Continuous Intrathecal Administration of Short－ lasting μ Opioids Remifentanil and Alfentanil in the Rat

Hartmut Buerkle，M．D．，＊Tony L．Yaksh，Ph．D．\dagger

Background：Lipid soluble μ opioids given intrathecally produce a potent，dose－dependent analgesic response，which because of rapid clearance，is of short duration．Such agents delivered by continuous infusion can result in systemic ac－ cumulation and significant extraspinally mediated side effects． The effects of intrathecal infusions of two lipid－soluble μ opioids were investigated：remifentanil，an esterase metabo－ lized agent with an inactive metabolite，and alfentanil．

Methods：Rats with chronic lumbar intrathecal catheters re－ ceived intrathecal infusions（in flow rates of $1.0 \mu \mathrm{l} / \mathrm{min}$ and $0.1 \mu 1 / \mathrm{min}$ ）of remifentanil or alfentanil and were tested for hind paw thermal withdrawal latency，supraspinal side effects （sedation，block of pinna，and corneal responses）and motor impairment．Remifentanil was delivered either in a glycine formulation（ R_{g} ）or in a saline vehicle（ R_{s} ）．Separate studies with the glycine vehicle also were undertaken．

Results：At an infusion rate of $0.1 \mu 1 / \mathrm{min}$ ，remifentanil and alfentanil produced naloxone－reversible，dose－dependent an－ algesia and supraspinal side effects with the intrathecal ED_{50} （ $\mu \mathrm{g} / \mathrm{min} ; 95 \%$ confidence interval）for analgesia： $\mathrm{R}_{\mathrm{s}}=1.5$（1．2－
－Research Fellow in Anesthesiology，Department of Anesthesiology， University of California；Department of Anesthesiology，General Hospital Barmbek，Hamburg，Germany
\dagger Vice Chairman for Research and Professor in Anesthesiology，De partment of Anesthesiology，University of California．

Received from the Department of Anesthesiology，University of California，San Diego，Lajolla，California．Submitted for publication August 17，1995．Accepted for publication December 12， 1995 Supported in part by Glaxo，Inc．，Research Triangle Park，North Car－ olina，and National Institutes of Health grant DA02 110 （to T．L．Y．）．

Address reprint requests to Dr．Yaksh：Anesthesia Research Labo－ ratory，0818，University of California，San Diego， 9500 Gilman Drive， Lajolla，California 92903－0818．
\＃Schuster SV，Bilotta JM，Lutz MK：Analgesic activity of the ultrashort acting remifentanil（abstract）．FASEB 1991；5：A860．
§ Amin HM，Sopchak AM，Esposito BF，Graham CL，Batenhorst RL， Camporesi，EM：Naloxone reversal of depressed ventilatory response to hypoxia during continuous infusion of remifentanil（abstract）． Anesthesiology 1993；79：A1203．
｜｜Glass PSA，Kapila A，Muir KT，Hermann DJ，Shiraishi M：A model to determine the relative potency of mu opioids：Alfentanil versus remifentanil（abstract）．ANesthesiology 1993；79：A378．

1．8）， $\mathrm{R}_{\mathrm{g}}=1.2(0.7-2.3)$ ；alfentanil $=1.5(1.4-1.6)$ and for su － praspinal side effects： $\mathbf{R}_{\mathbf{g}}=1.7$（1．4－1．9）； $\mathbf{R}_{\mathrm{g}}=1.9$（1．6－2．4）； alfentanil $=1.5(1.4-1.7)$. There was no difference in potency or time until onset for analgesia at either delivery rate（12－ 20 min ），whereas for supraspinal side effects， $1.0 \mu \mathrm{l} / \mathrm{min}$ re－ sulted in a faster onset for \mathbf{R}_{g} ．Recovery of normal thresholds after equianalgesic doses was faster in R_{s} than alfentanil and for the supraspinal index faster in R_{s} and R_{g} groups．R_{g} ，but not R_{s} or alfentanil，produced a dose－dependent motor im－ pairment after 90 min of intrathecal infusion at a flow rate of $0.1 \mu \mathrm{l} / \mathrm{min}$ ．Both glycine in R_{g} and glycine（matching glycine dose）alone showed parallel time courses for motor impair－ ment and similar intrathecal $\mathrm{ED}_{50}(6.6 \mathrm{vs} .6 .4 \mu \mathrm{~g} / \mathrm{min}$ over 90 min ）for this nonnaloxone reversible effect．Intrathecal bolus administration of the same total dose of glycine showed no significant motor effects．

Conclusions：Remifentanil has a rapid onset like alfentanil but shows a faster recovery of action after intrathecal infusion． Despite its rapid clearance，remifentanil induces supraspinal side effects at analgesic effective doses．Moreover，in the cur－ rent formulation，with glycine，a reversible motor impairment can occur after intrathecal delivery．（Key words：Analgesics： μ opioid：alfentanil；remifentanil．Complications：motor func－ tion．Side effects：spinal；supraspinal．Vehicles：glycine．）

REMIFENTANIL（3－［4－methoxycarbonyl－4［（1－oxopro－ pyl）phenyl－amino］1－piperidine］］propanic acid，meth－ ylester，hydrochloride）a μ－pioid agonist with a similar potency to fentanyl，${ }^{1}$ is rapidly metabolized ${ }^{2,3}$ by plasma and tissue esterases to an inactive（ $<1 \%$ the potency）metabolite（GR90291A）．${ }^{4} \ddagger$ Systemic remi－ fentanil in humans displays classic μ－receptor effects， notably analgesia，sedation，muscle rigidity，nausea，and respiratory depression，${ }^{5,6}$ all of which are readily re－ versed by naloxone．$\$$ In humans，remifentanil is ap－ proximately 60 －fold more potent than alfentanil $\|$ based on steady－state blood concentrations．
μ Opioids are commonly used to produce analgesia by either epidural or intrathecal administration．The spinal action of several anilinopiperidines，notably lo－ fentanil，fentanyl，alfentanil，and sufentanil has been previously studied in animal models and in humans．${ }^{7,8}$ Of interest is the relationship between the pharmaco－
kinetics of the opio
served with a contir high octanol－water rapid onset of actio the tissue，a shorter clearance into the p be less likely 鲑 bution becaus帯 of r space．${ }^{9}$ Howeve $\stackrel{0}{\circ} \mathrm{e}$ ， plasma conce tribution wit毒 C
 tition coeffici西nt show a rapid ब़ुㄹnset with a time cogurse be less likely of its rapid men vious bolus s最inal examine the 高ctio cal remifentanil a ciception ane sup rodent mode患．

Materials क्\％nd
Animal surgigery stitutional a冒ima California，Sån D according tothis Harlan Induṣ⿳亠丷厂犬 ries g were implăgntec on a 12 h ligight／c provided ad $l i b i$ intrathecal 害ath randomly askign

Animal Prepa
The surgical in performed using as previously d were anesthetiz $\mathrm{O}_{2} /$ air $)$ ．After sh surgical area on alcohol and beta head holder for Intrathecal cath tubing（PE－10，I knot for fixatio intrathecal cath
1.4-1.6) and for su$\mathrm{R}_{\mathrm{g}}=1.9$ (1.6-2.4); fference in potency - delivery rate (12ects, $1.0 \mu \mathrm{l} / \mathrm{min}$ renormal thresholds than alfentanil and $1 \mathrm{R}_{\mathbf{g}}$ groups. $\mathrm{R}_{\boldsymbol{g}}$, but pendent motor imsion at a flow rate e (matching glycine for motor impair$6.4 \mu \mathrm{~g} / \mathrm{min}$ over 90 t. Intrathecal bolus glycine showed no
nset like alfentanil ntrathecal infusion. nduces supraspinal oreover, in the curmotor impairment words: Analgesics: ations: motor funcicles: glycine.)
nyl-4[(1-oxopropanic acid, methnist with a similar netabolized ${ }^{2,3}$ by lactive $(<1 \%$ the \ddagger Systemic remi--receptor effects, idity, nausea, and ch are readily remifentanil is apalfentanil|| based
roduce analgesia ministration. The dines, notably 10 . fentanil has been and in humans. ${ }^{7,8}$ en the pharmaco
the atlantooccipital membrane. The catheter was inserted into the intrathecal space and passed to the rostral edge of the lumbar enlargement, 8.5 cm from the cisterna magna. The catheter external arm was then subcutaneously tunneled and fixed under a skin suture.
After the surgical procedures, a recovery period of at least 5 days was allowed before initiating the injection series. Neurologic status of the animal was assessed after surgery and before testing after flushing the intrathecal catheter with $10 \mu \mathrm{l}$ normal saline. Animals with impaired motor function or an elevated sensory threshold were killed.

Intrathecal Injection

Animals were connected to a microinjection syringe pump (Harvard pump 22, Harvard Apparatus, South Natick, MA) via a length of calibrated PE-50 tubing. Drugs were injected at either a rate of $1.0 \mu \mathrm{l} / \mathrm{min}$ (remifentanil in glycine [R_{g}], alfentanil) or in a rate of 0.1 $\mu l / \min \left(R_{g}\right.$, alfentanil) or as a control remifentanil without vehicle $\left(R_{s}\right)$ all over 90 min . Before testing for the $0.1 \mu \mathrm{l} / \mathrm{min}$ flow rate, the intrathecal catheter was preloaded with $6.5 \mu \mathrm{l}$ of the different compounds (calibration verified a volume of $6.5 \mu \mathrm{l}$ from one end of the PE-10 tubing to the other).

Drugs

Drugs given intrathecally in this study were remifentanil hydrochloride with its vehicle glycine (R_{g}; MW $=413)$ remifentanil hydrochloride $\left(R_{s} ; M W=369\right)$, and glycine ($\mathrm{MW}=75$). These drugs were provided by Glaxo. (Research Triangle Park, NC). Alfentanil hydrochloride $(\mathrm{MW}=453)$ by Janssen (Janssen Pharmaceutica, Titusville, NY). Naloxone hydrochloride (Dupont Pharmaceutical, Wilmington, DE) was given intraperitoneally. All drugs were dissolved in sterile normal saline (0.9% USP). The R_{g} studies were carried out with solutions prepared from ampules containing 5 mg remifentanil and 15 mg glycine/ampule, the glycine was prepared from ampules containing glycine, $17 \mathrm{mg} /$ ampule (both drugs provided by Glaxo). The remifentanil alone was prepared from the powder. Infusion rates were expressed in micrograms per minute. Doses were prepared in two different concentrations such that the dose per minute was delivered in an infusion rate of $1.0 \mu \mathrm{l} / \mathrm{min}$ and $0.1 \mu \mathrm{l} / \mathrm{min}$. Control experiments were carried out with the vehicle (normal saline or glycine) delivered intrathecally.

Experimental Design

Typically, rats were used in three to five separate experiments, separated by an interval of 4 or 5 days. Animals were randomized to receive $\mathrm{R}_{\mathrm{g}}, \mathrm{R}_{\mathrm{s}}$, alfentanil, glycine, or normal saline (5-8 animals per dose) group). Agonist dose-response curves were obtained for intrathecal infusions of the different drugs. Antagonist response studies were carried out during the plateau with infusion doses that yielded a just maximal effective analgesic dose of the agonist. Naloxone was injected intraperitoneally in a dose of $1 \mathrm{mg} / \mathrm{kg}$ body weight ($0.2 \mathrm{ml} / \mathrm{kg}$ body weight).

Test Measures

For each drug, the following test measures were obtained periodically before and after injection.
Antinociception. The antinociceptive effect was quantified by measuring the latency of withdrawal evoked by exposing the hind paw to a thermal stimulus. To accomplish these studies, unanesthetized rats were placed in methyl methacrylate polymer cages $(9 \times 22$ $\times 25 \mathrm{~cm}$) on top of a glass plate. The thermal stimulus was maneuvered under the glass to focus the projection bulb on the plantar surface ${ }^{13,14}$ (UARDG, Department of Anesthesiology 0818, University of California, San Diego, La Jolla, CA). Initiation of the current to the bulb started a timer. Bulb current and time were automatically terminated when paw elevation was sensed by photodiodes or when an interval of 20 s (cutoff time) had passed. To avoid variations in paw starting temperature, the underglass surface was maintained at $30^{\circ} \mathrm{C}$ by a feedback-controlled heater fan. The aiming of the focused stimulus was reliably accomplished by a mirror attached to the stimulus, which permitted visualization of the undersurface of the paw. Light beam intensity was monitored by a measurement of bulb current and the stimulus intensity was calibrated daily by assessing the temperature change after 10 s sensed by an underglass thermocouple ($\mathrm{T}_{1 / 2}=0.2 \mathrm{~s}$). After placing the rat in the plastic cages, a $20-\mathrm{min}$ adaptation period was allowed. The first measurement was done on both hind paws, the response latencies averaged and counted as baseline score (time 0). Tests were then made at $5,10,15,20,30,40,60$, and 90 min during drug delivery and at $3,5,10,15$, and 30 min after the end of the infusion.
Supraspinal Effects. To score the behavioral changes before and during treatment of the animal, a supraspinal effects index was employed consisting of four different parameters that have been shown to be
dose-dependently blocked by opioids. ${ }^{15}$ These measured responses included: pinna reflex, cornea reflex (both evoked by light touch of the surface of pinna or cornea with a small piece of PE-10 tubing), evoked movement (startle reflex evoked by tapping on the cage wall), and signs of spontaneous movement (e.g., grooming, chewing, ambulation). Each parameter was scored as: $0=$ normal (brisk pinna/cornea reflex response or startle reflex, spontaneous movement within 30 s of the assessed time point; $1=$ attenuated (touch with tubing for pinna or cornea reflex or knocking on cage wall does result in a slow reflex behavior, touch or knocking has to be repeated at least twice); or, 2 $=$ response completely absent (no reflex was shown after 3 times of touching cornea or pinna both sides, no startle behavior was displayed after 3 times knocking against cage wall and no spontaneous movement was observed for $>$ than 1 min). To permit a sensitive assessment of the supraspinal effect, a supraspinal effects index was employed, which consisted of summing the individual scores for the four measurements at each time point, permitting a total score of 8 . To determine the reliability of the method, 50 rats were observed by two investigators; one blinded as to treatment and the other not blinded. The overall agreement between the two observers was reflected by the significant correlation coefficient (0.91) obtained with the two sets of observations. Tests for the supraspinal side effects were concomitant with antinociceptive testing performed (at $5,10,15,20,30,40,60$, and 90 min during drug delivery and at $3,5,10,15$, and 30 min after the end of the infusion).

Motor Impairment. Before, during, and after the administration of the different agents, the hind paw of the animal was displaced with a flexible probe and the rat's reaction was scored as $0=$ normal (immediately repositioned); $1=$ attenuated (more than 1 s for repositioning) ; or $2=$ completely absent (no repositioning of the hind paw). This test was assessed for both hind paws and the scores were compiled (maximal score $=4 /$ animal $/$ time point $)$.

Statistical Analysis

Data are expressed as mean of 5-8 animals and \pm SEM. For the time course studies, latencies are indicated in seconds, each time point representing 5-8 animals. For further analysis, the thermal latencies and the sedation index scores were converted to \%MPE according to the formula:
response
$\% \mathrm{MPE}=\frac{\text { cutoff tir }}{}$
or

$\% \mathrm{MPE}=$

Dose-response
 Tallarida and M dose for 50% of $\frac{\text { spen }}{\text { sen }}$ intervals were $\frac{\stackrel{\rightharpoonup}{9}}{\alpha}$ alc regression moderell, w Changes in the 式her with and withoiant ar significance using a values of $P<0805$ nificant. Comp突isor or supraspinal $\overrightarrow{\text { gh }}$ de at least 50% M ysis of variance

Results

Analgesia
 $\mathrm{R}_{\mathrm{s},}$ or alfentan $\stackrel{\widetilde{H}}{ }$, th mal escape latenc state, as defined by for both remifenta remained essential infusion (fig. 1).
The magnitude o latencies were depe (figs. 2 and 3). Th are presented in t difference betweer difference betweet with the infusion effects were propo opioid delivered p
ds. ${ }^{15}$ These mea-
ex, cornea reflex surface of pinna tubing), evoked tapping on the movement (e.g., ch parameter was cornea reflex renovement within ttenuated (touch x or knocking on behavior, touch ast twice); or, 2 eflex was shown inna both sides, er 3 times knockreous movement ermit a sensitive a supraspinal efonsisted of sumir measurements al score of 8 . To od, 50 rats were inded as to treatverall agreement ected by the sig. 1) obtained with r the supraspinal antinociceptive $30,40,60$, and $3,5,10,15$, and). ng, and after the , the hind paw of ble probe and the nal (immediately e than 1 s for rent (no repositionassessed for both mpiled (maximal
-8 animals and \pm acies are indicated ting 5-8 animals. encies and the seo \%MPE according
response latency with drug
$\%$ MPE $=\frac{- \text { baseline latency } \times 100}{\text { cutoff time (20 s) - baseline latency }}$,
or

$$
\% \text { MPE }=\frac{\begin{array}{c}
\text { supraspinal index with drug } \\
- \text { baseline score } \times 100
\end{array}}{\text { cutoff score }(8)-\text { baseline }}
$$

or

$$
\% \text { MPE }=\frac{\begin{array}{c}
\text { motor impairment with drug } \\
- \text { baseline score } \times 100
\end{array}}{\text { cutoff score }(4)-\text { baseline }} .
$$

Dose-response curves are presented as the \%MPE. For all drugs, the dose-response analysis as described by Tallarida and Murray ${ }^{16}$ was accomplished. The effective dose for 50% of subjects $\left(\mathrm{ED}_{50}\right)$ and the 95% confidence intervals were calculated using a least-squares linear regression model, where the log dose values were used. Changes in the thermal latency and supraspinal index with and without antagonist treatment were tested for significance using an unpaired Student's t test. Critical values of $P<0.05$ were considered as statistically significant. Comparison in the time until onset of analgesia or supraspinal side effects and time until recovery until at least 50% MPE were conducted using two-way analysis of variance.

Results

Analgesia

After the initiation of the intrathecal infusion of R_{g}, R_{s}, or alfentanil, there was a rapid increase in the thermal escape latency that reached an apparent steady state, as defined by response latencies within 15 min for both remifentanil and alfentanil. These latencies remained essentially stable for the $90-\mathrm{min}$ interval of infusion (fig. 1).
The magnitude of the increase in hind paw response latencies were dependent on the infusion concentration (figs. 2 and 3). The ED_{50} values for the several agents are presented in table 1. As indicated, there was no difference between R_{s}, R_{g}, and alfentanil. There was no difference between the peak plateau effects produced with the infusion rates of 0.1 or $1.0 \mu 1 / \mathrm{min}$, e.g., the effects were proportional to the dose in micrograms of opioid delivered per minute.

Glycine alone, at the highest concentration examined, was without an acute effect (e.g., $<60 \mathrm{~min}$) on the thermal withdrawal latencies at infusion doses that corresponded to those used in the presence of remifentanil, e.g., $3-9 \mu \mathrm{~g} / \mathrm{min}$ did not produce an increase in the thermal escape latency of the animals at intervals up to 60 min . However, at longer intervals there was a dose-dependent increase, up to approximately a 50\% MPE of the thermal withdrawal latency (fig. 4). This increased latency was, however, accompanied by an increase in motor impairment (see later).

Supraspinal Index

After the initiation of infusion of remifentanil or alfentanil, there was a rapid onset of depression of behavioral reactivity, as indicated by an increase in the supraspinal index and this depression remained stable during the $90-\mathrm{min}$ infusion interval (fig. 1). The behavioral depression was characterized by reduced spontaneous activity, as well as reduced corneal and pinnae reflexes. The degree of depression was dosedependent (figs. 2 and 3). The ED_{50} values for the supraspinal index are presented in table 1.
Regarding glycine alone, there were no significant changes in the supraspinal index, during the $90-\mathrm{min}$ infusion interval (fig. 4).

Time of Drug Effect Onset

To determine the effect of different flow rates on the time course for analgesia and supraspinal side effects, the time for each rat to reach and return to the individual 50% MPE for both assessments was determined and the group means were calculated (table 2). Peak plateau effect for analgesia and side effect index were independent of infusion rate. Comparison between Rg_{g} and alfentanil revealed an increase of about $30-50 \%$, respectively, in the time to onset in analgesia, when matched by dose for peak analgesic effects within the two different flow rates. However, there appeared to be only a modest increase in the onset for analgesia with remifentanil (flow rate of $0.1 \mu \mathrm{l} / \mathrm{min}$). Regarding the supraspinal action, the time to onset of side effects was decreased at the faster rate (table 2).
Time until recovery after the standard $90-\mathrm{min}$ infusion revealed a more rapid recovery to 50% effect for analgesia and supraspinal index at the higher flow rate for both R_{g} and alfentanil (significant for analgesia only for alfentanil; table 2). Supraspinal side effects were decreased to 50% MPE of the index more rapidly in both flow rates for R_{g} than for alfentanil, whereas an-

Fig. 1. Time course for the thermal withdrawal latencies (top: cutoff $\mathbf{2 0} \mathrm{s}$) during ($0-90 \mathrm{~min}$) and after ($90-120 \mathrm{~min}$) intrathecal infusion ($0.1 \mu \mathrm{l} / \mathrm{min}$) of equianalgesic doses of remifentanil, remifentanil + glycine, and alfentanil and for the supraspinal side effects (bottom: supraspinal index cutoff $=8$). Each point represents the mean and SEM of 5-8 animals.
algesia only showed a faster decrease for R_{g} (R_{s} revealed tendency to a faster recovery, but not significant against R_{g} as shown in fig. 1) in comparison to alfentanil with the flow rate of $0.1 \mu \mathrm{l} / \mathrm{min}$ (table 2).

Analgesia Versus Supraspinal Index

Increasing infusion doses of alfentanil or remifentanil delivered in a rate of $0.1 \mu \mathrm{l} / \mathrm{min}$ or $1.0 \mu \mathrm{l} / \mathrm{min}$ (in both formulations, R_{s} and R_{g}) resulted in a dose-dependent increase in the supraspinal index and in the paw withdrawal latency. Plotting the supraspinal index as \%MPE versus analgesic effect as \%MPE revealed a positive correlation between the two variables for both remifentanil and alfentanil, with the slopes of both being positively inflicted (fig. 5). Comparisons of the slope of the regression line demonstrated that the ordering of the slopes for drug delivery at $1.0 \mu \mathrm{l} / \mathrm{min}$ showed a difference $(\mathrm{y}=11.4+0.6 \mathrm{x} ; \mathrm{r}=0.9$ for remifentanil and $\mathrm{y}=7.6+0.9 \mathrm{xr}=1$ for alfentanil; $P<0.05$ Spear-
man's rank test). However, there was no difference in the higher concentrations with the slower delivery rate of $0.1 \mu \mathrm{l} / \mathrm{min}$. Comparison of the ED_{50} ratio ($\mathrm{ED}_{50} \mathrm{su}$ praspinal index $/ \mathrm{ED}_{50}$ analgesia in $\mu \mathrm{g}$) revealed the following ratio at $1.0 \mu \mathrm{l} / \mathrm{min}: 1.3(\pm 0.1)$ for remifentanil $\left(\mathrm{R}_{\mathrm{g}}\right)$ versus $0.9(\pm 0.3)$ for alfentanil, whereas at a flow rate of $0.1 \mu \mathrm{l} / \mathrm{min}$, a tendency for moderately higher ratios for remifentanil also was seen: $1.6(\pm 0.7)$ for $R_{g}, 1.2(\pm 0.2)$ for R_{s} and $1(\pm 0.1)$ for alfentanil.

Motor Impairment

Over the $90-\mathrm{min}$ infusion period and the subsequent recovery period, neither R_{s} nor alfentanil had any effect on motor function. In contrast, R_{g} resulted in a dosedependent increase in the motor impairment score. Time until onset of the impairment started around 60 min infusion time and peaked just after termination of the $90-\mathrm{min}$ infusion (e.g., 100 min ; fig. 4). All animals recovered by $8-12 \mathrm{~h}$ after termination of infusion (data

Fig. 2. Dosę́resp hind paw ithd praspinal 谪dex intrathecabcont Remifentanil + the mean and S

$$
\begin{aligned}
& \frac{0}{\sigma} \\
& \stackrel{0}{0} \\
& \stackrel{0}{0} \\
& \stackrel{0}{0} \\
& \hline
\end{aligned}
$$

not shown).
sessed at? 100 $\mathrm{ug} / \mathrm{min}$ calc There was no pendency of of glycine alo

Antagonist

Naloxone (resulted in a supraspinal trathecal dos response (P fentanil but d 7). Motor im versed or dec ministration.

Fig. 2. Dose-response curves in $\mu \mathrm{g} / \mathrm{min}$ for analgesia (thermal hind paw withdrawal [top]) and supraspinal side effects (supraspinal index) in percentage of maximal possible effect for intrathecal continuous infusions in a volume of $1.0 \mu 1 / \mathrm{min}$ of Remifentanil + glycine and alfentanil. Each point represents the mean and SEM of 5-8 animals.
not shown). The ED_{50} for the motor dysfunction assessed at 100 min revealed the ED_{50} to be 6.4 ± 0.7 $\mu \mathrm{g} / \mathrm{min}$ (calculated for the total dose over 90 min). There was no difference in the onset or the dose dependency of motor dysfunction between the delivery of glycine alone or $\mathrm{R}_{\mathrm{g}}\left(\mathrm{ED}_{50}\right.$ in $\mu \mathrm{g}: 6.6 \pm 0.9$; fig. 6).

Antagonist and Controls

Naloxone ($1 \mathrm{mg} / \mathrm{kg}$) administered intraperitoneally resulted in a significant reduction in the spinal and supraspinal effects of the highest administered intrathecal doses of the analgesic and supraspinal index response ($P<0.05$) of both μ opioids, $\mathrm{R}_{\mathrm{g}}, \mathrm{R}_{\mathrm{s}}$, and alfentanil but did not affect saline or glycine animals (fig. 7). Motor impairment in R_{g} and glycine was not reversed or decreased after intraperitoneal naloxone administration.

Intrathecal continuous infusion of normal saline in a volume of either $1.0 \mu \mathrm{l} / \mathrm{min}$ or $0.1 \mu \mathrm{l} / \mathrm{min}$ did not produce any significant increase in the thermal withdrawal latency or the supraspinal index (fig. 7).

Discussion

Peripheral Clearance and Side Effects

Remifentanil is an intermediate, lipid-soluble μ opioid agonist that is rapidly metabolized to an inactive isomer by plasma and tissue esterases. ${ }^{2,3}$ In humans and animals, systemic delivery ${ }^{4,6}$ results in a very short-lasting opioid action, consistent with its rapid clearance from the circulation. Continuous delivery has been shown to result in the rapid achievement of steady state whereas termination of delivery results in a rapid reversal of the opioid effect, consistent with a lack of

Fig. 3. Dose-response curves in $\mu \mathrm{g} / \mathrm{min}$ for analgesia (thermal hind paw withdrawal, upper graph) and supraspinal side effects (supraspinal index) in percentage of maximal possible effect for intrathecal continuous infusions in a volume of 0.1 $\mu l /$ min of remifentanil + glycine and alfentanil. Each point represents the mean and SEM of 5-8 animals.

Table 1． $\mathrm{ED}_{50}(\mu \mathrm{~g} / \mathrm{min})$

	Remifentanil with Glycine（ R_{g} ）	Remifentanil （ R_{s} ）	Alfentanil （A）
$1.0 \mu \mathrm{l} / \mathrm{min}$＊ $1.0(0.5-2.0)$			
Analgesia	1.0 （0．8－1．4）	＊	
Supraspinal index	1.3 （0．9－1．7）		0.9 （0．6－1．4）
Analgesia	1.2 （0．7－2．3）	$1.4(1.2-1.8)$ $1.7(1.4-1.9)$	
Supraspinal index	1.9 （1．6－2．4）	1.7 （1．4－1．9）	1.5 （1．4－1．7）

accumulation．Recently，we have shown that similar to alfentanil，another intermediately lipid－soluble agent， bolus delivery of intrathecal remifentanil would yield

Fig．4．Graphs show the time course for motor impairment， analgesia（thermal withdrawal latency）and change in supra－ spinal side effects（supraspinal index）expressed in percentage of maximal possible effect for different doses of intrathecal continuous infusion（ $0.1 \mu \mathrm{l} / \mathrm{min}$ ）of glycine．Each data point represents the mean and SEM of five or six animals．

Table 2． $\mathrm{ED}_{50}(\mu \mathrm{~g} / \mathrm{min})$ of Analgesic and Supraspinal Index for Spinal Remifentanil and Alfentanil as a Function of Infusion

＊Difference between R_{g} and A_{g} is significant，$P<0.05$ ．
a potent short－lasting antinociception that was nalox－ one reversible．${ }^{11}$
Because of their rapid kinetics，agents such as remi－ fentanil might serve to establish steady analgesic levels through continuous delivery．Lipid－soluble agents that are slowly metabolized such as alfentanil and sufentanil have been employed using continuous epidural deliv－ ery but the rapid clearance of these agents from the spinal space into the vasculature has led to the ap－ pearance of a significant plasma level that results in the loss of the therapeutic advantage contemplated for spinally delivered agents，i．e．，significant supraspinal side effects are noted．Because of its rapid metabolism through plasma and tissue esterases，continuous spinal infusion of remifentanil might yield an analgesic action with fewer side effects because of rapid plasma inac－ tivation．

In the current study，when the analgesic versus su－ praspinal index was plotted，a significant linear regres－ sion was noted over the range of infusion doses．This differs from our previous observation with bolus deliv－ ery，where at low doses of remifentanil，there was little supraspinal action，whereas at the highest dose，an in－ crease in supraspinal activity was noted．${ }^{11}$ While the practical significance of the supraspinal index asso－ ciated with the action of remifentanil is not clear，it can be used to compare the profile of spinal remifen－ tanil actions with those of other spinally delivered agents in the same model．Thus，after bolus delivery，

Fig．5．Grapläs sho centage of râaxin and the thefmal trathecal infigsion Each point grese different doses．

alfentanil，g్⿳亠二口欠刂lil variance begtwe and the an \ddagger ges After bol at steady stăte re action than ren rapid plasma me to alfentanil．It lation between for the two age abolism of the the likelihood that the suprasp infusion likely half－life，althou clude a supras three－compartm nifentanil also distribution thr
upraspinal Index a Function of

	$12.6(\pm 0.9)$
	$22.8(\pm 3.9)$
	$12(\pm 1.5)$
	$23.9(\pm 2.3)$
$)^{*}$	$19.2(\pm 2.2)$
	$10.7(\pm 2.6)^{*}$
	$18.1(3.8)^{*}$

5.

n that was nalox-
nts such as remiy analgesic levels oluble agents that mil and sufentanil us epidural delivagents from the as led to the apel that results in contemplated for ficant supraspinal rapid metabolism continuous spinal in analgesic action apid plasma inac-
algesic versus sucant linear regresfusion doses. This a with bolus delivnil, there was little ighest dose, an inloted. ${ }^{11}$ While the spinal index asso inil is not clear, it of spinal remifenspinally delivered ter bolus delivery,

Fig. 5. Graphs show the relationship between changes in percentage of maximal possible effect in the supraspinal index and the thermal withdrawal thresholds after continuous intrathecal infusions over different doses of the respective drug. Each point presents the mean and SEM of 5-8 animals of the different doses.
alfentanil, unlike remifentanil, displayed a close covariance between the increase in the supraspinal index and the analgesic effect.
After bolus delivery, it thus appears that alfentanil at steady state results in a more prominent supraspinal action than remifentanil, presumably reflecting the rapid plasma metabolism of remifentanil as compared to alfentanil. In the current study, the close correlation between analgesia and the supraspinal effects for the two agents was unexpected. The rapid metabolism of the agent was hypothesized to diminish the likelihood of a supraspinal action. We suspect that the supraspinal effects produced by the ongoing infusion likely reflect on the finding that the plasma half-life, although short, is not sufficiently so to preclude a supraspinal redistribution in the rat. The three-compartment model for the distribution of remifentanil also includes the possibility for slow redistribution through tissue stores.

Relative Potencies for Analgesia and Supraspinal Side Effects
In previous work, we noted that the spinal bolus administration of remifentanil and alfentanil resulted in $E D_{50}(\mu \mathrm{~g})$ for analgesia of 0.7 for remifentanil and 16 for alfentanil. ${ }^{11}$ In the recent study, the continuous administration revealed almost similar relative potencies for analgesia with both μ opioids. We suggest that this similarity is attributable to the rapid clearance and metabolism of remifentanil during continuous administration. Thus, remifentanil appears to be less potent, whereas alfentanil appears to be more active because of its moderate accumulation.

Onset and Offset of Spinal Opioid Action
Regarding the time course, the time of onset of spinal opioid action in the rodent animal has been shown to covary with lipid solubility. Remifentanil appeared to produce a faster onset of analgesic response in equianalgesic doses than alfentanil after intrathecal administration only with the slower infusion rate. The more rapid rate of recovery of remifentanil supports the efficiency of the metabolic pathway of remifentanil in the blood after continuous delivery of remifentanil and blood stores are presumably low in contrast to alfentanil. Interestingly, the continuous spinal administration of remifentanil also does not appear to increase the time to recovery in comparison to the bolus administration. ${ }^{11}$

Motor Impairment
Neither alfentanil nor remifentanil alone had any effect on motor function at the doses employed. In con-

Fig. 6. Graph shows the dose response curve for motor impairment assessed at 100 min after start of experiment (peak) after intrathecal continuous infusion ($0.1 \mu \mathrm{l} / \mathrm{min}$) of remifentanil + glycine and glycine alone. Each point represents the mean and SEM of five or six animals.

Fig．7．Graphs show saline control intrathecal infusion over 90 min （mean of $5+$ SEM animals per bar）and reversal with intraperitoneal administered Naloxone（1 mg／kg／body weight）of the antinociceptive response（top：percentage of maximal possible effect：Thermal withdrawal）and supraspinal side effects（bottom：percentage of maximal possible effect： supraspinal index）in percentage of maximal possible effect after 90 min of infusion of remifentanil（ $3 \mu \mathrm{~g} / \mathrm{min}$ ）and alfen－ tanil（ $2 \mu \mathrm{~g} / \mathrm{min}$ ）．Each bar represents the mean and SEM of four animals．
trast，the observed motor impairment after continuous intrathecal administration of remifentanil occurred in its commercially available formulation with glycine． Separate studies with the glycine excipient alone re－ vealed that the motor effect was associated with a dose－ dependent action of the glycine vehicle．Surprisingly， the effect displayed a clear time course with the effect appearing during an interval of infusion．Bolus delivery of the agent was without a similar effect．${ }^{11}$ Consider－ ation of the possible mechanism of the observed motor impairment may suggest several possible components．
First，glycine alone may be able to induce a local effect on receptors in the spinal cord or promote a neu－ rotoxic effect．Glycine is a potent inhibitory transmitter that is found in the central nervous system within the brain ${ }^{17}$ and in interneurons in the dorsal and ventral
horns that is known to hyperpolarize neurons by in－ creasing Cl－conductance．Treatment of spasticity might be achieved with administration of glycine intrathe－ cally．${ }^{18}$ Simpson et al．${ }^{19}$ found in a model of spinal shock that animals showing flaccidity had glycine levels that were 2 or 3 times higher than in spinal cord of animals in which the spinal ischemia resulted in spas－ ticity．These observations supports the suggestion that exogenous glycine（as provided in the placebo control and in the formulation of remifentanil）can function as an inhibitory transmitter in suppression of muscle tone．

Second，glycine is employed in the preparation of the injectable material because（1）it facilitates the preparation of remifentanil as it provides a visible product after lyophilization，and（2）it provides an acidic buffer．While the current studies did not system－ atically consider the role of $p \mathrm{H}$ ，it is possible that ex－ tended exposure to this acidic $p \mathrm{H}$ might prove to have deleterious effects on spinal function．In recent studies examining repeated intrathecal injections in the dog， reversible motor weakness and apparent dysesthesias have been observed with the acidic glycine vehicle （Yaksh，Rathbun，Dragani，and Malkmus，unpublished observations）．
In conclusion，in rats，it appears that the spinal action of remifentanil is consistent with its pharmacology as a potent μ－opioid agonist．Its rapid onset after the ini－ tiation of a continuous infusion and the rapid devel－ opment of a dose－dependent elevation in the nocicep－ tive threshold is consistent with this lack of any ac－ cumulation of active drug stores，even after continuous spinal infusion．Unexpectedly，in this model，the co－ variance of supraspinal effect with the analgesic action suggests that despite its rapid inactivation，with con－ stant infusion there remains the likelihood that plasma levels at analgesic doses are sufficient to produce a su－ praspinal redistribution that leads to measurable side effects．Aside from the time course profile of this agent， the current studies provide an initial report that the glycine vehicle may be associated with a dose－depen－ dent reversible motor weakness after spinal adminis－ tration．Further studies are required to define the mechanisms of this action．

References

1．James MK，Feldman PL，Schuster SV，Bilotta JM，Brackeen MF， Leighton HJ：Opioid receptor activity of GI 87084 B ，a novel ultra－ short acting analgesic，in isolated tissues．J Pharmacol Exp Ther 1991； 259：712－8

2．Shlugman D, D Respiratory effects of pairment compared t 1994；81：A1417
3．Dershwitz M，R Muir KT，Dienstag JL remifentanil in volun with normal sube jects
4．Westmor 太⿶凵land macokinetics 岡 rem （G190291）in $\overline{\text { patier }}$ THESLLOGY 19蚵3； 79 5．Egan TD $\stackrel{\substack{\text { E．} \\ \text { E．}}}{\text { Lemr }}$ DR，Shafer SL：${ }_{N}^{\text {Th }}$ The remifentanil（\＄1870 SIOLOGY 1993 ${ }^{\frac{0}{2}} 79: 8$
6．Glass PS ${ }^{\frac{2}{3}}$ Hard KH，Grosse © pharmacodynăّmics （G187084B）．．．
7．Sabbe $\frac{18}{6} \mathrm{~B}, \mathrm{Gr}$ Spinal delive of s thesiology 1
8．Yaksh Tit，Nou and pathologㅉㅗㅗㅗ of in alogues and 龟orph 54－66
9．Payne B Anaesthesiol
e neurons by inf spasticity might glycine intrathemodel of spinal ad glycine levels in spinal cord of resulted in spase suggestion that e placebo control iil) can function ession of muscle
e preparation of it facilitates the rovides a visible) it provides an es did not systempossible that exght prove to have In recent studies tions in the dog, rrent dysesthesias glycine vehicle nus, unpublished
t the spinal action pharmacology as nset after the ini1 the rapid develon in the nocicepis lack of any acn after continuous is model, the coe analgesic action ivation, with conihood that plasma t to produce a suo measurable side rofile of this agent, ial report that the vith a dose-depener spinal adminisred to define the
ilotta JM, Brackeen MF, 87084 B , a novel ultraarmacol Exp Ther 1991;
2. Shlugman D, Dufore S, Dershwitz M, Rosow C, Glass PSA Respiratory effects of remifentanil in subjects with severe renal impairment compared to matched controls (abstract). Anesthesiology 1994; 81:A1417
3. Dershwitz M, Rosow CE, Michalowski P, Connors PM, Hoke JF, Muir KT, Dienstag JL: Pharmacokinetics and pharmacodynamics of remifentanil in volunteer subjects with severe liver disease compared with normal subjects (abstract). Anesthesiology 1994; 81:A377
4. Westmoreland CL, Hoke JF, Sebel PS, Hug C Jr., Muir KT: Phar macokinetics of remifentanil (GI87084B) and its major metabolite (GI90291) in patients undergoing elective inpatient surgery. Anes. thesiology 1993; 79:893-903
5. Egan TD, Lemmens HJ, Fiset P, Hermann DJ, Muir KT, Stanski DR, Shafer SL: The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthe. sIology 1993; 79:881-92
6. Glass PS, Hardman D, Kamiyama Y, Quill TJ, Marton G, Donn KH, Grosse CM, Hermann D: Preliminary pharmacokinetics and pharmacodynamics of an ultra-short-acting opioid: Remifentanil (G187084B). Anesth Analg 1993; 77:1031-40
7. Sabbe MB, Graf MR, Mjanger E, Tiseo PJ, Hill HF, Yaksh TL: Spinal delivery of sufentanil, alfentanil and morphine in dogs. Anes. thesiology 1994; 81:899-920
8. Yaksh TL, Noueihed RY, Durant PA: Studies of the pharmacology and pathology of intrathecally administered 4 -anilinopiperidine analogues and morphine in the rat and cat. Anesthesiology 1986; 64: 54-66
9. Payne R: CSF distribution of opioids in animals and man. Acta Anaesthesiol Scand Suppl 1987; 85:38-46
10. Caldwell LE, Rosen MA, Shnider SM: Subarachnoid morphine and fentanyl for labor analgesia. Efficacy and adverse effects. Reg Anesth 1994; 19:2-8
11. Buerkle H, Yaksh TL: Comparison of the spinal actions of the μ opioid remifentanil with alfentanil and morphine in the rat. ANEsthesiology 1996; 84:94-102
12. Yaksh TL, Rudy TA: Analgesia mediated by a direct spinal action of narcotics. Science 1976; 192:1357-8
13. Dirig DM, Yaksh TL: Differential right shifts in the dose response curve for intrathecal morphine and sufentanil as a function of stimulus intensity. Pain 1995; 62:321-8
14. Hargreaves K, Dubner R, Brown F, Flores C, Joris J: A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988; 32:77-8
15. Boersma FP, Meert TF, Vercauteren M: Spinal sufentanil in rats: Part I: Epidural versus intrathecal sufentanil and morphine. Acta Anaesthesiol Scand 1992; 36:187-92
16. Tallarida RJ, Murray RB: Manual of Pharmacologic Calculations with Computer Programs, 2. New York, Springer, 1986
17. Araki T, Yamano M, Murakami T, Wanaka A, Betz H, Tohyama M: Localization of glycine receptors in the rat central nervous system: An immunocytochemical analysis using monoclonal antibody. Neuroscience 1992; 25:613-24
18. Hall PV, Smith JE, Lane J, Mote T, Campbell R: Glycine and experimental spinal spasticity. Neurology 1979; 29:2627
19. Simpson RK, Robertson CS, Goodman JC: Glycine: An important component of spinal shock. Neurochem Res 1993; 18:88792

