Effects of Midazolam on Intracellular Ca^{2+} and Tension in Airway Smooth Muscles

Hayashi Yoshimura, M.D.,* Tetsuya Kai, M.D., † Junji Nishimura, M.D., \ddagger Sei Kobayashi, M.D.,§ Shosuke Takahashi, M.D., || Hideo Kanaide, M.D.\#

Background: It has been demonstrated that a group of minor tranquilizers, benzodiazepines, are able to relax airway smooth muscles. To determine the underlying mechanisms of this phenomenon, the effects of midazolam on the intracellular Ca^{2+} concentration ($\left[\mathrm{Ca}^{2+}\right]_{i}$) and tension in airway smooth muscles were investigated.

Methods: Using front-surface fluorometry and fura-2-loaded porcine tracheal smooth muscle strips, both $\left[\mathrm{Ca}^{2+}\right]_{i}$ and isometric tension developments were simultaneously recorded.

Results: When the tracheal strips were exposed to a high external K^{+}-solution (40 mm) or $10^{-7} \mathrm{~m}$ carbachol containing $1.25 \mathrm{~mm} \mathrm{Ca}{ }^{2+}$, both $\left[\mathrm{Ca}^{2+}\right]_{i}$ and tension increased rapidly until they reached a plateau (the steady state). During steady-state contraction induced by K^{+}-depolarization or carbachol, the cumulative application of midazolam ($10^{-7} \sim 10^{-4} \mathrm{~m}$) caused

[^0]S Associate Professor, Division of Molecular Cardiology, Research Institute of Angiocardiology.
$\|$ Professor, Department of Anesthesiology and Critical Care Medicine.
\# Professor, Division of Molecular Cardiology, Research Institute of Angiocardiology.

Received from the Division of Molecular Cardiology, Research Institute of Angiocardiology, and the Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan. Submitted for publication July 5, 1994. Accepted for publication June 30, 1995. Supported in part by grants-in-aid for Scientific Research on Priority Area (06557045), for Developmental Scientific Research (06274221,06771221), and for General Scientific Research ($04454268,05837015,05837016$), from the Ministry of Education, Science and Culture, Japan, and by grants from the Uehara Memorial Foundation, Yokoyama Rinshouyakuri, the Japan Heart Foundation, the Ichiro Kanehara Foundation, the Kaibara Morikazu Medical Science Promotion Foundation, the Mochida Memorial Foundation, and the Tokyo Biochemical Research Foundation.

Address reprint requests to Dr. Kanaide: Division of Molecular Cardiology, Research Institute of Angiocardiology, Faculty of Medicine, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-82, Japan.
decreases in both $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension, in a concentration-dependent manner. During $40 \mathrm{~mm} \mathrm{~K}^{+}$-induced depolarization, the stepwise increases in the extracellular Ca^{2+} concentration induced the stepwise increases in $\left[\mathrm{Ca}^{2+}\right]_{i}$ and tension. Midazolam $\left(3 \times 10^{-5} \mathrm{~m}\right)$ inhibited these increases in $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension, but had no effect on the $\left[\mathrm{Ca}^{2+}\right]_{1}$-tension relationship. In the presence of $3 \times 10^{-3} \mathrm{M} \mathrm{NiCl}_{2}$ (a nonselective cation channel blocker), midazolam ($3 \times 10^{-5} \mathrm{~m}$) did not cause any additional reduction of $\left[\mathrm{Ca}^{2+}\right]_{i}$ or tension during the contraction induced by carbachol $\left(10^{-7} \mathrm{~m}\right)$. In the absence of extracellular Ca^{2+}, midazolam ($3 \times 10^{-5} \mathrm{~m}$) had no effect on the transient increases in either $\left[\mathrm{Ca}^{2+}\right]_{1}$ or the tension induced by carbachol $\left(10^{-7} \mathrm{~m}\right)$ or caffeine (20 mm). Pretreatment with both $10^{-5} \mathrm{~m}$ flumazenil (a specific central antagonist of benzodiazepines) and $10^{-5} \mathrm{~m}$ PK11195 (a specific peripheral antagonist of benzodiazepines) did not influence the effect of $10^{-5} \mathrm{~m}$ midazolam on $\left[\mathrm{Ca}^{2+}\right]_{1}$ or tension during the contractions induced by carbachol.

Conclusions: Midazolam directly relaxes airway smooth muscles by decreasing $\left[\mathrm{Ca}^{2+}\right]_{i}$; this can be attributed to the inhibition of the influx of extracellular Ca^{2+}. Midazolam has no effect on the release of stored Ca^{2+}. In addition, midazolam has no effect on Ca^{2+} sensitivity of the contractile apparatus. Finally, benzodiazepine antagonists, flumazenil and PK11195, have no effect on this mechanism of direct action of midazolam on airway smooth muscles. (Key words: Airway: trachea. Antagonists, benzodiazepines: flumazenil. Hypnotics: midazolam. Ions, calcium: intracellular Ca^{2+} transient. Muscle: smooth.)

MIDAZOLAM has been widely used as a sedative and an induction agent of general anesthesia. In addition to the hypnotic action, it has also been reported that midazolam causes vasodilation ${ }^{1-4}$ and relaxes airway smooth muscle. ${ }^{5-7}$ Midazolam's effect on the airway smooth muscle is favorable for patients who demonstrate airway hypersensitivity. However, there has been no report about the mechanism of the relaxant effects of midazolam on airway smooth muscle.

Although it is generally accepted that smooth muscle tone is primarily regulated by cytosolic Ca^{2+} concentration $\left(\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}\right)$, the development and maintenance of tension does not simply depend on $\left[\mathrm{Ca}^{2+}\right]_{i} .{ }^{8}$ Recently, it has been shown that in α-toxin- or β-escin-permeabilized smooth muscles, some agonists induced an enhanced sensitivity of myofilament to Ca^{2+}, through a

G－protein－mediated pathway．${ }^{9-10}$ In addition，it has also been shown that contractions can occur without any change in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ in intact smooth muscle strips．${ }^{11}$ Thus， to determine the mechanism underlying the changes in smooth muscle tone，it is important to determine the change in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ in association with the change in tension．In this study，we investigated the mechanism of midazolam－induced relaxation of airway smooth muscle by simultaneously measuring the tension and $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ ，using front－surface fluorometry ${ }^{12,13}$ and the Ca^{2+} indicator dye fura－2．The questions asked in this study were whether or not：（1）midazolam reduces $\left[\mathrm{Ca}^{2+}\right]_{i}$ ； （2）midazolam changes the sensitivity of the contractile apparatus to $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ ；and（3）flumazenil（specific central benzodiazepine antagonist）${ }^{14-17}$ or PK 11195 （specific peripheral benzodiazepine antagonist）${ }^{1,18,19}$ influence the effect of midazolam on airway smooth muscle．

Materials and Methods

Tissue Preparation

Tracheas were dissected from adult pigs at a local slaughterhouse using a protocol approved by the Ani mal Research Committee of Research Institute of An－ giocardiology，Faculty of Medicine，Kyushu University． The tracheas were placed in ice－cold physiologic salt solution（PSS）and brought to our laboratory．The lower end of the trachea，just above the first bronchus branching，three tracheal rings in length，was used for the experiments．The posterior portion of the trachea was excised longitudinally，and all cartilage was de－ tached．The mucosa and adventitial tissue were re－ moved under microscopic observation．The muscle sheets were cut transversely into rectangular strips ap－ proximately 3 mm long and 1 mm wide．${ }^{20}$ All tissue preparations in the laboratory were performed in aer－ ated PSS．

Fura－ 2 Loading

Tracheal strips were loaded with the Ca^{2+} indicator dye，fura－2，in the form of acetoxymethyl ester（fura－ 2／AM）．The strips were incubated in 1 ml aerated （ $95 \% \mathrm{O}_{2}: 5 \% \mathrm{CO}_{2}$ ）Dulbecco－modified Eagle＇s me－ dium containing $50 \mu \mathrm{~m}$ Fura－2／AM and 5% fetal bo－ vine serum for 3 hr at $37^{\circ} \mathrm{C}$ ．After loading with fura－ 2 ，the strips were washed with normal PSS to remove dye in the extracellular space，and then were further incubated in normal PSS for at least 1 hr to facilitate the deesterification of intracellular fura－2／AM and to
equilibrate the strips before taking the measure－ ments．${ }^{20}$

Measurement of Tension Development

Each strip was mounted vertically in a $6-\mathrm{ml}$ quartz organ bath，which was maintained at $37^{\circ} \mathrm{C}$ and bubbled with $95 \% \mathrm{O}_{2}$ and $5 \% \mathrm{CO}_{2}$ ．The lower end of the stripo was fixed by a small clip and the upper end of the strip was attached by a small clip and thread to a force trans䓂 ducer（TB－612T，Nihon Koden，Japan）to record the isometric tension．During the 1 －hr fura－ 2 equilibration period，the strips were stimulated with $40 \mathrm{~mm} \mathrm{~K}{ }^{+}$PS at 5－10－min intervals，and muscle length was increase stepwise after each stimulation until the develope $\frac{\sqrt{6}}{6}$ tension reached a maximum．When exposed to 40 mms ． K^{+}PSS，most strips produced stable tension within $1 \frac{\rho_{3}}{3}$ min．The strips that showed an instability in tension as induced by $40 \mathrm{~mm} \mathrm{~K}{ }^{+}$PSS，were excluded from the study．The responsiveness of each strip to $40 \mathrm{~mm} \mathrm{~K} \frac{0}{\circ}$ PSS was then recorded before starting the experimenta protocol，because almost the maximum，reproducibl $\frac{\stackrel{\rightharpoonup}{\varphi}}{\square}$ responses of tension to high K^{+}depolarization wer⿳亠丷⿵冂⿱丷口心． obtained at this concentration of K^{+}．The develope $\mathscr{H}_{\mathscr{H}_{4}}$ tension was expressed as a percentage，assuming th $\stackrel{\rightharpoonup}{8}$ values in normal（ $5.9 \mathrm{~mm} \mathrm{~K} \mathrm{~K}^{+}$）PSS and steady state o ${ }^{థ}$ $40 \mathrm{~mm} \mathrm{~K}^{+}$PSS to be 0% and 100% ，respectively．

Measurement of Fura－ 2 Fluorescence

 Ca^{2+} complex were monitored using a front－surfac $\stackrel{\rightharpoonup}{8}$ fura－2 fluorometer（model CAM－OF Co．），specificall designed in collaboration with Japan Spectroscopię （Tokyo，Japan）．The details of our front－surface fluo ${ }_{\square}^{\circ}$ rometry system have been described elsewhere．${ }^{11-13,29^{9}}$ In brief，two wavelengths of excitation light（340 and 380 nm ）were obtained spectroscopically from a Xenorn light source．The strips were illuminated by guiding the two alternating（ $400-\mathrm{Hz}$ ）wavelengths of excitatiory light through quartz optic fibers．The surface fluores ${ }^{ \pm}$ cence of the strip was collected by glass optic fibers and introduced through a $500-\mathrm{nm}$ band－pass filter into a photomultiplier．Thus，we measured the fura－ 2 flu－ orescence intensity of $500-\mathrm{nm}$ emission light，which was induced by alternating two wavelengths of exci－ tation light（ 340 and 380 nm ）．
The ratio of the fluorescence intensities（fluorescence ratio）at 340 nm excitation to that at 380 nm excitation was monitored to estimate changes in $\left[\mathrm{Ca}^{2+}\right]_{i}$ and ex－ pressed as a percentage，assuming the values in normal PSS（ 5.9 mm K ）and steady state of $40 \mathrm{~mm} \mathrm{~K}{ }^{+}$PSS to
be 0% and 100% ，respectively．The absolute values of $\left[\mathrm{Ca}^{2+}\right]$ f for 0% and 100% levels of the fluorescence ratio were determined separately using the following pro－ tocol and the equation of Grynkiewicz et al．${ }^{21}$ ：After recording 0% and 100% levels of the fluorescence ratio， the minimum and the maximum fluorescence ratios were determined by the addition of $25 \mu \mathrm{~m}$ ionomycin to Ca^{2+}－free PSS containing 2 mm ethylene glycol－bis （ β－aminoethyl ether） $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$－tetraacetic acid（EGTA）， followed by replacement with normal PSS（ 1.25 mm $\left.\mathrm{Ca}^{2+}\right)$ ，respectively．The absolute values of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ in normal PSS (0%) and the steady state of $40 \mathrm{~mm} \mathrm{~K}^{+}$PSS （ 100% ）were calculated and they were 90 ± 14 and $499 \pm 54 \mathrm{~nm}(\mathrm{n}=8)$ ，respectively．Thus，levels of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ for each experiment were expressed as percent levels of the fluorescence ratio，and the absolute values of $\left[\mathrm{Ca}^{2+}\right]_{i}$ for these percent levels were shown in the right ordinate of figures and parenthetically in the text as references．

Experimental Protocols

To examine the effect of midazolam on $\left[\mathrm{Ca}^{2+}\right]_{i}$ and tension during contractions，midazolam（ $10^{-7} \sim 10^{-4}$ M）was cumulatively applied on the steady state of ele－ vations of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension induced by 40 mm K ＋PSS or $10^{-7} \mathrm{~m}$ carbachol．
To examine the effect of antagonists against benzo－ diazepines on the effect of midazolam，strips were treated with flumazenil or PK11195．Flumazenil（ 10^{-5} m）or PK11195（ $10^{-5} \mathrm{M}$ ）were applied for 5 min before and during the application of $10^{-7} \mathrm{~m}$ carbachol．Mid－ azolam $\left(10^{-5} \mathrm{~m}\right)$ was then applied at the steady state of the contraction induced by carbachol．
To examine the effect of midazolam on Ca^{2+} sensi－ tivity of the contractile apparatus，we determined the $\left[\mathrm{Ca}^{2+}\right]$－tension relationships in the contractions induced by the stepwise increases in the extracellular Ca^{2+} con－ centration during $40 \mathrm{~mm} \mathrm{~K}^{+}$－induced depolarization， in the absence or presence of $10^{-7} \mathrm{~m}$ carbachol，as fol－ lows：After 10 min incubation in Ca^{2+}－free PSS con－ taining 2 mm EGTA，and then 5 min incubation in Ca^{2+} ． free PSS without EGTA，strips were immersed in Ca^{2+} －free 40 mm K solution．Then，the extracellular Ca^{2+} concentration was increased by the cumulative addition of CaCl_{2} ．Midazolam（ $3 \times 10^{-5} \mathrm{~m}$ ）was applied at the time of replacement with Ca^{2+}－free PSS without EGTA． To determine the effect of midazolam on the contrac－ tions in the presence of carbachol， $10^{-7} \mathrm{~m}$ carbachol was applied after 5 min incubation in Ca^{2+}－free PSS containing 2 mm EGTA．

To examine the effect of midazolam on the dynamic changes in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension during the contraction induced by carbachol，we observed the time courses of changes in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension induced by $10^{-7} \mathrm{M}$ carbachol in strips being treated with midazolam（ 0 ， $3 \times 10^{-5} \mathrm{~m}$ ）for 10 min before and during the appli－ cation of carbachol．
To examine the effect of midazolam on Ca^{2+} release from the intracellular store sites，two different exper－ iments were performed，in which the Ca^{2+} entry from the extracellular space was eliminated；the first is the inhibition of Ca^{2+} influx and the second is the elimi－ nation of extracellular Ca^{2+} ．First，the effect of mida－ zolam on Ca^{2+} release from the intracellular store dur－ ing the inhibition of Ca^{2+} influx was determined．To inhibit the influx of Ca^{2+} from the extracellular space， $3 \times 10^{-3} \mathrm{M} \mathrm{NiCl}_{2}$（an inorganic Ca^{2+} entry blocker ${ }^{22}$ ） was added 15 min before the application of $10^{-7} \mathrm{~m}$ carbachol．Midazolam was applied 10 min before the application of carbachol．Second，the effect of mida－ zolam on the Ca^{2+} release by caffeine or carbachol was determined as follows；after 10 min incubation in Ca^{2+} ． free PSS containing 2 mm EGTA， 20 mm caffeine or 10^{-7} m carbachol was applied．In midazolam－treated strips， $3 \times 10^{-5} \mathrm{~m}$ midazolam was applied 5 min before and throughout the application of caffeine or carbachol．

Solutions and Drugs

The normal PSS consisted of the following compo－ sition（in mm）： $\mathrm{NaCl} 123, \mathrm{KCl} 4.7, \mathrm{NaHCO}_{3} 15.5$ ， $\mathrm{KH}_{2} \mathrm{PO}_{4} 1.2, \mathrm{CaCl}_{2} 1.25$ ，and D－glucose 11．5．High K ${ }^{+}$ PSS was identical to normal PSS，except for an equi－ molar substitution of KCl for NaCl ．The Ca^{2+}－free ver－ sion of PSS was produced by the exclusion of CaCl_{2} from the composition of normal PSS．PSS was bubbled with $95 \% \mathrm{O}_{2}$ and $5 \% \mathrm{CO}_{2}$ ，with a resulting pH of 7.4 at $37^{\circ} \mathrm{C}$ ．Fura－2／AM and EGTA were purchased from Dojindo（Kumamoto，Japan）．The midazolam and flu－ mazenil were donated by Yamanouchi Pharmaceutical Co．（Tokyo，Japan）．The carbachol was obtained from Sigma Chemical（St．Louis，MO），and the caffeine was obtained from Katayama Chemical（Osaka，Japan），and the PK11195 was obtained from Research Biochemicals Inc．（Natick，MA）．

Data Analysis

The measured values were expressed as the mean \pm SE（ $\mathrm{n}=$ number of observations）．A repeated－measures one－way analysis of variance was used to determine the concentration－dependent effects．A repeated－measures
two-way analysis of variance for was used to determine the statistical significance of the effect of midazolam pretreatment on the contractions induced by extracellularly applied Ca^{2+} during high K^{+}depolarization. Analysis of covariance was used to determine the statistical significance of the shift of the $\left[\mathrm{Ca}^{2+}\right]_{i}$-tension relationship. For the rest of the measurements, an unpaired Student's t test was used. P values of less than 0.05 were considered to be significant. The IC_{50} values (the midazolam concentration that decreases $\left[\mathrm{Ca}^{2+}\right]_{i}$ and tension to 50% of the maximal response) were calculated, using the four-parameter logistic equation reported by De Lean et al. ${ }^{23}$

Results

The Effect of Midazolam on $\left[\mathrm{Ca}^{2+}\right]_{i}$ and Tension during the Contraction Induced by
Depolarization with High K^{+}Solution
As shown in figure 1A, when the tracheal strip was depolarized by the exposure to $40 \mathrm{~mm} \mathrm{~K}^{+}$PSS in the presence of $1.25 \mathrm{~mm} \mathrm{Ca}^{2+},\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension abruptly increased until reaching a peak, and then was sustained either at this level or at slightly decreased levels until reaching a plateau (or a steady state). When midazolam was cumulatively applied ($10^{-7} \sim 10^{-4} \mathrm{~m}$) during the steady state of the contraction, a concentration-dependent reduction in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension occurred (Figs. 1 A and 1 B). The application of $10^{-4} \mathrm{~m}$ midazolam reduced $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension to $18.1 \pm 5.2 \%(122 \mathrm{~nm})$ and $6.5 \pm 2.1 \%$, respectively $(\mathrm{n}=6)$. The IC_{50} values for $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension were approximately 4.1×10^{-5} m and $2.1 \times 10^{-5} \mathrm{~m}$, respectively. When midazolam $\left(10^{-7} \sim 10^{-4} \mathrm{~m}\right)$ was cumulatively applied during the resting state in normal PSS, no significant change in $\left[\mathrm{Ca}^{2+}\right]_{i}$ or tension was detected (data not shown). After washing out midazolam with normal PSS for 10 min , 40 mm K caused the same measure of response in $\left[\mathrm{Ca}^{2+}\right]_{i}$ and tension, thereby indicating that the effect of midazolam $\left(\leq 10^{-4} \mathrm{~m}\right)$ examined in this study was reversible.

The Effect of Midazolam on $\left[\mathrm{Ca}^{2+}\right]_{i}$ and Tension during Contractions Induced by Carbachol

Figure 2 A is a representative recording showing the effect of a cumulative application of midazolam (10^{-7} $\left.\sim 6 \times 10^{-5} \mathrm{~m}\right)$ on $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension during the contraction induced by $10^{-7} \mathrm{~m}$ carbachol. After recording the 100% response levels by the depolarization with

Fig. 1. The effect of midazolam on $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension during the contraction induced by depolarization with a high K^{+}solution. (A) Representative recording showing the effect of cu mulatively applied midazolam ($10^{-7} \sim 10^{-4} \mathrm{~m}$) on $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension during the contractions induced by $\mathbf{4 0} \mathbf{~ m м ~} \mathbf{K}^{+}$depolarization. At the point indicated by an arrowhead, midazolam was applied to make the final concentration shown in the figure. (B) The concentration-dependent effect of midazolam on elevated $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}(\bullet)$ and tension (O) induced by $\mathbf{4 0} \mathbf{m м} \mathbf{K}^{+}$depolarization. The fluorescence ratio and tension were expressed as a percentage by assuming the values at normal physiologic salt solution ($5.9 \mathrm{~mm} \mathrm{~K}^{+}$) and the steady state during the $\mathbf{4 0} \mathbf{~ m m ~} \mathrm{K}^{+}$-depolarization to be 0 and $\mathbf{1 0 0 \%}$ respectively. The plots represent the means of six preparations, with the standard error shown by vertical bars.
$40 \mathrm{~mm} \mathrm{~K}^{+}$PSS, carbachol was applied. Carbachol induced a rapid rise (the first component) in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension followed by a gradual decrease to a steady-state level (the second component) within 10 min . These steady levels of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}[58.5 \pm 9 \%(259.1 \mathrm{~nm})]$ and tension $(118 \pm 12 \%)(n=5)$ were then maintained

Fig. 2. The effect of midazolam on $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension during the contraction induced by $10^{-7} \mathrm{~m}$ carbachol. (A) Representative recording showing the effect of cumulatively applied midazolam ($10^{-7} \sim 6 \times 10^{-5} \mathrm{~m}$) on $\left[\mathrm{Ca}^{2+}\right]$ and tension during the contractions induced by $10^{-7} \mathrm{~m}$ carbachol. (B) The con-centration-dependent effect of midazolam on $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}(\bullet)$ and tension (O) during the contraction induced by $10^{-7} \mathrm{~m}$ carbachol. The fluorescence ratio and tension were expressed as a percentage by assuming the values at normal physiologic salt solution ($5.9 \mathrm{~mm} \mathrm{~K}{ }^{+}$) and the steady state during 40 mm K^{+}depolarization to be 0 and 100%, respectively. The plots represent the means of five preparations, with the standard error shown by vertical bars.
during the 1 -hr observation period. The cumulative application of midazolam, at the steady level of contraction induced by carbachol, caused a concentrationdependent reduction in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension. The application of $6 \times 10^{-5} \mathrm{~m}$ midazolam reduced $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension to $2.31 \pm 0.9 \%(95.1 \mathrm{nM})$ and $4.1 \pm 1.1 \%$, respectively $(\mathrm{n}=6)$. The IC_{50} values for $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and
tension were approximately $6.5 \times 10^{-6} \mathrm{~m}$ and $6.3 \times$ $10^{-6} \mathrm{~m}$, respectively.

Effects of Flumazenil and PK11195

Figure 3 A is a representative recording of the effect of application of $10^{-5} \mathrm{~m}$ midazolam on elevated $\left[\mathrm{Ca}^{2+}\right]_{i}$ and tension induced by $10^{-7} \mathrm{~m}$ carbachol. $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension were rapidly reduced to reach steady-state levels by midazolam. Neither the treatment with $10^{-5} \mathrm{~m}$ flumazenil (Fig. 3B) nor the treatment with $10^{-5} \mathrm{~m}$ PK1 1195 (Fig. 3C) for 5 min before and during the application of carbachol influenced carbachol-induced elevation of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension, nor did it effect mid-azolam-induced reduction of elevated $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension (Figs. 3D and 3E).

Effects of Midazolam on the Increases in $\left[\mathrm{Ca}^{2+}\right]_{i}$ and Tension Induced by Increases in Extracellular Ca^{2+} Concentration during High K^{+}-Depolarization

Figure 4A shows a representative recording of changes in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension induced by the cumulative application of CaCl_{2} during depolarization with 40 mm K^{+}. In response to the stepwise increment of extracellular Ca^{2+} concentration ($0.0125-2.5 \mathrm{~mm}$), $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension increased in a concentration-dependent manner. When the extracellular Ca^{2+} was $2.5 \mathrm{~mm},\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension were $105.6 \pm 7.2 \%$ (548 nm) and $85.3 \pm$ 10.5%, respectively $(\mathrm{n}=10)$. Treatment with 3×10^{-5} м midazolam for 8 min before and during the cumulative application of extracellular Ca^{2+} significantly inhibited increases in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension $(P<0.01$ for both, by two-way analysis of variance) (Fig. 4B). In the midazolam-treated strips, when the extracellular Ca^{2+} was $5 \mathrm{~mm},\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension were $61.8 \pm 8.6 \%(273.6$ $\mathrm{nm})$ and $20.8 \pm 8.2 \%$ respectively $(\mathrm{n}=6)$.

Effect of Midazolam on the Increases in $\left[\mathrm{Ca}^{2+}\right]_{i}$

 and Tension Induced by Increases in Extracellular Ca^{2+} Concentration during HighK^{+}-Depolarization in the Presence of Carbachol Figure 5A shows a representative recording of changes in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension induced by the cumulative application of CaCl_{2} during depolarization with 40 mm K^{+}in the presence of $10^{-7} \mathrm{~m}$ carbachol. In response to the stepwise increment of extracellular Ca^{2+} concentration ($0.0125-1.25 \mathrm{~mm}$), $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension increased in a concentration-dependent fashion. When the extracellular Ca^{2+} was $1.25 \mathrm{~mm},\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension were $72.4 \pm 8.2 \%(322.8 \mathrm{~nm})$ and $206.3 \pm 14.2 \%$,

Fig. 3. Effect of flumazenil and PK11195 on the decreases in $\left[\mathrm{Ca}^{2+}\right]_{\text {, }}$ and tension induced by $10^{-5} \mathrm{~m}$ midazolam. (A) Representative recording showing the effect of $10^{-5} \mathrm{~m}$ midazolam on $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension development induced by $10^{-7} \mathrm{~m}$ carbachol. (B) Representative recording showing the effect of the treatment with $10^{-5} \mathrm{~m}$ flumazenil on the midazolam-induced decreases in $\left[\mathrm{Ca}^{2+}\right]_{\text {t }}$ and tension during $10^{-7} \mathrm{~m}$ carbachol-induced contraction. (C) Representative recording showing the effect of the treatment with $10^{-5} \mathrm{~m}$ PK11195 on the midazolam-induced decreases in $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension during $10^{-7} \mathrm{~m}$ carbachol-induced contraction. (D) $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{t}}$ and (E) tension development before (left) and after (right) the application of midazolam, in the absence (closed columns) and the presence of $10^{-5} \mathrm{~m}$ flumazenil (hatched columns) or $10^{-5} \mathrm{~m}$ PK11195 (open columns). The vertical bars at the top of each column show standard error $(\mathrm{n}=5)$.
respectively $(\mathrm{n}=10)$. Treatment with $3 \times 10^{-5} \mathrm{~m}$ midazolam for 8 min before and during the cumulative application of extracellular Ca^{2+} significantly inhibited increases in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension $(P<0.01$ for both, by
two-way analysis of variance; Fig. 5B). In the midazo-lam-treated strips, when the extracellular Ca^{2+} was 2.5 $\mathrm{mm},\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension were $55.5 \pm 7.6 \%(247.8 \mathrm{~nm})$ and $129.3 \pm 14.3 \%$, respectively $(\mathrm{n}=6)$.
(A)

(B)

Fig. 4. Effect of $3 \times 10^{-5} \mathrm{~m}$ midazolam on the increases in $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension induced by cumulative application of extracellular $\mathrm{Ca}^{2+}(0.0125-2.5$ or 5 mm$)$ during $40 \mathrm{~mm} \mathrm{~K}^{+}$depolarization. Representative recordings of changes in $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension induced by the cumulative application of CaCl_{2} in Ca^{2+}-free 40 $\mathrm{mm} \mathrm{K}^{+}$solution, without (A) and with $(B) 3 \times 10^{-5} \mathrm{~m}$ midazolam treatment.

The Effect of Midazolam on the $\left[\mathrm{Ca}^{2+}\right]_{\text {r }}$ Tension Relationship

Figure 6 represents the $\left[\mathrm{Ca}^{2+}\right]_{i}$-tension relationships during the contractions induced by cumulative applications of the extracellular Ca^{2+} during high K^{+}depolarization, in the presence or absence of carbachol, with or without midazolam treatment, were evaluated from data in figures 4 and 5. The $\left[\mathrm{Ca}^{2+}\right]_{i}$-tension relationship of the contractions induced by the increases in the extracellular Ca^{2+} concentration during high K^{+} depolarization in the presence of carbachol significantly shifted upward and left from that in the absence
of carbachol. Treatment with $3 \times 10^{-5} \mathrm{~m}$ midazolam had no significant effect on the $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$-tension relationship both in the absence and presence of carbachol.

The Effects of the Pretreatment with Midazolam on the Dynamic Changes in $\left[\mathrm{Ca}^{2+}\right]_{i}$ and Tension during the Contractions Induced by Carbachol
As shown in figure 7 , increases in both $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension induced by $10^{-7} \mathrm{~m}$ carbachol were inhibited

Fig. 5. Effect of $3 \times 10^{-5} \mathrm{~m}$ midazolam on the increases in $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension induced by cumulative application of extracellular $\mathrm{Ca}^{2+}(0.0125-1.25$ or 2.5 mm$)$ during $40 \mathrm{~mm} \mathrm{~K}{ }^{+}$depolarization in the presence of $10^{-7} \mathrm{~m}$ carbachol. Representative recordings of changes in $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension induced by the cumulative application of CaCl_{2} in Ca^{2+}-free 40 mm K solution in the presence of $10^{-7} \mathrm{~m}$ carbachol, without (A) and with $(B) 3 \times 10^{-5} \mathrm{~m}$ midazolam treatment.

Fig. 6. Effect of midazolam on the $\left[\mathrm{Ca}^{2+}\right]_{i}$-tension relationship. The $\left[\mathrm{Ca}^{2+}\right]_{1}$-tension relationship was obtained from the data in figures 4 and 5.(\bullet) and (\bigcirc) indicate values obtained from contractions induced by changes in extracellular Ca^{2+} during $40 \mathrm{~mm} \mathrm{~K}{ }^{+}$depolarization, with or without treatment with $3 \times$ $10^{-5} \mathrm{~m}$ midazolam, respectively. (■) and (\square) indicate values obtained from contractions induced by changes in extracellular Ca^{2+} during $\mathbf{4 0} \mathrm{mm} \mathrm{K}^{+}$depolarization in the presence of $10^{-7} \mathrm{~m}$ carbachol, with or without treatment with $3 \times 10^{-5} \mathrm{~m}$ midazolam.
by pretreatment with midazolam $\left(3 \times 10^{-5} \mathrm{~m}\right)$ for 10 min. Midazolam inhibited both $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension in a parallel manner. $\mathrm{NiCl}_{2}\left(3 \times 10^{-3} \mathrm{~m}\right)$ only partially inhibited the first component, but almost fully inhibited the second component of the increases in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension during the contraction induced by $10^{-7} \mathrm{~m}$ carbachol. At $3 \times 10^{-5} \mathrm{~m}$ midazolam alone, the extent of the increases in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension of the first component were similar to those induced by $10^{-7} \mathrm{M}$ carbachol in strips pretreated with $3 \times 10^{-3} \mathrm{~m} \mathrm{NiCl} \mathrm{N}_{2}$ for 5 min , or to that pretreated with $3 \times 10^{-3} \mathrm{~m} \mathrm{NiCl}_{2}$ and $3 \times$ $10^{-5} \mathrm{~m}$ midazolam. The time courses of the changes in both $\left[\mathrm{Ca}^{2+}\right]_{i}$ and tension during the contraction induced by $10^{-7} \mathrm{~m}$ carbachol in strips treated with $3 \times 10^{-3} \mathrm{~m}$ NiCl_{2} were exactly the same as those in strips treated with $3 \times 10^{-3} \mathrm{~m} \mathrm{NiCl} 2$ and $3 \times 10^{-5} \mathrm{~m}$ midazolam, which indicated that midazolam could only inhibit Ca^{2+} influx in a manner similar to that of nickel.

> The Effect of Midazolam on $\left[\mathrm{Ca}^{2+}\right]_{i}$ and Tension Development of the Contraction Induced by Caffeine in the Absence of Extracellular Ca^{2+} Figure 8A shows the representative recordings of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension of the contraction induced by the application of 20 mm caffeine in Ca^{2+}-free solution containing 2 mm EGTA. The application of 20 mm caffeine in the absence of extracellular Ca^{2+} caused a transient increase in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension. Treatment with 3
$\times 10^{-5} \mathrm{~m}$ midazolam from 5 min before the application of caffeine had no effect on the increases in $\left[\mathrm{Ca}^{2+}\right]_{i}$ and tension induced by caffeine (Figs. 8B and 8C).

The Effect of Midazolam on $\left[\mathrm{Ca}^{2+}\right]_{i}$ and Tension

 Development of the Contractions Induced by Carbachol in the Absence of Extracellular Ca^{2+}Figure 9A shows representative recordings of $\left[\mathrm{Ca}^{2+}\right]_{i}$ and tension of the contraction induced by the appli-

Fig. 7. The effect of pretreatment with midazolam on changes in $\left[\mathrm{Ca}^{2+}\right]_{1}$ and the tension induced by $10^{-7} \mathrm{~m}$ carbachol. The time courses of changes in $(A)\left[\mathrm{Ca}^{2+}\right]_{1}$ and (B) tension development induced by $10^{-7} \mathrm{~m}$ carbachol in strips with (\square) or without (control) (O) pretreatment with $3 \times 10^{-5} \mathrm{~m}$ midazolam are shown. The application of midazolam was started 10 min prior to that of carbachol. The abscissa scales indicate the time (in min) after the application of carbachol. Time courses of changes in $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension induced by $10^{-7} \mathrm{~m}$ carbachol in the strips with (\quad) or without (control) (\odot) pretreatment with $3 \times 10^{-5} \mathrm{~m}$ midazolam in the presence of $3 \times 10^{-3} \mathbf{~ m ~ N i C l} \mathbf{N a}_{2}$ are also shown. NiCl_{2} was applied 15 min before the application of carbachol. The data represent the mean of 7 different measurements; the vertical bars show the standard error.

Fig. 8. The effect of $3 \times 10^{-5} \mathrm{~m}$ midazolam on $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension development induced by 20 mm caffeine in the absence of extracellular Ca^{2+}. (A) Representative recording showing the time courses of changes in $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension development induced by the applications of 20 mm caffeine in Ca^{2+}-free solution containing 2 mm ethylene glycol-bis (β-aminoethyl ether) $\mathrm{N}, \mathbf{N}, \mathbf{N}^{\prime}, \mathbf{N}^{\prime}$-tetraacetic acid. (B) Representative recording showing the effect of midazolam on $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension development induced by the application of 20 mm caffeine in a Ca^{2+}-free solution containing 2 mm ethylene glycol-bis (β-aminoethyl ether) $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tetraacetic acid. Midazolam ($3 \times 10^{-5} \mathrm{~m}$) was applied 5 min before and throughout the application of caffeine. (C) Summaries of the changes in $\left[\mathrm{Ca}^{2+}\right]$, and tension development in response to applications of caffeine, without (open columns) and with (hatched columns) $3 \times 10^{-5} \mathrm{~m}$ midazolam treatment on the application of caffeine. The bottoms and the tops of each column indicate the $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension just before the caffeine application and the peak levels obtained by the caffeine application, respectively. The vertical bars at the bottom and the top of each column show the standard error $(\mathrm{n}=5)$.
cation of $10^{-7} \mathrm{~m}$ carbachol in Ca^{2+}-free solution containing 2 mm EGTA. The application of $10^{-7} \mathrm{~m}$ carbachol in the absence of extracellular Ca^{2+} caused a transient increase in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension. Treatment with

Fig. 9. The effect of $3 \times 10^{-5} \mathrm{~m}$ midazolam on $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension development induced by $10^{-7} \mathrm{~m}$ carbachol in the absence of extracellular Ca^{2+}. (A) Representative recording showing the time courses of changes in $\left[\mathrm{Ca}^{2+}\right]_{1}$ and the tension development induced by the application of $10^{-7} \mathrm{M}$ carbachol in Ca^{2+}-free solution containing 2 mm ethylene glycol-bis (β-aminoethyl ether) $\mathbf{N}, \mathbf{N}, \mathbf{N}^{\prime}, \mathbf{N}^{\prime}$-tetraacetic acid. (B) Representative recording showing the effect of midazolam on $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension induced by the application of $10^{-7} \mathrm{~m}$ carbachol in Ca^{2+}-free solution containing 2 mm ethylene glycol-bis (β-aminoethyl ether) $\mathbf{N}, \mathbf{N}, \mathbf{N}^{\prime}, \mathbf{N}^{\prime}$-tetraacetic acid. Midazolam ($3 \times 10^{-5} \mathrm{~m}$) was applied 5 min before and throughout the application of carbachol. (C) The summaries of changes in $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension development in response to applications of carbachol, without (open columns) and with (hatched columns) $3 \times 10^{-5} \mathrm{~m}$ midazolam treatment on the application of carbachol. The bottoms and the tops of each column indicate the $\left[\mathrm{Ca}^{2+}\right]_{1}$ and tension just before the carbachol-application and the peak levels obtained by the carbachol-application, respectively. The vertical bars at the bottom and the top of each column show the standard error $(\mathrm{n}=5)$.

YOSHIMURA ET AL.
$3 \times 10^{-5} \mathrm{~m}$ midazolam from 5 min before the application of carbachol had no effect on the increases in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension induced by carbachol (Figs. 9B and 9C).

Discussion

Several investigators have reported that midazolam directly relaxed smooth muscle during contractions induced by high K^{+}depolarization or agonists, including acetylcholine, bethanechol, histamine, and serotonin. ${ }^{1-7}$ However, the underlying intracellular mechanism of the direct relaxation of smooth muscle, especially that of airway smooth muscle, induced by midazolam has not yet been fully determined. On the basis of the current understanding of excitation-contraction coupling in smooth muscle cells, the following two mechanisms may play a major role: those dependent on changes in the surface membrane potential (electromechanical coupling) and those independent of the surface membrane potential (pharmacomechanical coupling). ${ }^{24}$ The independence (or dependence) of these two coupling mechanisms is not defined yet. Through these mechanisms, the increased cytosolic Ca^{2+} binds to calmodulin to activate myosin light chain kinase, which catalyzes the phosphorylation of the myosin light chain, activating actomyosin adenosine triphosphatase, which induces contractions. ${ }^{25}$ Thus, $\left[\mathrm{Ca}^{2+}\right]_{i}$ primarily regulates smooth muscle contractions through electromechanical and pharmacomechanical couplings. However, in smooth muscle cells, contractile force does not simply depend on $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$, because there are modulations of the sensitivity of myofilament to $\left[\mathrm{Ca}^{2+}\right]_{i}$ by several intracellular signal transduction systems; and this mechanism also may be included in pharmacomechanical coupling. ${ }^{26}$ To clarify the mechanism of the midazolam-induced relaxation of airway smooth muscle, we determined the effect of midazolam on electromechanical and pharmacomechanical coupling, namely, on Ca^{2+} influx through the voltage-operated or receptor-operated Ca^{2+} channels, on Ca^{2+} release from the intracellular store, and on the Ca^{2+} sensitivity of the contractile apparatus.
In the current study at the steady state of both high K^{+}depolarization-induced and carbachol-induced contractions, cumulative applications of midazolam ($10^{-7} \sim 10^{-4} \mathrm{M}$) caused a concentration-dependent decrease in $\left[\mathrm{Ca}^{2+}\right]_{i}$ and tension. Treatment with $3 \times$ $10^{-5} \mathrm{~m}$ midazolam inhibited the extracellularly applied Ca^{2+}-induced increases in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension during
high K^{+}depolarization, in the absence or presence of carbachol. However, at the resting state, the cumulative application of midazolam $\left(10^{-7} \sim 10^{-4} \mathrm{~m}\right)$ led to no significant change in either $\left[\mathrm{Ca}^{2+}\right]_{i}$ or tension. These results suggest that midazolam inhibits the influx of extracellular Ca^{2+} induced both by high K^{+}depolarization and carbachol and, thus, decreases $\left[\mathrm{Ca}^{2+}\right]_{i}$ to \tilde{S}_{0}^{0} cause relaxation during contractions.
Airway contraction is controlled by some neuropeptides. ${ }^{27}$ Gamma-amino-butyric acid has an inhibitory effect on postganglionic cholinergic neurotransmission 毒 in ferret airways. ${ }^{28}$ The benzodiazepine receptor is a positive modulatory subunit of gamma-amino-butyric acid receptor. ${ }^{29}$ A ligand bound to the benzodiazepine receptor enhances the effect of gamma-amino-butyric acid on the chloride channel by increasing its opening frequency. ${ }^{29}$ Therefore, it is possible that, in addition to the direct inhibition of a Ca^{2+} influx possibly through Ca^{2+} channels, midazolam relaxes airway smooth muscle by means of stimulation of some benzodiazepine receptor and modulation of the gamma-amino-butyric acid receptor. In the current study, however, $10^{-5} \mathrm{~m}$ flumazenil and PK11195 (a specific central ${ }^{14-17}$ and a specific peripheral ${ }^{1,18,19}$ antagonist against benzodiazepine, respectively), had no influence on the changes in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ or tension during $10^{-5} \mathrm{~m}$ midazolam-induced relaxation. Midazolam probably relaxes the airway smooth muscle by binding sarcolemmal membranes relating to Ca^{2+} channels, but not by activating benzodiazepine receptors. In agreement with our findings, flumazenil and PK1 1195 have been reported to have no effect on midazolam-induced relaxation of airway smooth muscle. ${ }^{5,7}$ The concentration of flumazenil $\left(10^{-5} \mathrm{~m}\right)$ used in the current study is higher than the estimated levels of plasma concentrations in clinical use. ${ }^{14-17}$
In the presence of carbachol, the $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$-tension re-lation-curve of the contractions induced by the increases in extracellular Ca^{2+} concentration during high K^{+}-depolarization, shifted markedly upward and left from that obtained in the absence of carbachol. In other words, at a given $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ level, the tension development in the presence of carbachol was much greater than that in the absence of carbachol, indicating that the Ca^{2+} sensitivity of the contractile apparatus is increased by carbachol. Similar findings, that muscarinic agonists increase myofilament Ca^{2+} sensitivity in airway smooth muscle, have been reported by others. ${ }^{20,30-32}$ In addition, the current study showed that, not only the Ca^{2+} sensitivity during the contraction induced by high K^{+}.

MECHANISMS OF MIDAZOLAM-INDUCED AIRWAY RELAXATION
depolarization but also an increased Ca^{2+} sensitivity of the contractile apparatus induced by carbachol is not affected by the midazolam treatment. These findings are essentially similar to those observed in the case of diltiazem ${ }^{13}$ and indicated that the relaxation of the car-bachol-induced contractions by midazolam is directly caused by the decrease in $\left[\mathrm{Ca}^{2+}\right]_{i}$, without any direct effect on the Ca^{2+} sensitivity of the contractile apparatus.

In the current study, the application of carbachol $\left(10^{-7} \mathrm{~m}\right)$ on porcine tracheal strips increased both $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and tension, which consisted of two components: the first, a rapid rising component and the second, a sustained component (Fig. 7). Since the application of carbachol, both in the absence of extracellular Ca^{2+} and the presence of both Ca^{2+} and Ni^{2+}, caused only rapid and transient increases in $\left[\mathrm{Ca}^{2+}\right]_{i}$ and tension, which was smaller than that seen with the presence of extracellular Ca^{2+} (Figs. 7 and 9), it is thus conceivable that the second component is produced mainly by the influx of extracellular Ca^{2+}, whereas the first component is produced by both the Ca^{2+} influx and Ca^{2+} release from the intracellular store. Because pretreatment with midazolam $\left(3 \times 10^{-5} \mathrm{~m}\right)$ attenuated the carbacholinduced elevations of $\left[\mathrm{Ca}^{2+}\right]_{i}$ and tension in both the first and second components, we carried out additional experiments to determine the effect of midazolam on the release of Ca^{2+} from the intracellular store. The following major results were obtained: First, when carbachol was applied in the presence of $\mathrm{NiCl}_{2}\left(3 \times 10^{-3}\right.$ m) to inhibit the Ca^{2+} influx from the extracellular spaces, midazolam $\left(3 \times 10^{-5} \mathrm{~m}\right)$ did not affect the elevation of $\left[\mathrm{Ca}^{2+}\right]_{i}$ and tension of the first component at all. Second, the effect of midazolam on the Ca^{2+} release by two distinct stimulants, caffeine and carbachol, in the absence of extracellular Ca^{2+} was examined. It is well established that caffeine causes Ca^{2+} release by facilitating the Ca^{2+}-induced Ca^{2+} release mechanism, whereas carbachol causes Ca^{2+} release by pharmacomechanical coupling mediated by inositol $1,4,5$,-trisphosphate. ${ }^{33}$ In the absence of extracellular $\mathrm{Ca}^{2+}, 3 \times$ $10^{-5} \mathrm{~m}$ midazolam was not found to have any inhibiting effect on the increases in $\left[\mathrm{Ca}^{2+}\right]_{i}$ and tension induced by either caffeine or carbachol. We found that only an extremely high concentration of midazolam $\left(3 \times 10^{-4}\right.$ M) inhibited the increases in $\left[\mathrm{Ca}^{2+}\right]_{i}$ and tension due to the release of Ca^{2+} from the intracellular store induced by either caffeine or carbachol. However, the effects of midazolam, at a concentration higher than this level was not reversible (data not shown). These observations
indicate that the clinical concentrations of midazolam do not affect Ca^{2+} release from the intracellular stores.

The blood concentration of benzodiazepines used clinically is $100 \sim 200 \mu \mathrm{~g} / \mathrm{ml}$, i.e., approximately 10^{-7} $\sim 10^{-6} \mathrm{~m} .{ }^{34-37}$ In the current study, to observe the definite relaxation with midazolam during the reproducible and steady-state levels ($118 \pm 12 \%$) of contraction of tracheal smooth muscle, carbachol at the concentration of $10^{-7} \mathrm{~m}$ was used an agonist. The IC_{50} value of midazolam for this high level of developed tension induced by $10^{-7} \mathrm{~m}$ carbachol was 6.3×10^{-6} m , which seems relevant to the clinical concentration. However, it has to be noted that because midazolam is highly bound to plasma protein ${ }^{34}$ and the tension development over 100% levels (like a contraction) hardly occur in the clinical setting, the similarity between the clinical concentration and the IC_{50} values obtained in the current study may be simply a coincidence.

Using front-surface fluorometry of fura- 2 and porcine tracheal smooth muscle specimens, we were able to determine the mechanisms underlying midazolam-induced relaxation. It was concluded that midazolam $\left(\leq 10^{-4} \mathrm{~m}\right)$ directly inhibited extracellular Ca^{2+}-dependent increases in $\left[\mathrm{Ca}^{2+}\right]_{i}$, possibly by means of a Ca^{2+} influx through Ca^{2+} channels, and thus, caused proportional decreases in tension, while having no effect on the Ca^{2+} sensitivity of the contractile elements.

References

1. French JF, Rapoport RM, Matlib MA: Possible mechanism of benzodiazepine-induced relaxation of vascular smooth muscle. J Cardiovasc Pharmacol 14:405-411, 1989
2. Brunner F, Kuhberger E, Groschner K, Poch G, Kukovetz WR: Characterization of muscarinic receptors mediating endotheliumdependent relaxation of bovine coronary artery. Eur J Pharmacol 200: 25-33, 1991
3. Colson P, Medioni P, Saussine M, Seguin JR, Cuchet D, Grolleau D, Chaptal PA, Roquefeuil B: Hemodynamic effect of calcium channel blockade during anesthesia for coronary artery surgery. J Cardiothorac Vasc Anesth 6:424-428, 1992
4. Chang KSK, Feng MG, Davis RF: Midazolam produces vasodilation by mixed endothelium-dependent and -independent mechanisms. Anesth Analg 78:710-717, 1994
5. Raeburn D, Miller LG, Summer WR: Peripheral type benzodiazepine receptor and airway smooth muscle relaxation. J Pharmacol Exp Ther 245:557-562, 1988
6. Haxhiu MA, van Lunteren E, Cherniack NS, Deal EC: Benzodiazepines acting on ventral surface of medulla cause airway dilation. Am J Physiol 257:R810-R815, 1989
7. Koga Y, Sato S, Sodeyama N, Takahashi M, Kato M, Iwatsuki N, Hashimoto Y: Comparison of the relaxant effects of diazepam, flunitrazepam and midazolam on airway smooth muscle. Br J Anaesth 69: 65-69, 1992
8. Morgan JP, Morgan KG: Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein. J Physiol (Lond) 351:155-167, 1984
9. Nishimura J, Kolber M, van Breemen C: Norepinephrine and GTP- γ-S increase myofilament Ca^{2+} sensitivity in α-toxin permeabilized arterial smooth muscle. Biochem Biophys Res Commum 157: 677-683, 1988
10. Kobayashi S, Kitazawa T, Somlyo AV, Somlyo AP: Cytosolic heparin inhibits muscarinic and α-adrenergic Ca^{2+} release in smooth muscle. J Biol Chem 264:17997-18004, 1989
11. Kodama M, Kanaide H, Abe S, Hirano K, Kai H, Nakamura M: Endothelin-induced Ca-independent contraction of the porcine coronary artery. Biochem Biophys Res Commum 160:1302-1308, 1989
12. Hirano K, Kanaide H, Abe S, Nakamura M: Effects of diltiazem on calcium concentrations in the cytosol and on force of contractions in porcine coronary arterial strips. Br J Pharmacol 101:273-280, 1990
13. Abe S, Kanaide H, Nakamura M: Front-surface fluorometry with fura- 2 and effects of nitroglycerin on cytosolic calcium concentrations and on tension in the coronary artery of the pig. Br J Pharmacol 101 545-552, 1990
14. Ricou B, Forster A, Bruckner A, Chastonay P, Gemperle M: Clinical evaluation of a specific benzodiazepine antagonist (Ro151788). Br J Anaesth 58:1005-1011, 1986
15. Amrein R, Hetzel W: Pharmacology of dormicum (midazolam) and anexate (flumazenil). Acta Anaesthesiol Scand 34 (suppl 92):615, 1990
16. Jones RDM, Lawson AD, Andrew LJ, Gunawardene WMS, BaconShone J: Antagonism of the hypnotic effect of midazolam in children: A randomized, double-blind study of placebo and flumazenil administered after midazolam-induced anaesthesia. Br J Anaesth 66:660666, 1991
17. Brogden RN, Goa KL: Flumazenil a preliminary review of its benzodiazepine antagonist properties, intrinsic activity and therapeutic use. Drugs 35:448-467, 1988
18. LeFur G, Vaucher N, Perrier ML, Flamier A, Benavides J, Renault C, Dubroeucq MC, Gueremy C, Uzan A: Differentiation between two ligands for peripheral benzodiazepine binding sites, [$\left.{ }^{3} \mathrm{H}\right]$ RO5- 4864 and $\left.{ }^{3} \mathrm{H}\right]$ PK11195, by thermodynamic studies. Life Sci 33:449-457, 1983
19. Mestre M, Carriot T, Belin C, Uzan A, Renault C, Dubroecq MC, Gueremy C, LeFur G: Electropysiological and pharmacological evidence that peripheral type benzodiazepine receptors are coupled to Ca channels in the heart. Life Sci 36:391-400, 1985
20. Kai T, Nishimura J, Kobayashi S, Takahashi S, Yoshitake J, Kanaide H : Effects of lidocaine on intracellular Ca^{2+} and tension in airway smooth muscle. ANesthesiology 78:954-965, 1993
21. Grynkiewicz G, Poeine M, Tsien RY: A new generation of Ca^{2+} indicators with greatly improved fluorescence properties. J Biol Chem 260:3440-3450, 1985
22. Akaike N, Kanaide H, Kuga T, Nakamura M, Sadoshima J, Tomoike H: Low-voltage-activated calcium current in rat aorta smooth muscle cells in primary culture. J Physiol (Lond) 416:141-160, 1989
23. De Lean A, Munson PJ, Rodbard D: Simultaneous analysis of families of sigmoidal curves: Application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol 235: E97-E102, 1978
24. Coburn RF, Baron CB: Coupling mechanisms in airway smooth muscle. Am J Physiol 258:L1 19-L133, 1990
25. Kamm KE, Stull JT: The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Ann Rev Pharmacol Toxicol 25:593-620, 1985
26. Somlyo AP, Kitazawa T, Kobayashi S, Gong MC: Pharmacomechanical coupling: The membranes talk to the crossbridges, regulation of smooth muscle contraction. Edited by Moreland RS. New York, Plenum Press, 1991, pp 185-208
27. Barnes PJ: Modulation of neurotransmission in airways. Physiol Rev 72:699-729, 1992
28. Tamaoki J, Graf PD, Nadel JA: Effect of gamma-aminobutyric acid on neurally mediated contraction of guinea pig trachealis smooth muscle. J Pharmacol Exp Ther 243:86-90, 1987
29. DeLorey TM, Kissin I, Brown P, Brown GB: Barbiturate-benzodiazepine interaction at the γ-aminobutyric acid aceptor in rat $^{\text {recep }}$ cerebral cortical synaptoneurosomes. Anesth Analg 77:598-605, 1993
30. Gerthoffer WT, Murphey KA, Gunst SJ: Aequorin luminescence, myosin phosphorylation, and active stress in tracheal smooth muscle. Am J Physiol 257:C1062-C1068, 1989
31. Ozaki H, Kwon SC, Tajimi M, Karaki H: Changes in cytosolic Ca^{2+} and contraction induced by various stimulants and relaxants in canine tracheal smooth muscle. Pflugers Arch 416:351-359, 1990
32. Yamakage M: Direct inhibitory mechanisms of halothane on canine tracheal smooth muscle contraction. Anesthesiology 77:546553, 1992
33. van Breemen C, Saida K: Cellular mechanisms regulating $\left[\mathrm{Ca}^{2+}\right] i$ smooth muscle. Annu Rev Physiol 51:315-329, 1989
34. Zbinden G, Randall LO: Pharmacology of benzodiazepines: Laboratory and clinical correlations. Adv Pharmacol 5:213-291, 1967
35. Dundee JW: New IV anesthetics. Br J Anaesth 51:641-648, 1979
36. Hanaoka K, Tagami M, Inada Y, Yamamura H: Clinical pharmacological study of midazolam-phase I study.Jpn J Clin Pharmacol Ther 14:573-591, 1983
37. Allonen H, Ziegler G, Klotz U: Midazolam kinetics. Clin Pharmacol Ther 30:653-661, 1981

[^0]: - Research Associate, Department of Anesthesiology and Critical Care Medicine
 t Instructor, Department of Anesthesiology and Critical Care Medicine.
 \ddagger Lecturer, Division of Molecular Cardiology, Research Institute of Angiocardiology.

