Anesthesiology
1996; 84:945-54
c 1996 American Society of Anesthesiologists, Inc Lippincott-Raven Publishers

Pontine Cbolinergic Mechanisms Modulate the Cortical Electroencephalographic Spindles of Halothane Anesthesia

J. C. Keifer, M.D.,* H. A. Baghdoyan, Ph.D., * R. Lydic, Ph.D. \dagger

Background: Halothane anesthesia causes spindles in the electroencephalogram (EEG), but the cellular and molecular mechanisms generating these spindles remain incompletely understood. The current study tested the hypothesis that halothane-induced EEG spindles are regulated, in part, by pontine cholinergic mechanisms.

Methods: Adult male cats were implanted with EEG electrodes and trained to sleep in the laboratory. Approximately 1 month after surgery, animals were anesthetized with halothane and a microdialysis probe was stereotaxically placed in the medial pontine reticular formation (mPRF). Simultaneous measurements were made of MPRF acetylcholine release and number of cortical EEG spindles during halothane anesthesia and subsequent wakefulness. In additional experiments, carbachol (88 mm) was microinjected into the mPRF before halothane anesthesia to determine whether enhanced cholinergic neurotransmission in the mPRF would block the ability of halothane to induce cortical EEG spindles.
Results: During wakefulness, mPRF acetylcholine release averaged $0.43 \mathrm{pmol} / 10 \mathrm{~min}$ of dialysis. Halothane at 1 minimum alveolar concentration decreased acetylcholine release (0.25 $\mathrm{pmol} / 10 \mathrm{~min}$) while significantly increasing the number of cortical EEG spindles. Cortical EEG spindles caused by $1 \mathrm{~min}-$ imum alveolar concentration halothane were not significantly different in waveform, amplitude, or number from the EEG spindles of nonrapid eye movement sleep. Microinjection of carbachol into the mPRF before halothane administration caused a significant reduction in number of halothane-induced EEG spindles.

Conclusions: Laterodorsal and pedunculopontine tegmental neurons, which provide cholinergic input to the mPRF, play

- Associate Professor of Anesthesia

\dagger Professor of Anesthesia
Received from the Department of Anesthesia, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Submitted for publication May 11, 1995. Accepted for publication December 20, 1995. Supported by the Department of Anesthesia and by grant MH-45361 (to H.A.B.) and grants HL-40881 and HL-47749 (to R.L.). Presented in part at the annual meeting of the Association of University Anesthesiologists, Chicago, Illinois, May 5-8, 1994.
Address reprint requests to Dr. Lydic: Department of Anesthesia, The Pennsylvania State University College of Medicine, P.O. Box 850 , Hershey, Pennsylvania 17033.
Address electronic mail to: rlydic@anes.hmc.psu.edu
a causal role in generating the EEG spindles of halothane anesthesia. (Key words: Measurement techniques: microdialysis. Monitoring: electroencephalogram burst suppression. Neurotransmission: cholinergic. Potency, anesthetic: minimum alveolar concentration.)

THE physiologic and behavioral responses to painful stimuli during anesthesia are characterized by a high degree of individual variability. About 30 yr ago, a seminal series of investigations showed that, in spite of the variable response to pain, a useful standard of anesthetic potency was the minimum alveolar concentration (MAC) of anesthetic necessary to prevent movement in response to a painful stimulus. The concept of MAC^{1} thus provided a standard behavioral response for comparing different inhalational anesthetics. ${ }^{2}$ The positive correlation of MAC with lipid solubility of volatile anesthetics ${ }^{3}$ also facilitates ongoing efforts to elucidate the neuronal mechanisms causing anesthesia. ${ }^{4,5}$
As reviewed recently, ${ }^{6}$ there is an extensive literature on the use of electroencephalographic (EEG) monitoring for assessing anesthetic depth. Less is known, however, about the central nervous system mechanisms generating changes in the cortical EEG at various anesthetic concentrations. For the volatile agent halothane, anesthetic concentration was shown to be correlated with the production of $10-14 \mathrm{~Hz}$ activity in the human EEG. ${ }^{7}$ Increased $12-15 \mathrm{~Hz}$ EEG activity, described as similar to barbiturate spindles, also was noted in cat after administration of halothane. ${ }^{8}$ This relationship between halothane concentration and EEG spindles suggests that understanding the cellular mechanisms generating halothane-induced EEG changes may also contribute to efforts seeking to elucidate a neuronal basis underlying altered behavior during anesthesia.
During both natural sleep and anesthesia, cholinergic and cholinoceptive pontine neurons alter EEG and behavioral arousal. During natural sleep, for example, cholinergic neurotransmission in the pons plays a key
role in generating the EEG．${ }^{9-12}$ The medial pontine re－ ticular formation（mPRF）contains neurons that are known to be cholinoceptive，and microinjecting cho－ linergic agonists into the mPRF reliably produces a de－ synchronized EEG，similar to the EEG of natural rapid eye movement（REM）sleep（reviewed in reference 13）．Acetylcholine release within the mPRF is enhanced during natural REM sleep ${ }^{14}$ and during the choliner－ gically induced REM sleeplike state．${ }^{15}$
Data also emphasize the importance of cholinergic neurotransmission for the generation of anesthetically induced states．During isoflurane anesthesia in rat，in－ creasing brain acetylcholine levels by intracerebroven－ tricular administration of physostigmine significantly increased MAC．${ }^{16}$ During halothane anesthesia in cat， acetylcholine levels in the pontine reticular formation were decreased．${ }^{11}$ These data inspired the current study designed to test the hypothesis that halothane－induced EEG spindles are generated by cholinergic mechanisms localizable to a specific region of the pontine brain stem．The results suggest that cholinergic neurons in the laterodorsal and pedunculopontine tegmental （LDT／PPT）nuclei，known to modulate the EEG spin－ dles of non－REM sleep in cat，${ }^{17}$ also cause the EEG spin－ dles characteristic of halothane anesthesia．

Methods and Materials

Surgical Preparation

All experiments were conducted in accordance with guidelines established by the National Institutes of Health．\ddagger As described in detail previously，${ }^{13,18}$ adult male cats $(\mathrm{N}=8)$ were implanted during halothane anesthesia with standard，indwelling electrodes for re－ cording the EEG，electroocculographic，electromyo－ graphic，and ponto－geniculo－occipital waves from the lateral geniculate bodies of the thalamus．These vari－ ables enabled an objective measurement of sleep and wakefulness according to well－developed criteria．${ }^{19} \mathrm{~A}$ craniotomy was created to provide painless access to the brain stem for subsequent insertion of dialysis probes and／or microinjection cannulas．After recovery from surgery，the animals were trained to sleep in the

[^0]laboratory．The experiments were begun approximately 1 month after electrode implantation．

Experimental Procedure

Before each experiment，the animals were anesthe－ tized by mask induction with halothane，nitrous oxide and oxygen．Tracheal intubation was accomplished af ter laryngoscopy and lidocaine spray was applied to the vocal cords．The lungs were ventilated to achieve an end－tidal carbon dioxide concentration of approx－ imately 30 mmHg ．Respiratory gas and anesthetic vapor concentrations were measured using a Raman spec－ trometer．End－tidal halothane concentration was ad－ justed to 1.2% ，previously determined to be the 1 MAC value for cats．${ }^{20}$ Using techniques described in detail elsewhere，${ }^{12,15}$ a microdialysis probe was aimed ste－ reotaxically for the mPRF ．The initial coordinates were posterior $=3.0$ ，lateral $=1.5$, height $=-5.0$, theta $=$ 30° posterior，according to the atlas of Berman．${ }^{21}$ For each experiment，continuous polygraphic recordings were obtained by connecting the EEG，electroocculo－ graphic，ponto－geniculo－occipital，and electromyo－ graphic electrodes to a Grass Model 7 Polygraph via a shielded cable．

Initial mPRF dialysis samples reflecting acetylcholine release due to injury induced by inserting the micro－ dialysis probe were discarded．Once the chromato－ grams revealed a stable level of acetylcholine release， dialysis samples were obtained every 10 min during anesthesia at 1 MAC halothane and during emergence from anesthesia．The animals＇tracheas were extubated during emergence when they were able to breathe spontaneously and maintain airway patency．After ex－ tubation，particular attention was given to confirming that the transitional state ended and that each animal was able to maintain prolonged intervals of wakefulness defined by behavioral and electrographic data．In no case were dialysis samples obtained during the transi－ tional state classified as coming from a fully awake an－ imal．Once normal arousal was present，dialysis samples continued to be collected from the mPRF for longer than 1 hr ．At the end of this procedure，the dialysis probe was withdrawn，the craniotomy tube was closed， and the animals were returned to their home cages After at least 1 week，procedures were repeated by placing the dialysis probe in a different location within the pontine reticular formation．It was thus possible to obtain multiple acetylcholine dialysis samples from the same animal during each experiment and to per－ form several experiments with each animal．

Microdialysis ar Cbromatograpb
The microdialys cine，Stockholm， tip and a $20-\mathrm{kD}$ m detail previously，${ }^{1}$ $3.0 \mu \mathrm{l} / \mathrm{min}$ 䲞ith samples wer畺 col Ringers solut 2.4 mM CaCl 군 ； 1 μl dialysis saing mance liquid separated ac衰tylc enzyme reac侖Or c grams propeg ortion Acetylcholinsel area under tloge ch concentratiơ응 0

Pontine Garbc As reviewe in cholinominextics mation of $\breve{M}_{\mathrm{G}}^{\mathrm{n}} \mathrm{tac}$ sleeplike stag ${ }^{2}$ te，${ }^{1}$ release of aל্ধి etyl tylcholine ث̂as b LDT／PPT ne̊iuro release of cagety sleep．${ }^{14}$ Ra ${ }^{\text {id }} \mathrm{e}$ gically indụ̆ced by increaseeld dis a complete \mathscr{g}_{2} bse sible to defermi bachol（4． $\overrightarrow{8}) \mu \mathrm{g}$ thane indu⿳亠二口犬tion ber of hałotha studies，EEG s1 quantified duri mPRF carbacho spindle frequen ute samples of s of four concent $0.7 \%, 0.8-1.2 \%$
it possible to t relationship be centage of halo

Data Analys
Acetylcholin
expressed as p

CHOLINERGIC CONTROL OF HALOTHANE SPINDLES
un approximately
als were anesthe ne, nitrous oxide, accomplished afy was applied to tilated to achieve tration of approxd anesthetic vapor g a Raman specentration was add to be the 1 MAC escribed in detail e was aimed stecoordinates were it $=-5.0$, theta $=$ of Berman. ${ }^{21}$ For raphic recordings G, electroocculoand electromyo. 7 Polygraph via a
ting acetylcholine serting the microce the chromato tylcholine release, ry 10 min during during emergence as were extubated e able to breathe patency. After exiven to confirming d that each animal vals of wakefulness raphic data. In no 1 during the transin a fully awake annt , dialysis samples e mPRF for longer edure, the dialysis ny tube was closed, their home cages. were repeated by ent location within was thus possible alysis samples from eriment and to per h animal.

Microdialysis and High-performance Liquid Chromatography

The microdialysis probe (CMA/10, Carnegie Medcine, Stockholm, Sweden) had a $2-\mathrm{mm}$ polycarbonate tip and a $20-\mathrm{kD}$ molecular mass cutoff. As described in detail previously, ${ }^{12}$ the dialysis probe was perfused at $3.0 \mu \mathrm{l} / \mathrm{min}$ with Ringers solution and mPRF dialysis samples were collected every 10 min . The modified Ringers solution comprised: $147 \mathrm{~mm} \mathrm{NaCl} ; 4.0 \mathrm{~mm} \mathrm{KCl}$; $2.4 \mathrm{mM} \mathrm{CaCl} 2 ; 10 \mu \mathrm{M}$ neostigmine; $p \mathrm{H}=6.0$. The 30 $\mu 1$ dialysis samples were injected into a high-performance liquid chromatography system (BAS LC-4B) that separated acetylcholine and choline. An immobilized enzyme reactor column generated $\mathrm{H}_{2} \mathrm{O}_{2}$ and chromatograms proportional to acetylcholine and choline. ${ }^{22}$ Acetylcholine release was quantified by integrating the area under the chromatographic peak relative to known concentrations of acetylcholine and choline. ${ }^{12}$

Pontine Carbachol Administration

As reviewed in detail elsewhere, ${ }^{10}$ administration of cholinomimetics into the medial pontine reticular formation of intact, unanesthetized cat causes a REM sleeplike state,,13,23 and significant increases in mPRF release of acetylcholine. ${ }^{24}$ This increase in mPRF acetylcholine has been shown to arise from cholinergic LDT/PPT neurons ${ }^{15}$ and to parallel the increased mPRF release of acetylcholine observed during natural REM sleep. ${ }^{14}$ Rapid eye movement sleep and the cholinergically induced REM sleeplike state are characterized by increased discharge of LDT/PPT neurons ${ }^{25,26}$ and by a complete absence of EEG spindles. ${ }^{9}$ This made it possible to determine whether microinjecting 88 mm carbachol ($4.0 \mu \mathrm{~g} / 0.25 \mu \mathrm{l}$) into the mPRF before halothane induction would significantly decrease the number of halothane-induced EEG spindles. For these studies, EEG spindle frequency (spindles/min) was quantified during halothane anesthesia preceded by mPRF carbachol administration and compared to EEG spindle frequency during halothane alone. Thirty-minute samples of spindle activity were quantified for each of four concentrations of administered halothane (0.6$0.7 \%, 0.8-1.2 \%, 1.8 \%$, and 2.4%). These data also made it possible to test the hypothesis of a dose-dependent relationship between number of EEG spindles and percentage of halothane administered.

Data Analyses

Acetylcholine levels in the pontine brain stem were expressed as pmol/ 10 min dialysis. Statistically signif-
icant alterations in acetylcholine caused by halothane anesthesia were quantified with analysis of variance and Student's t test. Frequency of cortical EEG spindles was measured during halothane anesthesia and compared to cortical spindle activity during recordings of naturally occurring nonrapid eye movement (NREM) sleep not associated with anesthesia. Two-way analysis of variance, t test, and Sheffe's F test were used to evaluate the effect of halothane dose, and mPRF carbachol administration on EEG spindle frequency. Dialysis probe placement was localized histologically within the mPRF for each brain by examining cresyl violet-stained, serial sections of formalin-perfused brain stem.

Results

Halothane Decreased Medial Pontine Reticular Formation Acetylcholine

Detailed histologic analysis confirmed that all dialysis probe sites were within a region of the mPRF referred to in Berman's ${ }^{21}$ atlas as the gigantocellular tegmental field. Figure 1A shows representative chromatograms

Fig. 1. Individual chromatograms (A) and mean (+ SD) mPRF acetylcholine levels (B). Halothane anesthesia significantly depressed acetylcholine levels in the medial pontine reticular formation. Calibration for chromatogram (A) is shown at left; horizontal bar $\approx 110 \mathrm{~s}$; vertical bar $=0.05$ nA. Histograms (B) illustrate acetylcholine levels measured in four cats during 1 MAC halothane anesthesia ($\mathrm{N}=36$ dialysis samples), emergence ($\mathrm{N}=13$), and wakefulness $(\mathrm{N}=36) .^{*} P<0.05$ compared to acetylcholine levels during wakefulness.
nesthesia，EEG background of 10

Fig．2．Cortical electroencephalogram recorded during wakefulness，nonrapid eye movement sleep，rapid eye move－ ment sleep，and halothane anesthesia． The low amplitude，high frequency elec troencephalogram of wakefulness （WAKE）is similar to the EEG recorded during rapid eye movement（REM） sleep．${ }^{9}$ Non－REM sleep（NREM）is char－ acterized by high amplitude（ $>100 \mu \mathrm{~V}$ ） synchronized waves with frequencies of $8-14 \mathrm{~Hz}$（called spindles）．The lower tracing in the center shows that electro－ encephalogram spindles during halo－ thane anesthesia are similar to electro－ encephalogram spindles of NREM sleep． The right－most traces show a single spindle with an expanded time－scale during NREM sleep（top）and during halothane anesthesia（bottom）．
of mPRF acetylcholine during administration of 1 MAC halothane（left），emergence from halothane anesthesia （middle），and wakefulness（right）．For all of the cur－ rent results，the fully aroused waking state always was unambiguous and was based on electroencephalo－ graphic and behavioral criteria．${ }^{19}$ The data in figure 1B were derived from measurements summarizing 850 min of brain dialysis．Analysis of variance revealed a statistically significant effect of halothane on acetyl－ choline levels in the mPRF（F＝10．9；df $=2,84 ; P<$ 0.001 ）．During 1 MAC halothane，the mean mPRF ace－ tylcholine levels were $0.25(\pm 0.11) \mathrm{pmol} / 10 \mathrm{~min}$ di－ alysis．During subsequent wakefulness，mPRF acetyl－ choline levels increased to $0.43(\pm 0.24) \mathrm{pmol} / 10 \mathrm{~min}$ dialysis．Acetylcholine levels during 360 min of anes－ thesia at 1 MAC halothane were compared to acetyl－ choline levels during 360 min of wakefulness，and t test revealed that halothane anesthesia caused a signif－ icant（ $\mathrm{t}=4.2 ; \mathrm{df}=70 ; P<0.001$ ）decrease in mPRF levels of acetylcholine．
The ability of 1 MAC halothane to decrease acetyl－ choline levels was seen during the administration of every halothane anesthetic．When halothane adminis－ tration was discontinued，the first behavioral（move－ ment）and EEG（loss of cortical spindles）signs indi－ cating emergence from anesthesia were observed at end－tidal halothane concentrations ranging from 0.6% to 0.2% halothane．When end－tidal halothane concen－ trations were $<0.1 \%$ ，the animals regained waking con－
sciousness．The acetylcholine levels during the period of emergence from halothane anesthesia averaged 0.27 $(\pm 0.07) \mathrm{pmol} / 10 \mathrm{~min}$ dialysis．Acetylcholine levels during emergence（fig．1B）were significantly less than acetylcholine levels measured during wakefulness（ t $=2.4 ; \mathrm{df}=47 ; P<0.05$ ）．There was no statistically significant difference in mPRF acetylcholine levels comparing 1 MAC halothane to emergence from anes－ thesia．Arterial blood pressure measurements showed that halothane－induced decreases in systemic blood pressure were not significantly correlated with mPRF acetylcholine levels．

Halothane，Isoflurane，Enflurane，and
 Electroencephalogram Spindles

Figure 2 depicts cortical EEG recordings that are characteristic of wakefulness，NREM sleep，REM sleep， and halothane anesthesia．The phenomenological sim－ ilarity in the cortical EEG recording between NREM sleep and 1 MAC halothane also is apparent in figure 2．Quantification of EEG spindles showed that the mean （ \pm SD）spindle frequency during sample intervals com－ prising 44 min of NREM sleep（ 10.2 ± 2.6 spindles／ min ）was not significantly different from spindle fre－ quency during 44 min of halothane anesthesia（ $8.7 \pm$ 2.8 spindles $/ \mathrm{min}$ ）．

Figure 3 shows representative recordings of cortical EEG obtained during anesthesia with halothane，isoflu－ rane，and enflurane．Note that during 1 MAC halothane

This pattern is sil during natural NI MAC anesthesia x spindles arise fro Electroence ${ }^{\circ}$ halc ing wakeful Decrease ${ }^{\text {Q }}$ ace ticular for ${ }_{\text {雷atic }}$ observed wis⿱⺈巴，ile of the halogena （fig．4）． D 量ring isoflurane， ，超 Z nd averaged 0 家 22 $\mathrm{pmol} / 10$ 魚in， spectively increased $\begin{gathered}\text { gign o } \\ 0\end{gathered}$ To further cl EEG spindige fr four diffe害nt ministeret wh Analysis of var solid squâㅜㄹes） effect of 最alot per min．Whe at end－tidedal h halothanè acc boc com burst suppres compareat to dles．

Pontine $\stackrel{\circ}{2} \mathrm{Ca}$ Halot As a fự̣̂ther linergic me thane－induc was microin administrati that mPRF n desynchrony in the numb thane conce at 1 MAC When end－t to reveal int was no sig between ha carbachol．
ctroencephalogram kefulness, nonrapid p, rapid eye movelothane anesthesia. aigh frequency elecof wakefulness o the EEG recorded movement (REM) ep (NREM) is charmplitude ($>100 \mu \mathrm{~V}$) with frequencies of indles). The lower shows that electrondles during haloe similar to electroadles of NREM sleep. ces show a single xpanded time-scale (top) and during ia (bottom).
during the period esia averaged 0.27 etylcholine levels nificantly less than ig wakefulness (t vas no statistically etylcholine levels rgence from anesurements showed n systemic blood elated with mPRF

e, ana

ecordings that are I sleep, REM sleep omenological sim. g between NREM apparent in figure owed that the mean aple intervals com$.2 \pm 2.6$ spindles/ from spindle fre anesthesia (8.7士
cordings of cortical h halothane, isofluig 1 MAC halothane
anesthesia, EEG spindles were superimposed on a background of low-voltage, high-frequency activity. This pattern is similar to the occurrence of spindles during natural NREM sleep (fig. 2, NREM). During 1 MAC anesthesia with isoflurane and enflurane (fig. 3), spindles arise from a nearly isoelectric background. Electroencephalographic spindles never occurred during wakefulness (fig. 3, bottom).
Decreased acetylcholine levels in the pontine reticular formation caused by halothane, also were observed while administering 1 MAC concentrations of the halogenated ethers, isoflurane and enflurane (fig. 4). During anesthesia with 1 MAC halothane, isoflurane, and enflurane, mPRF acetylcholine levels averaged $0.22(\pm 0.06) \mathrm{pmol} / 10 \mathrm{~min}, 0.18(\pm 0.14)$ $\mathrm{pmol} / 10 \mathrm{~min}$, and $0.23(\pm 0.10) \mathrm{pmol} / 10 \mathrm{~min}$, respectively. During wakefulness, acetylcholine levels increased to $0.43(\pm 0.03) \mathrm{pmol} / 10 \mathrm{~min}$.

To further characterize the relationship between EEG spindle frequency and halothane concentration, four different concentrations of halothane were administered while quantifying EEG spindle frequency. Analysis of variance performed on these data (fig. 5, solid squares) revealed a statistically significant main effect of halothane dose on number of EEG spindles per min. The greatest number of spindles occurred at end-tidal halothane concentrations of 0.6-0.7\% halothane according to both t test and Scheffe's post boc comparison. With 2.4% halothane there was EEG burst suppression reflected by a significant decrease, compared to 1.8% halothane, in number of EEG spindles.

Pontine Carbachol Administration Decreased Halothane Spindles

As a further test of the hypothesis that pontine cholinergic mechanisms causally contribute to halo-thane-induced EEG spindle generation, carbachol was microinjected into the mPRF before halothane administration. The results (fig. 5, solid circles) show that mPRF microinjection of carbachol caused EEG desynchrony and a statistically significant decrease in the number of EEG spindles associated with halothane concentrations less than $1 \mathrm{MAC}(0.6-0.7 \%)$, at 1 MAC (1.2% halothane), and at 1.8% halothane. When end-tidal halothane was at 2.4%, the EEG began to reveal intervals of EEG burst suppression and there was no significant difference in spindle frequency between halothane alone and halothane plus pontine carbachol.

Enflurane

Waking

Fig. 3. Cortical electroencephalogram (EEG) recorded during 1 MAC anesthesia induced by three inhalational agents. Each EEG trace represents 60 s of recording time. The top trace (halothane) shows EEG spindle activity superimposed on a tonic background of low voltage, fast EEG activity. Arrows mark some of the halothane-induced EEG spindles recorded at sweep speed of $2.5 \mathrm{~mm} / \mathrm{s}$. The isoflurane trace shows an EEG comprising multiple spindle bursts superimposed on an isoelectric background. The enflurane trace shows a distinctly different pattern of EEG activity characterized by more single spikes and fewer clusters of spindles. The bottom tracing illustrates the desynchronized EEG typical of wakefulness. All EEG recordings were obtained from the same animal and all recordings were from the same implanted electrode configuration. At lower right, vertical calibration bar indicates 50 $\mu \mathrm{V}$ amplitude; horizontal bar indicates time of 5 s .

Discussion

The current data show that inhalational anesthetics decreased acetylcholine levels in the pontine reticular formation, and that halothane caused EEG spindles similar in appearance and frequency to the EEG spindles observed during NREM sleep. The results provide neurochemical, EEG, and behavioral data suggesting, for the first time, that cholinergic neurons in the LDT/ PPT involved in generating the EEG spindles of natural
during the loss o esthetic agents．Th that the EEG spinc as those observed cholinergic neur generating the EI anesthesia．異his testable，and esis will advåำ anisms genectatin
 Levels $t h$ 暍保 Limited i i itforn ship betweĕ̊n le nervous syğ̀̀tem cellular ang mc tional anesithet presently 害nov noted that ${ }^{\frac{2}{3}} \mathrm{~s}$ om inhibition क़ Tnd studies fro⿳⺈⿴囗十一日幺十 opioid ad release within t in the mP⿳亠口冋冖与合 c flurane（figs． 1 cholinergic L mPRF．${ }^{15}$ 휼
Changeşèin a release are kn studied．${ }^{3}$ FFor acetylchigine rats weregexp striatum，fhow creased i膏ters ing expos̃̃ure responses wit thetic exposu uniformly alt brain．

Cbolinergi
Generatior
Cellular stu
standing of t generation extracellular revealed a d relative to fir REM sleep．${ }^{25}$
ep. ${ }^{32}$ All three of which the EEG is voltage, high-freerminology points reaming phase of chronized EEG of

NREM phase, also ve sleep, or synof sleep, the EEG achronized wavecriptions of these ecause these EEG at progresses from pearing spindle in eworthy that EEG f wakefulness asalso are observed
2.4
ne \%
ram (EEG) spindles These data were obcats. Solid squares cats. lid circles show the oinjecting carbachol on before halothane Two-way analysis of it effect of halothane F = 5.36; d.f. $=\mathbf{3}, 120 ;$ ct of medial pontine indle frequency ($\mathbf{F}=$ atistically significant UF carbachol on EEG 1). Asterisks indicate 0.05) in EEG spindle and carbachol prelar formation before 1 end-tidal halothane re, medial pontine re re, medial pon ability
decreased the
during the loss of wakefulness caused by certain anesthetic agents. The data presented in this study suggest that the EEG spindles caused by halothane are the same as those observed during natural NREM sleep, and that cholinergic neurons in the LDT/PPT are involved in generating the EEG spindles of both NREM sleep and anesthesia. This working hypothesis is experimentally testable, and confirmation or refutation of this hypothesis will advance our understanding of neuronal mechanisms generating states of anesthesia.

Halothane Differentially Alters Acetylcholine Levels throughout the Brain

Limited information exists concerning the relationship between levels of neurotransmitters in the central nervous system and inhalational anesthetics. ${ }^{16,34}$ The cellular and molecular mechanisms by which inhalational anesthetics alter acetylcholine levels are not presently known. Mulder and Schoffelmeer ${ }^{35}$ have noted that some opioid agonists produce presynaptic inhibition and decrease acetylcholine levels. Previous studies from our laboratory have shown that systemic opioid administration causes decreased acetylcholine release within the mPRF. ${ }^{12}$ The decreased acetylcholine in the mPRF caused by halothane, isoflurane, and enflurane (figs. 1 and 4) reflects transmitter release from cholinergic LDT/PPT neurons terminating in the mPRF. ${ }^{15}$
Changes in acetylcholine turnover and acetylcholine release are known to vary as a function of brain region studied. ${ }^{34}$ For example, in the interpeduncular nucleus, acetylcholine release has been shown to increase when rats were exposed to 3% halothane anesthesia. ${ }^{36}$ In the striatum, however, additional studies in rat noted a decreased interstitial concentration of acetylcholine during exposure to halothane. ${ }^{37}$ These varied cholinergic responses within different brain regions during anesthetic exposure negate the possibility that halothane uniformly alters acetylcholine release throughout the brain.

Cholinergic Modulation of Halothane Spindle Generation

Cellular studies recently have advanced our understanding of the mechanisms involved in EEG spindle generation (reviewed in reference 28). For example, extracellular recordings from single LDT/PPT neurons revealed a diminished discharge during NREM sleep relative to firing rates recorded during wakefulness or REM sleep. ${ }^{25}$ These same LDT/PPT neurons also exhibit
increased firing rates during the transition from a synchronized EEG characteristic of NREM sleep to a desynchronized EEG characteristic of REM sleep ${ }^{26}$ (fig. 2). Because electrical stimulation of the LDT/PPT causes enhanced acetylcholine release in the mPRF, ${ }^{15}$ decreased acetylcholine release within the mPRF reflects decreased LDT/PPT discharge. Diminished LDT/ PPT discharge, therefore, causes decreased acetylcholine release, EEG synchronization, and the onset of cortical EEG spindles.
The current finding of halothane-induced reductions in mPRF acetylcholine levels (fig. 1) suggests that LDT/ PPT cholinergic input to the thalamus also is decreased during halothane anesthesia. Cholinergic LDT/PPT neurons simultaneously project to the thalamus and mPRF of the brain stem. ${ }^{38,39}$ The dual LDT/PPT projection to MPRF and thalamus is fortuitous because the small size of the nucleus reticularis, and the proximity of adjacent thalamic nuclei currently precludes selective dialysis of nucleus reticularis, even in large-brained animals such as cat. Microdialysis of the medial thalamus in rat has revealed that acetylcholine release originating from LDT/PPT neurons is high in association with EEG desynchrony of waking and REM sleep and significantly reduced during NREM sleep when EEG spindles are present. ${ }^{40}$ The finding of enhanced thalamic acetylcholine release during the EEG desynchrony of REM sleep is consistent with increased acetylcholine release in cat mPRF during the EEG activation of REM sleep. ${ }^{12.14 .24}$ Similarly, the diminished acetylcholine release in rat thalamus ${ }^{40}$ during the EEG synchrony of NREM sleep is consistent with the current finding (fig. 1) of decreased mPRF acetylcholine in association with halothane-induced EEG synchrony. The ability of cholinergic agonists microinjected into the mPRF to cause EEG desynchrony ${ }^{13,23}$ and to cause a decrease in halothane-induced EEG spindles (fig. 5), supports our conclusion that cholinergic LDT/PPT neurons play a causal role in generating the EEG spindles of halothane anesthesia.
A schematic summary of cholinergic mechanisms modulating EEG spindle generation is shown in figure 6. Two lines of evidence are key to figure 6 , and to our interpretation of the current findings. First is the finding noted earlier that LDT/PPT neurons provide simultaneous cholinergic input to both the pontine reticular formation and to the thalamus. ${ }^{38,39}$ Thus, decreased levels of acetylcholine in the pons (fig. 1) provide an indirect index of decreased cholinergic input to the thalamus. Within the thalamus, the centromedian and

Fig．6．Schematic summary of the brain re－ gions regulating pontine acetylcholine lev－ els and cholinergic modulation of the cor－ tical electroencephalogram（EEG）．The top image is a lateral view of cat brain with broken lines $(1,2,3)$ identifying the origin of coronal sections illustrated below．EEG spindles are measured in the cortex（1）， which electrophysiologic studies have shown are regulated by cells in the thalamic （2）nucleus reticularis（RE）and centrome－ dian（CM）nucleus．${ }^{17,28}$ The pontine section （3）shows the MPRF region from which the acetylcholine dialysis samples were ob tained（see fig．1）and into which carbachol was administered（see fig．5）．Pontine cho－ linergic neurons in the laterodorsal and pe－ dunculopontine tegmental（LDT／PPT）nu－ cleus have been shown by anatomic studies ${ }^{38,39}$ to project to both the thalamus and the MPRF，where they regulate acetyl－ choline release．${ }^{15}$ The lines connecting the cortex，thalamus，and pons schematically indicate pathways and neurons through which halothane induces cortical EEG spin－ dles．
nucleus reticularis have been shown to generate cor－ tical EEG spindles．${ }^{27}$ Additional studies ${ }^{28}$ revealed that any reduction in thalamic acetylcholine causes the re－ moval of cholinergic inhibition within the nucleus re－ ticularis，thus enabling the nucleus reticularis／centro－ median circuit to generate spindles in the cortical EEG． A second line of evidence supporting the schematic shown in figure 6 is provided by the current carbachol microinjection experiments．Pontine administration of the cholinergic agonist carbachol significantly de－ creased the ability of systemically administered halo－ thane to produce EEG spindles（fig．5）．Microinjection of carbachol into the mPRF has been known for more than 10 years to cause EEG desynchrony and elimina－ tion of all EEG spindles．${ }^{23}$ Carbachol administration into the mPRF has been shown to cause increased ace－ tylcholine release ${ }^{24}$ from cholinergic neurons in the LDT／PPT．${ }^{15}$ Thus，the current finding that mPRF mi－ croinjection of carbachol caused a significant decrease in halothane－induced EEG spindles provides a new line of evidence supporting the view that the EEG spindles of halothane anesthesia are caused，in part，by cholin－ ergic neurons in the LDT／PPT．

Limitations and Conclusions

One limitation of the current study is the inability to provide a cellular－level explanation for the phenom－
enological differences in the cortical EEG caused by different inhalational anesthetics（fig．3）．Whereas spindles during halothane anesthesia arise from a low－ voltage，high－frequency background，EEG spindles during isoflurane and enflurane anesthesia appear from a nearly isoelectric background（fig．3）．Although all three agents can cause spindles and decreased pontine acetylcholine levels，isoflurane and enflurane have the additional effect of suppressing the background，low－ voltage，high－frequency EEG activity．It is not possible from the present data to make inferences regarding the neuronal mechanisms underlying these EEG differ－ ences．

Since mask inductions with halothane are commonly accompanied by movement，and since such movement would produce brain damage from the stereotaxically positioned dialysis probe，it was not possible to obtain measures of mPRF acetylcholine levels before admin－ istering halothane．The results，however，reveal no sig－ nificant differences between postanesthesia measures of acetylcholine levels（waking，figs． 1 and 4）com－ pared to our previous measures of waking acetylcholine levels obtained without prior anesthesia．${ }^{12,15,41}$ The lack of a significant difference in waking mPRF acetylcholine levels，with and without prior anesthesia，suggests that the electroencephalographic and behavioral measures of the current study accurately defined and differen－
tiated wakefulne known to immedi No state of con brain region．${ }^{10}$ I bound proteins tion，${ }^{4,5}$ the anato by which gehereral immobility冨 and range from
 the forebrath ${ }^{43}$ structures 綗 ger been emptekize the pontin部 br： that subcoegical erating stages o No singlẹ̆ neu of consciogisne in agreem⿳亠口冋⿱⿰㇒一乂七心 that the cholin pontine b b ain arousal ${ }^{9}$, ， 1 end EEG motigtori depth of termine 䁇ith a patient ${ }^{\text {id }} \mathrm{dmi}$ unconsciఫ̈g̀us chroniza ion electrica ${ }^{\circ}$ an understaịidin generati鱁 th ically ingort： anesthes．a．a．${ }^{47}$

For exp言t ass P．Myers．$\stackrel{\text { IN }}{\perp}$

Reference：

1．Merkel G， propane anesth Anesthesiology
2．Eger EI，Sa concentration： 1965；26：756

3．Saidman I alveolar conce clopropane in thesiology 19
4．Franks N general anaest
ary of the brain ree acetylcholine levdulation of the corram (EEG). The top of cat brain with entifying the origin istrated below. EEG in the cortex (1), ogic studies have cells in the thalamic (RE) and centromeThe pontine section jion from which the samples were obto which carbachol fig. 5). Pontine cholaterodorsal and pental (LDT/PPT) nuown by anatomic both the thalamus hey regulate acetylines connecting the pons schematically d neurons through es cortical EEG spin-

al EEG caused by

 fig. 3). Whereas arise from a lowd, EEG spindles hesia appear from 3). Although all decreased pontine enflurane have the background, low . It is not possible nces regarding the these EEG differ-ane are commonly ce such movement the stereotaxically possible to obtain vels before adminever, reveal no sig. lesthesia measures gs. 1 and 4) com. aking acetylcholine esia. ${ }^{12,15,41}$ The lack nPRF acetylcholine hesia, suggests that ehavioral measures fined and differen.
tiated wakefulness from obtunded levels of arousal known to immediately follow recovery from anesthesia.
No state of consciousness is regulated by any single brain region. ${ }^{10}$ In addition to identifying membranebound proteins as important sites of anesthetic action, ${ }^{4.5}$ the anatomically distributed neuronal networks by which general anesthesia causes insensibility to pain, immobility, and loss of consciousness are known to range from spinal to cerebral levels. ${ }^{42}$ Data have been presented showing that MAC in rat is independent of the forebrain, ${ }^{43}$ and the importance of subcortical brain structures in generating states of general anesthesia has been emphasized. ${ }^{44}$ The current results obtained from the pontine brain stem are consistent with the view that subcortical brain structures play a key role in generating states of general anesthesia.
No single neurotransmitter system generates any state of consciousness. ${ }^{10,30}$ The current results, however, are in agreement with a large body of evidence showing that the cholinergic and cholinoceptive neurons in the pontine brain stem play a major role regulating EEG arousal ${ }^{9,10}$ and anesthetic requirement. ${ }^{16}$ Topographic EEG monitoring shows great promise for assessing depth of anesthesia, ${ }^{6}$ but it is not yet possible to determine with 100% reliability from EEG data whether a patient administered general anesthesia is completely unconscious during surgery. ${ }^{45}$ Because EEG desynchronization is known to be positively correlated with electrical ${ }^{9}$ and metabolic ${ }^{46}$ activation of the cortex, understanding the cellular and molecular mechanisms generating the EEG ultimately may help avoid the clinically important problem of patient awareness during anesthesia. ${ }^{47}$

For expert assistance the authors thank L. Bonsall, J. Graybeal, and P. Myers.

References

1. Merkel G, Eger EI: A comparative study of halothane and halopropane anesthesia: Including method for determining equipotency. Anesthesiology 1963; 24:346
2. Eger EI, Saidman LJ, Brandstater B: Minimum alveolar anesthetic concentration: A standard of anesthetic potency. Anesthesiology 1965; 26:756-63
3. Saidman LJ, Eger EI, Munson ES, Babad AA, Muallem M: Minimum alveolar concentrations of methoxyflurane, halothane, ether and cyclopropane in man: Correlation with theories of anesthesia. ANEsthesiology 1967; 28:994-1002
4. Franks NP, Lieb WR: Molecular and cellular mechanisms of general anaesthesia. Nature 1994; 367:607-14
5. Franks NP, Lieb WR: Selective actions of volatile general an aesthetics at molecular and cellular levels. Br J Anaesth 1993; 71: 65-76
6. Kochs E, Bischoff P, Pichlmeier U, am Esch JS: Surgical stimulation induces changes in brain electrical activity during isoflurane/ nitrous oxide anesthesia. Anesthesiology 1994; 80:1026-34
7. Yli-Hankala A, Eskola H, Kaukinen S: EEG spectral power during halothane anaesthesia: A comparison of spectral bands in the monitoring of anaesthesia level. Acta Anaesthesiol Scand 1989; 33:3048
8. Ogawa T, Shibata M, Mori K: The divergent actions of volatile anaesthetics on background neuronal activity and reactive capability in the central nervous system in cats. Can J Anaesth 1992; 39:86272
9. Steriade M, McCarley RW: Brainstem Control of Wakefulness and Sleep. New York, Plenum, 1990, pp 1-499
10. Lydic R, Biebuyck JF: Sleep neurobiology: Relevance for mechanistic studies of anaesthesia. Br J Anaesth 1994; 72:5068
11. Keifer JC, Baghdoyan HA, Becker L, Lydic R: Halothane decreases pontine acetylcholine release and increases EEG spindles. Neuroreport 1994; 5:577-80
12. Lydic R, Keifer JC, Baghdoyan HA, Becker L: Microdialysis of the pontine reticular formation reveals inhibition of acetylcholine release by morphine. Anesthesiology 1993; 79:1003-12
13. Baghdoyan HA, Spotts JL, Snyder SG: Simultaneous pontine and basal forebrain microinjections of carbachol suppress REM sleep. J Neurosci 1993; 13:227-40
14. Leonard TO, Lydic R: Nitric oxide synthase inhibition decreases pontine acetylcholine release. Neuroreport 1995; 6:1525-9
15. Lydic R, Baghdoyan HA: Pedunculopontine stimulation alters respiration and increases ACh release in the pontine reticular formation. Am J Physiol 1993; 264:R544-54
16. Zucker J: Central cholinergic depression reduces MAC for isoflurane in rats. Anesth Analg 1991; 72:790-5
17. Steriade M, McCormick DA, Sejnowski TJ: Thalamocortical oscillations in the sleeping and aroused brain. Science 1993; 262 : 679-85
18. Keifer JC, Baghdoyan HA, Lydic R: Sleep disruption and increased apneas after pontine microinjection of morphine. Anesthesiology 1992; 77:973-82
19. Ursin R, Sterman MB: A Manual for Standardized Scoring of Sleep and Waking States in the Adult Cat. Los Angeles, Brain Information Service/Brain Research Institute, 1981, pp 1-103
20. Travis CC, Bowers JC: Interspecies scaling of anesthetic potency. Toxicol Ind Health 1989; 7:249-60
21. Berman AL: The Brain Stem of the Cat. Madison, University of Wisconsin Press, 1968, pp 70-83
22. Potter PE, Meek JL, Neff NH: Acetylcholine and choline in neuronal tissue measured by HPLC with electrochemical detection. J Neurochem 1983; 41:188-94
23. Baghdoyan HA, Rodrigo-Angulo ML, McCarley RW, Hobson JA: Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brain stem regions. Brain Res 1984; 396:39-52
24. Lydic R, Baghdoyan HA, Lorinc Z: Microdialysis of the medial pontine reticular formation (mPRF) reveals enhanced acetylcholine release during state-dependent respiratory depression. Am J Physiol 1991; 261:R766-70

KEIFER，BAGHDOYAN，AND LYDIC

25．El Mansari M，Sakai K，Jouvet M：Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep－waking cycle in freely moving cats．Exp Brain Res 1989；76：519－29
26．El Mansari M，Sakai K，Jouvet M：Responses of presumed cho－ inergic mesopontine tegmental neurons to carbachol microinjections in freely moving cats．Exp Brain Res 1990；83：115－23
27．Steriade M，Contreras D，Curro＇Dossi R，Nunez A：The slow $(<1 \mathrm{~Hz}$ ）oscillation in reticular thalamic and thalamocortical neurons Scenario of sleep rhythm generation in interacting thalamic and neo－ cortical networks．J Neurosci 1993；13：3284－99
28．Steriade M：Cholinergic blockage of network－and intrinsically－ generated slow oscillations promotes waking and REM sleep activity patterns in thalamic and cortical neurons．Prog Brain Res 1993；98： 345－55

29．Guedel A：Inhalation Anesthesia，A Fundamental Guide．2nd edition．New York，Macmillan，1951，pp 10－5
30．Lydic R，Baghdoyan HA：Cholinergic contributions to the con－ trol of consciousness，Anesthesia：Biologic Foundations．Volume 2 Integrated Systems．Edited by Biebuyck JF，Lynch C，Maze M，Saidman LJ，Yaksh TL，Zapol WM．New York，Raven，（in press）

31．Chase MH，Morales FR：The atonia and myoclonia of active （REM）sleep．Ann Rev Psychol 1990；41：557－84
32．Jouvet M：The role of monoamines and acetylcholine－contain－ ing neurons in the regulation of the sleep－waking cycle．Ergeb Physiol 1972；64：166－307

33．Dijk DJ：EEG slow waves and sleep spindles：Windows on the sleeping brain．Behav Brain Res 1995；69：109－16

34．Koblin DD：Mechanisms of action，Anesthesia．Edited by Miller RD．New York，Churchill Livingstone，1994，pp 67－99

35．Mulder AH，Schoffelmeer ANM：Multiple opioid receptors and presynaptic modulation of neurotransmitter release in the brain，Opioids I．Edited by Herz A．Berlin，Springer，1993，pp 127－44

36．Taguchi K，Andersen MJ，Hentall ID：Acetylcholine release
from the midbrain interpeduncular nucleus during anesthesia．Neu roreport 1991；2：789－92

37．Damsma G，Fibiger HC：The effects of anaesthesia and hypo－ thermia on interstitial concentrations of acetylcholine and choline in rat striatum．Life Sci 1991；48：2469－74
38．Semba K，Reiner PB，Fibiger HC：Single cholinergic meso－ pontine tegmental neurons project to both the pontine reticular for－ mation and the thalamus in the rat．Neuroscience 1990；38：643－54

39．Honda T，Semba K：An ultrastructural study of cholinergic and non－cholinergic neurons in the laterodorsal and pedunculopontine nuclei in the rat．Neuroscience 1995；68：837－53

40．Williams JA，Comisarow J，Day J，Fibiger HC，Reiner PB：State－ dependent release of acetylcholine in rat thalamus measured by in vivo microdialysis．J Neurosci 1994；14：5236－42

41．Becker L，Baghdoyan HA，Lydic R：Acetylcholine（ACh）release in the medial pontine reticular formation（mPRF）increases during natural rapid eye movement（REM）（abstract）．Neuroscience 1994； 20：82

42．Quasha AL，Eger EI，Tinker JH：Minimum alveolar concentra－ tion of I－653 and isoflurane in pigs：Definition of a supramaximal stimulus．Anesth Analg 1980；53：315－34

43．Rampil IJ，Mason P，Sing H：Anesthetic potency（MAC）is in－ dependent of forebrain structures in the rat．Anesthesiology 1993； 78：707－12

44．Antognini JF，Schwartz K：Exaggerated anesthetic requirements in the preferentially anesthetized brain．Anesthesiology 1993；79： 1244－9

45．Kulli \mathbf{J} ，Koch \mathbf{C} ：Does anesthesia cause loss of consciousness？ Trends Neurosci 1991；14：6－10
46．Lydic R，Baghdoyan HA，Hibbard L，Bonyak EV，DeJoseph MR， Hawkins RA：Regional brain glucose metabolism is altered during rapid eye movement sleep in the cat．J Comp Neurol 1991；304： 517－29

47．Jones JG：Memory of intraoperative events．Br Med J 1994； 309：967－8

Anesthesiology

Anesthesiology 1996；84：955－64 （c） 1996 American S Lippincott－Raven F

Who Sc

The Medi

 ing．I菅am that tizme h for me pro thing ${ }_{\text {ad }}^{2} \mathrm{O}$ o sp birthGrant $\underset{\text { 侖 }}{ } \mathrm{D}$
GRANT䍡Y D
born in 88 to change ceeded childbiềh＂ book，êbild into se terned ${ }_{\text {gighter }}$ world．Reco larly iniport stetricieìns accord Rea We kh̆̉ ow pious tectu

References
－Professor o
Received fro and Gynecolos ville，Florida． for publication Travel Grant fr
Address repr of Anesthesiol 100254，Gain
Key words： painless．Dick

[^0]: \ddagger Guide for the Care and Use of Laboratory Animals：Publication \＃86－23．Washington，DC，Institute of Laboratory Animal Resources Department of Health and Human Services，National Institutes of Health， 1985.

