps. The rings were then mounted on Grass Ft-03 force
transducers (Grass, Quincy, MA) at 2.0 g resting tension
in 37°C water-jacketed 25-ml tissue baths containing
10 ml modified Krebs’ buffer continuously gassed with
air and 5% CO,. Indomethacin (28 uM), an inhibitor
of cyclooxygenase metabolism of arachidonic acid,'
was added to the buffer throughout all experiments to
prevent formation of vasoactive prostanoid metabolites.
The buffer was changed every 15 min during a 60-min
equilibration period. Endothelial-intact status was
confirmed by constricting rings with 10" M phenyl-
ephrine followed by relaxing them with 10~° M metha-
choline. If they relaxed more than 40% to methacholine
they were considered to be endothelium-intact rings.
Endothelium-denuded rings showed no relaxation.
Rings were then washed and reequilibrated to basal
tension.

Eight rings of each experiment were divided into four
duplicate groups (one used for the anesthetic study,
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Fig. 1. Diagram of nitric oxide-guanylyl

the other one used as a time-control): 1) endothelium-
intact, 2) endothelium-denuded, 3) LPS-preincubated
and endothelium-intact, and 4) LPS-preincubated and
endothelium-denuded rings. The experimental proto-
cols were as follows: Dose-response curves for phen-
ylephrine (107% to 107> M) were first obtained to in-
dividualize the EC60 dose for each ring. This EC60
dose (60% maximal contractile dose) was used to
achieve active tension and the rings were then sub-
jected to methacholine (1077-107° m). The values ob-
tained were considered as preanesthetic control and
the same experimental procedure was repeated in the
presence or absence (time-control experiments) of 1%,
2%, or 3% halothane or isoflurane. Halothane or isoflu-
rane was added to the rings 5 min before the addition
of phenylephrine by a calibrated vaporizer in line with
the air and 5% CO, gas at a flow rate of 4 1/min. Pre-
liminary gas chromatographic studies suggested that
the concentration of halothane or isoflurane in the
buffer reached plateau after 5 min of gassing under
these experimental conditions.'*** Postanesthetic
controls were then obtained in the absence of anes-
thetics. The ability of L-NAME, a competitive inhibitor
of nitric oxide synthase, to reverse the relaxation caused
by LPS induction or by methacholine was investigated
by adding 300 pm L-NAME 10 min before the addition
of the same EC60 dose of phenylephrine to each of the
rings. These reversal experiments were done to measure
the portion of relaxation due to the nitric oxide-gua-
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nylyl cyclase signaling pathway in the total relaxation
caused by LPS or methacholine.

Cyclic Guanosine 3,5-Monophosphate Analysis of

Rings

Denuded rat descending thoracic aortic rings were
prepared and incubated with 3 X 107 M phenylephrine
for 6 min at 37°C in the presence or absence of 3%
halothane or 3% isoflurane preincubated as described
earlier. The rings were then flash-frozen in dry ice-
cooled acetone. Cyclic GMP was extracted by homog-
enizing each ring in 1 ml of 0.1 N ice-cold hydrochlo-
ride. After centrifugation at 1000g for 10 min, the su-
pernatant was analyzed for cGMP content by radioim-
munoassay ('2° kit, Amersham, Buckinghamshire,
UK).2® Protein content was determined by dissolving
the homogenate in 0.66 N NaOH and analyzing the total
dissolved protein with the Bio-Rad protein assay
method (Richmond, CA).?’

Partially Purified Inducible Nitric Oxide Synthase

Assay

Mouse RAW 264.7 macrophages were cultured in RPMI
1640 (Gibco) containing 10% fetal bovine serum. The
confluent macrophages were then activated to express
inducible nitric oxide synthase by incubating with LPS
(300 ng/ml) in the same medium for 24 h at 37°C. Par-
tially purified inducible nitric oxide synthase was pre-
pared in a manner similar to that previously dcscribed7
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Fig. 2. Phenylephrine dose-response curve for rat thoracic
aortic artery rings preincubated in the presence or absence
of lipopolysaccharide (LPS+ and LPS—, respectively) and with
or without endothelium (intact and denuded, respectively).
Each data point represents mean *= SEM with n = 24-28 ani-
mals. *P < 0.05 compared to the lipopolysaccharide-treated
counterpart.

T T

Briefly, LPS stimulated macrophages were collected and
washed twice with Dulbecco’s phosphate-buffered saline
(pH 7.4, Gibco). The cells were then homogenized by
a tissue grinder fitted with a polytetrafluorethylene pestle
in 50 mm Tris-HCl (pH 7.4) containing 0.1 mwm ethyl-
enediaminetetraacetic acid, 0.1 mm EGTA, 0.5 mm di-
thiothreitol, 1 um pepstatin, and 2 uMm leupeptin at 4°C.
Homogenates were centrifuged at 100,000g for 60 min
at 4°C. The supernatant was collected and used as the
source of inducible nitric oxide synthase. The protein
content in the supernatant also was measured with the
Bio-Rad protein assay method.*’

Nitric oxide synthase activity was determined by
measuring the formation of *H-L-citrulline from *H-L-
arginine as described.” Enzymatic reactions were per-
formed in the reaction mixture (final volume 250 ul)
containing 50 mm Tris-HCI (pH 7.4), 0.1 mm L-citrul-
line, 0.1 mm NADPH, 10 uMm tetrahydrobiopterin, and
50 um *H-L-arginine in the presence or absence of halo-
thane (1-4%) or isoflurane (1-5%) for 10 min at 37°C.
Preliminary time-course data demonstrated a linear in-
creasing activity of the inducible nitric oxide synthase
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over the initial 10-min period of incubation under the
current experimental conditions. Enzymatic reactions
were terminated by adding 2 ml ice-cold stop buffer
containing 20 mm sodium acetate (pH 5.5), 1 mm L-
citrulline, 2 mm ethylenediaminetetraacetic acid, and
0.2 mm EGTA. The *H-L-citrulline produced was then
separated from *H-L-arginine by Dowex AG 50W-X8
(Na+ form, Bio-Rad Laboratories, Hercules, CA) col-
umn.”%

Data Analysis

Data are presented as mean + SEM. The percent re-
laxation in the isometric tension study was calculated
by dividing methacholine-induced relaxation (in
grams) from the stable phenylephrine plateau con-
striction by the phenylephrine plateau constriction (in
grams) and multiplying by 100. Statistical comparisons
were made using paired Student’s ¢ test when compar-
ing isometric tension of the same aortic rings treated
with or without inhalational anesthetics or using one-
way analysis of variance followed by Neuman-Keuls
means comparison testing between different groups of
aortic rings in the isometric tension study, cGMP study
or partially purified inducible nitric oxide synthase ac-
tivity study. P < 0.05 was considered significant. Each
data point represents the mean of the data from at least
six animals.

Drugs and Chemicals

Phenylephrine, methacholine, indomethacin, L-
NAME, and L-citrulline were obtained from Sigma (St.
Louis, MO). Halothane was obtained from Halocarbon
Laboratories (Hackensack, NJ), isoflurane from Ohmeda
Caribe Inc (Liberty Corner, NJ). Dowex AG 50W-X8
(Na+ form) and Bio-Rad protein assay reagent were
obtained from Bio-Rad. Gasses (95% air and 5% CO;)
were obtained from Roberts Oxygen Company
(Waynesboro, VA).

Results

Isometric Tension Study

Lipopolysaccharide significantly decreased the peak
tension and shifted the dose-response curve of phenyl-
ephrine to the right in both endothelium-intact and -de-
nuded aortic rings (fig. 2). The phenylephrine EC60 was
2.20 X 1077 mand 1.54 X 1077 M, respectively, for en-
dothelium-intact and -denuded rings without LPS treat-
ment, which were significantly different from those of
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their counterparts with LPS treatment (3.88 X 107" ™
and 4.14 X 1077 M, respectively, n = 24-28, P<0.05).
Halothane and isoflurane significantly inhibited (at
29% or 3% of halothane or isoflurane) endothelium-de-
pendent relaxation caused by methacholine in the rings
without LPS treatment (figs. 3A and 3B). This inhibition
was reversible because methacholine caused the same
extent of relaxation in the postanesthetic control as
that in the preanesthetic control (figs. 3A and 3B). This
inhibition is not owing to the different experimental
cycles because the parallel time-control experiments
showed virtually identical magnitude of relaxation
caused by methacholine over the five experimental cy-
cles (fig. 3C).

Neither halothane nor isoflurane at concentrations of
1-3% affected the basal tension of rings in any groups
studied. The LPS-exposed aortic rings developed less
than 40% of the phenylephrine EC60 tension of the
nonexposed counterparts (table 1). Halothane revers-
ibly inhibited the phenylephrine EC60 tension in en-
dothelium-denuded rings without LPS treatment. Thus,
the phenylephrine EC60 tension of endothelium-de-
nuded rings in the presence of 3% halothane was sig-
nificantly lower than that of posthalothane control (P
< 0.05). Similarly, 3% isoflurane also significantly in-
hibited the phenylephrine EC60 tension compared to
that of the postisoflurane control in both endothelium-
intact and -denuded rings without LPS treatment (P <
0.05). Isoflurane (3%) also significantly inhibited the
phenylephrine EC60 tension compared to that of
postisoflurane control in endothelium-denuded rings
with LPS treatment (P < 0.05). However, the phenyl-
ephrine EC60 tension in the endothelium-intact rings
incubated with LPS was neither affected by halothane
nor isoflurane. Halothane also failed to affect the phen-
ylephrine EC60 tension in the endothelium-intact, LPS-
treated rings (table 1). The parallel time control ex-
periments excluded the possibility that the phenyl-
ephrine EC60 tension changes described earlier were
caused by different experimental cycles (Table 1).
L-NAME (300 um) significantly increased the phen-
ylephrine EC60 tension of both endothelium-intact and
-denuded rings treated with LPS (P < 0.05; fig. 4).
However, the phenylephrine EC60 tension of these
rings in the presence of 300 um L-NAME was still sig-
nificantly lower than that of the rings without LPS treat-
ment in the presence of 300 um L-NAME (fig. 4), sug-
gesting that 300 pm L-NAME only partially reversed the
effects of LPS on the phenylephrine EC60 tension of
these rings, which is consistent with previous work
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Table 1. PE ECq, Tension of Aortic Rings of Rats

Endothelium Intact

Endothelium Denuded

Condition LPS (-)

LPS (+) LPS (-) LPS (+)
Prehalothane 0.92 +0.25 0.12 + 0.03 1.56 + 0.32 0.54 + 0.09
1% halothane 0.89 +0.12 0.09 + 0.02 1.56 + 0.21 0.59 + 0.16
2% halothane 0.86 + 0.12 0.28 + 0.16 1.54 + 0.26 0.87 + 0.20
3% halothane 0.83 + 0.11 0.28 + 0.16 1.42 + 0.30* 0.86 + 0.15
Posthalothane 1.04 +0.22 0.15 + 0.04 2.04 + 0.25 0.93 + 0.12
Preisoflurane 0.95 +£0.10 0.15 + 0.06 1.61 +£0.09 0.44 + 0.13
1% isoflurane 1.13 £ 0.15 0.14 + 0.07 1.74 £ 0.21 0.47 £ 0.12
2% isoflurane 1.06 + 0.13 0.14 + 0.07 1.74 £ 0.22 0.46 + 0.13
3% isoflurane 0.95 + 0.14* 0.16 £ 0.10 1.56 + 0.20* 0.36 + 0.09*
Postisoflurane 1.20 + 0.18 0.13 + 0.06 2.00 + 0.26 0.48 +0.12
Control 1 0.84 +0.13 0.24 + 0.08 1.57 £ 0.15 0.58 + 0.10
Control 2 0.96 + 0.14 0.21 + 0.07 1.74 + 0.17 0.59 +£ 0.13
Control 3 1.01 £ 0.16 0.19 + 0.06 1.70 = 0.16 0.73 £ 0.18
Control 4 1.02 + 0.16 0.22 + 0.07 1.89 +0.15 0.90 + 0.20
Control 5 1.07 £ 0.15 0.25 +0.10 1.90 +£0.18 0.91 £ 0.20

Data indicate the phenylephrine (PE) ECq, tension (g) of rat thoracic aortic rings preincubated in the presence or absence of lipopolysaccharide (LPS+ and LPS—,
respectively) and with or without endothelium. Values are mean + SEM in grams with n = 6-8 animals.

ECeso = 60% maximal contractile dose of phenylephrine.
* P < 0.05 versus the postanesthetic control.

L-NAME, n = 0.66%

to 0).

12, P> 0.05 comparing 1.25 =+

Cyclic Guanosine 3,5-Monophosphate

Cyclic guanosine 3,5-monophosphate content in the
endothelium-denuded rings was significantly increased
by exposure to LPS (P < 0.05). However, neither 3%
halothane nor 3% isoflurane significantly decreased the

cGMP content in the LPS-treated rings (fig. 5).

Inducible Nitric Oxide Synthase Activity

Neither halothane (1-4%) nor isoflurane (1-5%)
significantly altered the inducible nitric oxide synthase
activity (fig. 0).

Discussion

Several studies indicate that inhalational anesthetics
inhibit the nitric oxide-guanylyl cyclase signaling
pathway.!#-1¢3931 However, the site(s) at which this
inhibition takes place are not clear. The proposed sites
include the synthesis, release, or transport of nitric ox-
ide as well as the activation of guanylyl cyclase.'” We
investigated the possible inhibitory sites using rat aortic
rings treated with or without LPS.

Anesthesiology, V 84, No 5, May 1996

Lipopolysaccharide has been demonstrated to induce
expression of the inducible nitric oxide synthase iso-
form in endothelium and vascular smooth muscle cells
as well as macrophages.”*%?* In the current study, L-
NAME, a specific nitric oxide synthase inhibitor, sig-
nificantly increased the phenylephrine EC60 of the LPS-
treated aortic rings, suggesting the induction of induc-
ible nitric oxide synthase. Because inducible nitric
oxide synthase has calmodulin tightly bound in its rest-
ing state, it is continuously activated without additional
calcium.’® The observation that neither halothane nor
isoflurane significantly increased the phenylephrine
ECG6O0 tension in the LPS-treated rings suggests that nei-
ther inhalational anesthetic inhibits the nitric oxide
production of these vascular rings. The cGMP data fur-
ther suggest that halothane and isoflurane do not inhibit
the inducible nitric oxide synthase activity because the
cGMP increase caused by inducible nitric oxide syn-
thase was not affected by either anesthetic. Consistent
with this, neither halothane nor isoflurane significantly
inhibited the partially purified inducible nitric oxide
synthase activity. Therefore, direct inhibition of nitric
oxide synthase enzymatic function or any distal point
in the nitric oxide-guanylyl cyclase-cGMP pathway is
not the major site at which these two anesthetics inhibit
the nitric oxide-guanylyl cyclase signaling pathway.
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Fig. 4. Effect of 300 um L-NAME on the phenylephrine EC60
tension of LPS-treated rat thoracic aortic rings. Each data point
represents mean = SEM with n = 12-14 animals. *P < 0.05
compared to the control plus L-NAME group. #P < 0.05 com-
pared to the group of LPS alone.

+ +
L-NAME L-NAME

This is consistent with the results of a study con-
ducted in our laboratory that demonstrated that inha-
lational anesthetics at concentrations ranging from 1%
to 4% produced no significant effect on either endo-
thelial or brain nitric oxide synthase activity in vitro
under a variety of experimental conditions.*® However,
a study by Tobin et al.*° showed that halothane and
isoflurane at clinically relevant concentrations (0.5-
2%) inhibited isolated rat brain nitric oxide synthase
activity. The reason for these controversial results is
not known. However, consistent with our results,
Tagliente recently reported that halothane at different
concentrations caused no significant change in the Mi-
chaelis constant (Km) for L-arginine or maximum ve-
locity (Vmax) Of nitric oxide synthase, suggesting that
the mechanism of anesthetic action of halothane is not
mediated by direct alteration of nitric oxide synthase
activity.

Alternatively, guanylyl cyclase has been proposed as
the site for inhalational anesthetic inhibition of the ni-
tric oxide-guanylyl cyclase signaling pathway. This has
been suggested by arterial ring studies using sodium
nitroprusside, nitroglycerin, or nitric oxide as the vessel
relaxants*® and by evaluating the effect of anesthetics

Anesthesiology, V 84, No 5, May 1996

on a partially purified guanylyl cyclase enzyme sys-
tem.22233¢ However, a variety of studies using similar
models have not confirmed these observations.'*?+36
We prepared partially purified soluble and particulate
guanylyl cyclases from rat brain and demonstrated that
halothane, enflurane, or isoflurane at a very wide range
of concentrations did not affect the basal or agonist-
stimulated activity of partially purified guanylyl cyclase
in vitro.?* Consistent with these results, another study
employing endothelium smooth muscle cell coculture
methods, using intact cells, also strongly suggested that
halothane and isoflurane did not affect the activation
of guanylyl cyclase by sodium nitroprusside, nitro-
glycerin, or nitric oxide.?° The current study provides
further evidence that halothane and isoflurane do not
inhibit guanylyl cyclase or the subsequent actions of
c¢GMP in eliciting vascular relaxation. If the activation
of guanylyl cyclase or the action of cGMP is the site of
inhibition, the increase of cGMP in the LPS-treated rings
should be significantly inhibited by halothane or iso-
flurane and the decrease in constriction to phenyleph-
rine of the LPS-treated rings should be reversed by these
two anesthetics. These two effects have not been ob-
served in this study; therefore, current evidence
strongly suggests that the inhibitory sites for inhala-

2500 -
A: LPS -
B: LPS +
C: LPS + 3% Halothane
2000 | D:LPS-
E:LPS + *

F: LPS + 3% Isoflurane

1500

1000

|
*

500

i il

A B C D E F

c¢GMP Production (fmol/mg protein)

Fig.-S. Effect of halothane and isoflurane on the cyclic gua-
nosine monophosphate content of endothelium-denuded rat
thoracic rings. Rings were preincubated in the presence or
absence of lipopolysaccharide (LPS+ and LPS—, respectively)'
Each data point represents mean + SEM with n = 6 animals.

*P < 0.05 compared to the rings without lipopolysaccharide
treatment.
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of partially purified inducible nitric oxide synthase of acti-
vated mouse macrophages. Each data point represents mean
+ SEM with n = 9.
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tional anesthetics on the nitric oxide-guanylyl cyclase
signaling pathway are proximal to guanylyl cyclase.
Endothelial nitric oxide synthase is a constitutive
form of nitric oxide synthase, which requires calcium
for activation® (fig. 1). Methacholine acts on the mus-
carinic receptor on the endothelial cell surface, re-
sulting in a receptor-mediated increase in cytosolic
calcium from both extracellular and intracellular
sources and a subsequent increase in production of
nitric oxide.'* Methacholine may also cause the release
of endothelium-derived hyperpolarizing factor to in-
duce vasorelaxation, mainly in small blood vessels.®’
The contribution of hyperpolarizing factor to the va-
sorelaxation caused by methacholine in our current

§ Uhl C, Sill JC, Nelson R, Johnson ME, Blaise G: Isoflurane and
halothane and responses of cultured pig coronary artery endothelial
cells (abstract). ANESTHESIOLOGY 1990; 73:A621.
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experiments is minimal because 300 um L-NAME abol-
ished the vasorelaxation by methacholine. Our results
demonstrate that both halothane and isoflurane revers-
ibly inhibited the vascular ring relaxation caused by
methacholine. This inhibition occurred in the presence
of indomethacin, which inhibits the production of va-
soactive prostanoid metabolites; the production of
which may be stimulated by methacholine as well as
by inhalational anesthetics,'® confirming the previous
vascular ring studies in the absence of indometha-
cin.'*151819 The results also showed that neither halo-
thane nor isoflurane affected the basal endothelial nitric
oxide synthase activity because neither of them affected
the basal tension in those endothelium-intact rings.
Therefore, agonist-stimulated receptor activation and/
or subsequent events leading to an increase in cytosolic
calcium and nitric oxide synthase activation may be
important sites for the inhalational anesthetic inhibition
of the nitric oxide-guanylyl cyclase signaling pathway
(fig. 1).

Inhalational anesthetics have been demonstrated to
have significant effects on cytosolic calcium concen-
tration in multiple cell types, including endothelial
cells, through an effect on calcium movement into the
cells, either by changing calcium influx through re-
ceptor- or voltage-activating membrane calcium chan-
nels or by an alteration in calcium release from or up-
take into the sarcoplasmic reticulum.*®**° Using flu-
orescent dye, Uhl et al.§ and Loeb et al.*° reported
that halothane significantly inhibited the endothelial
cell calcium transient stimulated by the agonists bra-
dykinin and adenosine triphosphate. Inhalational an-
esthetics also have been shown to impair receptor ac-
tivation. Halothane has been shown to shorten acetyl-
choline receptor kinetics,”' and isoflurane has been
shown to cause flickering of the acetylcholine recep-
tor.*? Many inhalational anesthetics (such as halothane,
enflurane, and isoflurane) have been shown to interfere
with the coupling between muscarinic receptors and
their G proteins.**=*> Therefore, it is clear from the
literature that inhalational anesthetics can impair re-
ceptor activation and the cytosolic calcium responses
caused by agonists. Consistent with this idea, a study
from our laboratory demonstrated that inhalational an-
esthetics inhibited the receptor-mediated and nonre-
ceptor-mediated but calcium-dependent nitric oxide
synthase activation in rat aortic rings."*

Apart from the inhibition of endothelium-dependent
relaxation, both halothane and isoflurane are also
shown to have vasorelaxant effects in this isolated vessel
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preparation because the phenylephrine EC60 tension
in the presence of 3% halothane or 3% isoflurane was
significantly less than in controls. Consistent with pre-
vious reports, this vasorelaxation was endothelium-in-

dependent.*®
In summary, both halothane and isoflurane produced

a reversible inhibition of agonist-stimulated, nitric ox-
ide-mediated vasorelaxation of rat aortic rings. Neither
halothane nor isoflurane, at the tested concentrations,
affected the basal endothelial nitric oxide synthase or
inducible nitric oxide synthase vasorelaxation, isolated
inducible nitric oxide synthase activity, or the increase
of ¢cGMP caused by inducible nitric oxide synthase in
the LPS-treated rings. Therefore, the receptor activation
and/or downstream signaling events that lead to in-
creases in intracellular calcium and nitric oxide syn-
thase activation or interactions with other cofactors or
regulatory mechanisms of nitric oxide synthase activity
may be primary sites for inhalational anesthetics to in-
hibit the nitric oxide-guanylyl cyclase signaling path-
way.
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