Chest Wall Responses to Rebreathing in Halothaneanesthetized Dogs

David O. Warner, M.D., \dagger Michael J. Joyner, M.D.,* Erik L. Ritman, M.D., Ph.D. \ddagger

Background: The pattern of respiratory muscle use during halothane-induced anesthesia differs markedly among species breathing quietly. In humans, halothane accentuates phasic activity in rib cage and abdominal expiratory muscles, whereas activity in the parasternal intercostal muscles is abolished. In contrast, halothane abolishes phasic expiratory muscle activity during quiet breathing in dogs, but parasternal muscle activity is maintained. Respiratory muscle responses to CO_{2} rebreathing were measured in halothane-anesthetized dogs to determine if species differences present during quiet breathing persist over a wide range of central respiratory drive.

Methods: Chronic electromyogram electrodes were implanted in three expiratory agonists (the triangularis sterni, transversus abdominis, and external oblique muscles) and three inspiratory agonists (the parasternal intercostal muscle, costal and crural diaphragm) of six mongrel dogs. After a 1month recovery period, the dogs were anesthetized in the supine position with halothane. The rebreathing response was determined by Read's method during anesthesia with stable 1 and 2 minimum alveolar end-tidal concentrations of halothane. CO_{2} concentrations were measured in the rebreathing bag using an infrared analyzer. Chest wall motion was measured by fast three-dimensional computed tomographic scanning.
Results: Halothane concentration did not significantly affect the slope of the relationship between minute ventilation $\left(\dot{\mathbf{V}}_{\mathbf{E}}\right)$ and $\mathrm{Pco}_{2}\left(0.34 \pm 0 ; 04[\mathrm{M} \pm \mathrm{SE}]\right.$ and $0.28 \pm 0.051 \cdot \mathrm{~min}^{-1} \cdot \mathrm{mmHg}^{-1}$ during 1 and 2 minimum alveolar concentration anesthesia, respectively). However, 2 minimum alveolar concentration anesthesia did significantly decrease the calculated $\dot{\mathrm{V}}_{\mathrm{E}}$ at a Pco_{2} of 60 mmHg (from 7.4 ± 1.2 to $4.0 \pm 0.61 \cdot \mathrm{~min}^{-1}$), indicating a rightward shift in the response relationship. No electro-

[^0]myographic activity was observed in any expiratory muscle before rebreathing. Rebreathing produced electromyographic activity in at least one expiratory muscle in only two dogs. Rebreathing significantly increased electromyographic activity in all inspiratory agonists. Rebreathing significantly increased inspiratory thoracic volume change ($\Delta V_{t h}$), with percentage of $\delta \mathbf{V}_{\mathrm{th}}$ attributed to outward rib cage displacement increasing over the course of rebreathing during 1 minimum alveolar concentration anesthesia (from $33 \pm 6 \%$ to $48 \pm \mathbf{2 \%}$ of $\Delta V_{t h}$).

Conclusions: Rebreathing did not produce expiratory muscle activation in most dogs, demonstrating that the suppression of expiratory muscle activity observed at rest persists at high levels of ventilatory drive. Other features of the rebreathing response also differed significantly from previous reports in halothane-anesthetized humans, including (1) an increase in the rib cage contribution to tidal volume during the course of rebreathing, (2) recruitment of parasternal intercostal activity by rebreathing, (3) differences in the response of ventilatory timing, and (4) the lack of effect of anesthetic depth on the slope of the ventilatory response. These marked species differences are further evidence that the dog is not a suitable model to study anesthetic effects on the activation of human respiratory muscles. (Key words: Anesthetics, volatile: halothane. Lung: breathing pattern; blood volume; diaphragm; functional residual capacity; intrathoracic rib cage. Measurement technique: computed tomography; electromyography. Muscle: diaphragm; external oblique; parasternal intercostal; respiratory; transversus abdominis.)

THE pattern of respiratory muscle activity during quiet breathing differs markedly among species anesthetized with halothane. ${ }^{1,2}$ In humans, halothane accentuates phasic activity in rib cage and abdominal muscles with expiratory actions, ${ }^{2,3}$ whereas activity in the parasternal intercostal muscles, which act to expand the rib cage during inspiration, is abolished. ${ }^{2,4}$ In contrast, we found in a previous study that in dogs, halothane abolishes phasic activity in muscles with expiratory actions during quiet breathing, whereas parasternal muscle activity is maintained. ${ }^{1}$ These species differences may limit the utility of the intact dog as a model to study mechanisms of anesthetic actions on the control of respiratory muscles, at least during quiet breathing.
Conditions characterized by increased ventilatory demand, such as hyperpnea induced by the rebreathing
of expired gas，are powerful stimuli for respiratory muscle recruitment as well as useful tools to study the control of breathing in intact animals and humans．${ }^{5}$ In halothane－anesthetized humans，rebreathing increases activity in respiratory muscles with expiratory actions， such as the internal intercostal and transversus abdom－ inis muscles．${ }^{6}$ However，the profound depression of parasternal intercostal muscle activity observed during quiet breathing persists，even at high minute ventilation produced by rebreathing．If the response of the respi－ ratory muscles to rebreathing in halothane－anesthetized dogs is similar，with recruitment of expiratory muscle activity and little response of the parasternal intercostal muscles，then the dog and other quadrupeds may still be useful models of human respiratory muscle re－ sponses to anesthesia．The availability of such models is important because many invasive neurophysiologic studies，important in exploring mechanisms of respi－ ratory responses to anesthesia，are not possible in hu－ man subjects．
The overall objective of this study was to further evaluate the suitability of anesthetized dogs as a model of human chest wall function during anesthesia．We measured respiratory muscle responses to CO_{2} re－ breathing in halothane－anesthetized dogs and compared these responses to those measured in our previous study of human subjects ${ }^{6}$ to determine if species differences noted during quiet breathing persisted over a wide range of central respiratory drives

Materials and Methods

This study was approved by the Institutional Animal Care and Use Committee．These studies were performed on six male mongrel dogs（weighing 9－16 kg）．Results during quiet breathing in this series of dogs have been previously reported ${ }^{1}$ ；the current report focuses on re－ sults obtained during CO_{2} rebreathing and comparisons with our previous similar study of human subjects．${ }^{6}$

Electrode Implantation

Anesthesia was induced in the dogs with thiopental and halothane．Bipolar electrodes fashioned from mul－ tistranded 31－G polytetrafluorethylene－coated stainless steel wire（California Fine Wire AS637，Grover City， CA）were implanted with an intraelectrode distance of approximately 3 mm so that the axis between the elec－ trodes was oriented parallel to the direction of the muscle fibers．Electrodes were implanted into the
parasternal intercostal muscle in the third right inter space，the triangularis sterni muscle in the fifth or sixth right interspace，the transversus abdominis muscle in the ventral axillary line midway between the costal margin and iliac crest，the external abdominal oblique muscle close to the transversus abdominis electrode and the crural and costal portions of the left hemidia－ phragm．The diaphragmatic electrodes were implanted via a mid－line laparotomy，which was closed in layers． A tracheostomy was performed using a technique that did not require an indwelling tracheal tube．The dogs were given antibiotics and analgesics，and were allowed to recover for at least 1 month to permit full recovery of diaphragmatic function．${ }^{7}$

Experimental Procedure

After this recovery period，the rebreathing response was determined during halothane anesthesia．Electro－ myographic（EMG）signals were amplified（Grass P511， Quincy，MA），bandpass filtered between 30 and 3000 Hz ，and recorded on digital audio tape（Teac RT100， Montebello，CA）for later processing．The tracheostomy was intubated with a 7.5 mm inner diameter endotra－ cheal tube，and anesthesia was induced using halothane 2% in O_{2} ．After induction，the inspired anesthetic con－ centration was adjusted to maintain an end－tidal con－ centration of approximately 0.87%（Beckman LB－2 gas analyzer，Schiller Park，IL），corresponding to 1 mini－ mum alveolar concentration（MAC）．${ }^{8}$
The dog was placed in the supine position and al lowed to breathe $30 \% \mathrm{O}_{2}, 70 \% \mathrm{~N}_{2}$ ．The femoral artery was cannulated to provide samples for arterial blood analysis（IL 1302 blood gas analyzer，Lexington，MA） Gas flow through the endotracheal tube was measured using a pneumotachograph（Fleisch 1，Richmond，VA） connected to a differential pressure transducer（Vali－ dyne MP－45，Northridge，CA）．Gas flows were inte grated to obtain changes in lung volume，which were corrected to body temperature pressure saturated con－ ditions．
The dogs were placed in the dynamic spatial recon－ structor，a high－speed x －ray scanner that uses the com－ puted tomography principle to provide three－dimen－ sional images of the thorax at end inspiration and end expiration．${ }^{1,9}$ Ten minutes before each set of measure－ ments，the lungs were inflated twice to $30 \mathrm{cmH}_{2} \mathrm{O}$ air way opening pressure to provide a consistent volume history．
Dynamic spatial reconstructor scans were first per formed during quiet breathing．These measurements
neretaken as representati athe onset of rebreathing nessurements in subsequ riponsse to CO_{2} rebreathi ${ }_{3}+1$ bag initially filled wi CO_{2} concentration in the frared analyzer，reached imine dynamic spatial re uined．These meastiome
 hane was then incrêeased nations correspond $\frac{\stackrel{\rightharpoonup}{\mathrm{W}}}{\mathrm{W}} \mathrm{g}$ to
 atleast 30 min ），me⿳⺈⿴囗十心 quie breathing and $\stackrel{\text { Th }}{2} \mathrm{CO}_{2}$ ng anesthetic dep $\frac{\mathrm{H}_{\mathrm{h}} \mathrm{h}}{2}$ trathing during 2 MC te bag initially fill inued until the $\mathrm{CO}_{\mathrm{m}}^{\stackrel{3}{2}}$ con

Data Analysis
Electromyographisccic sig processed with a custom to provide a 100 僉 ns m Every 30 s ，five suढgecess were analyzed．The MT quantify the EMG $\overrightarrow{c_{c}} \mathrm{tivit}$ muscles and the diaphr inspiratory muscleê），t1 during the period of ac ration of electrical ${ }^{3} \mathrm{Z}$ ctiv theraw EMG signas．Th activity in the transyversu and triangularis sterni as＂expiratory muskicles＇ To summarize perevio cessing of images obtai reconstructor，${ }^{1,9,11}$ each sional volume image of volume elements（vox Mm．Thoracic volume ing the number of voxel in $V_{\text {th }}$ from the beginn
（Jt， diaphragmatic and rib racic liquid volume d Sumably representing Ume，, 111
were calculates
were taken as representative of the pattern of breathing at the onset of rebreathing, and are denoted as "initial" measurements in subsequent text. To determine the response to CO_{2} rebreathing, the dogs rebreathed into a $4-\mathrm{L}$ bag initially filled with $7 \% \mathrm{CO}_{2}, 93 \% \mathrm{O}_{2}$ until the CO_{2} concentration in the bag, measured with an infrared analyzer, reached approximately 10%. At this time, dynamic spatial reconstructor scans were obtained. These measurements are denoted as "final" in subsequent text. The inspired concentration of halothane was then increased to produce end-tidal concentrations corresponding to 2 MAC . After stable end-tidal concentrations of halothane were achieved (requiring at least 30 min), measurements were repeated during quiet breathing and CO_{2} rebreathing. Because increasing anesthetic depth increases the resting Pco_{2}, rebreathing during 2 MAC anesthesia was performed with the bag initially filled with $8 \% \mathrm{CO}_{2}, 92 \% \mathrm{O}_{2}$, and continued until the CO_{2} concentration in the bag reached approximately 11%.

Data Analysis

Electromyographic signals recorded on tape were processed with a custom-built third-order Paynter filter to provide a 100 ms moving time average (MTA). ${ }^{10}$ Every 30 s, five successive breaths during rebreathing were analyzed. The MTA tracings were digitized. To quantify the EMG activity of the parasternal intercostal muscles and the diaphragm (referred to hereafter as inspiratory muscles), the mean rate of MTA increase during the period of activity was calculated. ${ }^{6}$ The duration of electrical activity was measured directly from the raw EMG signals. The presence or absence of phasic activity in the transversus abdominis, external oblique, and triangularis sterni muscles (referred to hereafter as "expiratory muscles") was noted.
To summarize previous descriptions of image processing of images obtained with the dynamic spatial reconstructor, ${ }^{1,9,11}$ each scan produced a three-dimensional volume image of the thorax composed of cubic volume elements (voxels) with edge lengths of 1.3 mm . Thoracic volume $\left(\mathrm{V}_{\mathrm{th}}\right)$ was determined by counting the number of voxels in the thoracic cavity. Changes in $V_{t h}$ from the beginning to the end of inspiration $\left(\Delta \mathrm{V}_{\mathrm{th}}\right)$ were partitioned into volumes displaced by the diaphragmatic and rib cage surfaces. Changes in thoracic liquid volume during inspiration ($\Delta \mathbf{V}_{\text {liq }}$), pre sumably representing changes in thoracic blood volume, ${ }^{1,11}$ were calculated as the difference between $\Delta V_{\text {th }}$
and tidal volume $\left(\mathrm{V}_{\mathrm{T}}\right)$ measured by the integration of gas flow ($\left.\Delta \mathrm{V}_{\mathrm{liq}}=\Delta \mathrm{V}_{\mathrm{th}}-\mathrm{V}_{\mathrm{T}}\right)$.
The rate of increase of MTA activity for each muscle was expressed as a fraction of its value during quiet breathing during 1 MAC anesthesia (before rebreathing). By referring activities to those present during 1 MAC anesthesia, effects of anesthetic depth could be examined. Linear regressions of the rate of increase of MTA activity of the parasternal intercostal muscle, costal diaphragm, crural diaphragm, and expiratory minute ventilation ($\dot{\mathrm{V}}_{\mathrm{E}}$), against CO_{2} partial pressure in the rebreathing bag were performed. ${ }^{6}$ Mean correlation coefficients for all conditions studied were 0.91 ± 0.02, $0.95 \pm 0.01,0.95 \pm 0.01$, and 0.97 ± 0.01 for the parasternal intercostal muscle, costal diaphragm, crural diaphragm, and $\dot{\mathbf{V}}_{\mathrm{E}}$, respectively. Regression coefficients (slope and intercepts) were compared among 1 and 2 MAC anesthesia using paired t tests.
Other variables were compared using two-way re-peated-measures analysis of variance, with factors being (1) depth of anesthesia, and (2) initial versus final measurements during CO_{2} rebreathing. The significance of the interaction term between these two factors determined whether changes in a variable produced by rebreathing depended on the depth of anesthesia. The Student-Neuman-Keuls statistic was used for post hoc testing. A P value of less than 0.05 was considered significant.

Results

Rebreathing increased $\mathrm{Pa}_{\mathrm{CO}_{2}}$ by 20 ± 4 and 23 ± 3 mmHg during 1 and 2 MAC halothane anesthesia, respectively, increases that did not significantly differ (table 1). Halothane concentration did not significantly affect the slope of the relationship between $\dot{\mathrm{V}}_{\mathrm{E}}$ and $\mathrm{P}_{\mathrm{CO}_{2}}$ (0.34 ± 0.04 and $0.28 \pm 0.05 \mathrm{l} \cdot \mathrm{min}^{-1} \cdot \mathrm{mmHg}^{-1}$ during 1 and 2 MAC anesthesia, respectively; fig. 1). However, 2 MAC anesthesia did significantly decrease the calculated $\dot{\mathrm{V}}_{\mathrm{E}}$ at a Pco_{2} of 60 mmHg (from 7.4 ± 1.2 to $4.0 \pm 0.61 \cdot \mathrm{~min}^{-1}$), indicating a rightward shift in the stimulation-response relationship. Both breathing frequency and tidal volume significantly increased during the course of rebreathing at both depths of anesthesia (table 1). The increase in tidal volume, but not breathing frequency, was significantly greater during 1 MAC anesthesia. These changes were accompanied by a significant decrease in inspiratory time, whereas the ratio of the duration of inspiration to the total period of breathing remained unchanged (table 1). The magni-

WARNER, JOYNER, AND RITMAN

Table 1. Changes in Ventilatory Parameters Produced by Rebreathing

	1 MAC Halothane		2 MAC Halothane	
	Initial	Final	Initial	Final
$f\left(\mathrm{~min}^{-1}\right)$	24 ± 5	$33 \pm 7^{*}$	26 ± 4	$\begin{aligned} 36 & \pm 5^{*} \\ 242 & +29^{*}\end{aligned}$
$V_{T}(\mathrm{ml})$	143 ± 8	$343 \pm 35^{*}$	$\begin{aligned} 122 & \pm 4 \\ 3.1 & +0.4\end{aligned}$	$8.7 \pm 1.6^{*}$
V_{E}	3.3 ± 0.5	$9.1 \pm 1.1^{*}$	0.87 ± 0.08	$0.60 \pm 0.06^{*}$
$T_{1}(\mathrm{~S})$	0.95 ± 0.09	. $79 \pm 0.11^{*}$	0.36 ± 0.04	0.35 ± 0.04
$\mathrm{T}_{1} / \mathrm{T}_{\text {TOT }}$	0.36 ± 0.04	0.3	$53 \pm 3 \dagger$	$76 \pm 4^{*}$
$\mathrm{Pa}_{\mathrm{CO}_{2}}(\mathrm{mmHg})$	45 ± 1			

Values are mean \pm SE.
$M A C=$ minimal alveolar concentration; $f=$ breathing frequency; $V_{T}=$ tidal volume; $\dot{V}_{E}=$ minute ventilation; $T_{1}=$ inspiratory time; $T_{T o T}=$ total period of breathing; Initial = values measured during quiet breathing; Final = values measured at the conclusion of rebreathing.
-Significant difference from initial value.
\dagger Significant difference in initial value versus 1 MAC
tude of these changes did not depend on anesthetic depth.
The response of the inspiratory muscles to rebreathing was quantified as the relationship between the rate of increase of MTA activity and the $\mathrm{P}_{\mathrm{CO}_{2}}$. Rebreathing consistently increased activity in the parasternal intercostal muscle and both costal and crural portions of the diaphragm (fig. 2). Increasing the end-tidal concentration of halothane to 2 MAC significantly shifted

Fig. 1. Expired minute ventilation as a function of Pco_{2} in the rebreathing bag during CO_{2} rebreathing in one dog during 1 and 2 MAC halothane anesthesia (circles and squares, respectively). Lines denote linear regressions used to calculate parameters for statistical analysis.
the relationship between MTA rate of increase and Pco_{2} for each inspiratory muscle, such that the MTA rate of increase was significantly less at a given Pco_{2} (table 2). However, the slope of this relationship was decreased at 2 MAC only for the parasternal intercostal muscle; the responses of both portions of the diaphragm were

Fig. 2. Rate of increase of moving time average (MTA) activity for the parasternal intercostal (PS), costal diaphragm (COS), and crural diaphragm (CRU) as a function of Pco_{2} in the rebreathing bag.
halothane anesthesia and rebreathing in dogs

Table 2. Electromyogram Activity of Inspiratory Muscles

	1 MAC Halothane		2 MAC Halothane	
	Slope (mmHg^{-1})	MTA ${ }_{60}$	Slope (mmHg^{-1})	MTA 60
Parasternal intercostal	0.16 ± 0.04	3.01 ± 0.51	$0.10 \pm 0.02 *$	$1.13 \pm 0.39^{*}$
Costal diaphragm	0.19 ± 0.04	3.57 ± 0.59	0.19 ± 0.03	$1.82 \pm 0.47^{*}$
Crural diaphragm	0.24 ± 0.06	4.19 ± 0.69	0.21 ± 0.05	$2.34 \pm 0.47^{*}$

Values are mean \pm SE and represent coefficients from linear regressions performed on the data from individual dogs. These regressions describe the relationship between the rate of rise of moving time average (MTA) electromyogram activity, expressed as a fraction of activity during quiet breathing under 1 MAC anesthesia, and the $\mathrm{P}_{\mathrm{CO}_{2}}$. MTA A_{60} is the MTA rate of increase at a $\mathrm{P}_{\mathrm{CO}_{2}}$ of 60 mmHg .

- Significant difference from value during 1 MAC anesthesia, paired t test
not altered (table 2). The duration of EMG activity de creased during the course of rebreathing for each inspiratory muscle (table 3). This decrease did not differ among 1 and 2 MAC anesthesia for any muscle.
At the onset of breathing, no EMG activity was observed in any muscles with expiratory actions (the triangularis sterni, the external oblique, and the transversus abdominis). During 1 MAC anesthesia, activity was present at the conclusion of rebreathing in the triangularis sterni of two dogs, the external oblique of one dog, and the transversus abdominis of one dog (table 4). During 2 MAC anesthesia, activity was present in the triangularis sterni of two dogs at the conclusion of rebreathing; no activity was noted in the transversus abdominis or external oblique muscles.
Rebreathing significantly increased the inspiratory change in total thoracic volume $\left(\Delta \mathrm{V}_{\mathrm{th}}\right)$ measured with the dynamic spatial reconstructor (table 5), an increase that was greater during 1 MAC anesthesia. Rebreathing did not affect the inspiratory change in thoracic liquid volume. Rebreathing significantly increased the inspiratory volume displacement of the rib cage, an increase that was significantly less during 2 MAC anesthesia. Accordingly, the relative contribution of the rib cage to $\Delta V_{\text {th }}$ was significantly increased by rebreathing during

1 MAC, but not 2 MAC, halothane anesthesia. Rebreathing also significantly increased the volume displacement of the diaphragm, an increase that did not depend on anesthetic depth. Rebreathing did not significantly change the end-expiratory thoracic volume (table 5), even in those dogs that developed phasic activity in expiratory muscle groups at the conclusion of rebreathing. Thus, this expiratory activity, when present, did not have a significant mechanical action to actively reduce end-expiratory thoracic volume.

Discussion

We found that halothane-induced suppression of expiratory muscle activity, previously observed in dogs during quiet breathing, persisted at high levels of central respiratory drive produced by increases in $\mathrm{Pa}_{\mathrm{CO}_{2}}$. In contrast, the parasternal intercostal muscles were briskly recruited by rebreathing. This recruitment was reflected in the significant contribution of the rib cage to increases in tidal volume produced by rebreathing. These and several other features of the rebreathing response differ significantly from previous reports in halothane-anesthetized humans.

Table 3. Duration of Electromyogram Activity of Inspiratory Muscles

	1 MAC Halothane			2 MAC Halothane	
	Initial	Final		Final	
Parasternal intercostal	1.24 ± 0.15	$0.84 \pm 0.06^{*}$		0.98 ± 0.09	$0.69 \pm 0.04^{*}$
Costal diaphragm	1.04 ± 0.09	$0.83 \pm 0.07^{*}$		1.00 ± 0.06	$0.67 \pm 0.03^{*}$
Crural diaphragm	0.91 ± 0.08	$0.80 \pm 0.08^{*}$	0.84 ± 0.08	$0.65 \pm 0.04^{*}$	

[^1]pde 6．Comparison of Rebre： MAC Haloth

Changes over the Rebreathir resuitment of parasternal interce S Tida volume Beathing trequency pation of pation of inspiratory electromy Bion of rib cage expeansio ＝ncreases －oat trom Warner and Warnerer
wween the effects latory timing durin⿳⺈⿴囗十灬⿱亠𧘇厶心十 mans． 22.23
We found that inceeasin UHC did not cha莬ge batwen \dot{V}_{E} and Pco救．In fond in four halothàne－a nganesthetic dept $\mathrm{D}_{\mathrm{D}}^{\mathrm{L}}$ fron ressed this slope．麚We emined individuale⿻⿱⺈⿴囗丨丷日yy in those used in our stewndy repectively）．Perh骨s re found that their do ${ }^{3}$ bed uxior clearly differêtht fro mudies．Analysis of shows that the presegrvati ponse with increasès in with preservation of the inity of the diaphragm it hise measuremention inct the diaphragm wege pr Ihese indings are cọh sist who found in vagotom dugs that the respờnse ready state changes in P Touffected by changing HC．The EMG response lins of the diaphragm to lise previous reports ．
Incontrast to these find found that increasing ane Eanicantly decreased t

during quiet breathing，an effect that is apparently cen－ trally mediated．${ }^{12-14}$ Rebreathing increased breathing frequency in these halothane－anesthetized dogs，an ef－ fect also noted in awake and pentobarbital－anesthetized dogs，${ }^{15-19}$ and in awake humans．${ }^{20}$ These increases in breathing frequency are associated with decreases in the duration of inspiration．These changes in duration may be caused by increases in tidal volume that ter－ minate inspiration via vagally mediated input from pulmonary stretch receptors．In contrast，breathing frequency decreases during the course of rebreathing in human subjects，associated with no change in the duration of inspiration，but rather a prolongation of expiration．${ }^{6,21}$ That V_{T} increases significantly without changing inspiratory time in humans，but not in dogs， may suggest that vagal influences dependent on V_{T} may be more important in halothane－anesthetized dogs compared with halothane－anesthetized humans．Other studies have also noted similar significant differences

Table 5．Chest Wall Volumes

	1 MAC Halothane		2 MAC Halothane	
	Initial	Final	Initial	Final
$\Delta \mathrm{V}_{\mathrm{th}}(\mathrm{ml})$	160 ± 11	$368 \pm 37^{*}$	131 ± 4	$286 \pm 42^{*} \dagger$
$\Delta V_{\text {iq }}(\mathrm{ml})$	18 ± 5	25 ± 7	9 ± 5	28 ± 13
Volume displaced by rib cage				
ml	56 ± 12	$177 \pm 23^{*}$	$18 \pm 2 \ddagger$	$69 \pm 28^{*} \dagger$
$\% \Delta V_{\text {th }}$	33 ± 6	$48 \pm 2^{*}$	$14 \pm 2 \ddagger$	$23 \pm 6 \dagger$
Volume displaced by diaphragm				
ml	104 ± 6	$190 \pm 15^{*}$	113 ± 6	$202 \pm 17^{\circ}$
$\% \Delta V_{\text {tr }}$	67 ± 6	$52 \pm 2^{*}$	$86 \pm 2^{*}$	$77 \pm 6 \dagger$
End－expiratory thoracic volume（ml）	779 ± 41	805 ± 43	784 ± 46	787 ± 47

[^2]haLOTHANE ANESTHESIA AND REBREATHING IN DOGS
is apparently cen reased breathing tized dogs, anef bital-anesthetized hese increases in vith decreases in anges in duration volume that ter iated input from ntrast, breathing se of rebreathing no change in the prolongation of ificantly without , but not in dogs endent on V_{T} may nesthetized dogs d humans. Other ficant differences

Halothane

Table 6. Comparison of Rebreathing Responses in Dogs and Humans during 1 MAC Halothane Anesthesia:

Changes over the Rebreathing Period	Dogs	Humans
Recruitment of parasternal intercostals	Yes	No
Recruitment of transversus abdominis	No	Yes
Tidal volume	\uparrow	\uparrow
Breathing frequency	\uparrow	\downarrow
Duration of inspiratory electromyogram activity	\downarrow	\uparrow
Contribution of rib cage expansion to tidal volume	\uparrow	\downarrow

$\uparrow=$ increases over the course of rebreathing; $\downarrow=$ decreases over the course of rebreathing.

* Data from Warner and Warner. ${ }^{6}$
between the effects of intravenous anesthetics on ventilatory timing during rebreathing in animals and humans. ${ }^{22.23}$
We found that increasing anesthetic depth from 1 to 2 MAC did not change the slope of the relationship between $\dot{\mathrm{V}}_{\mathrm{E}}$ and Pco_{2}. In contrast, Brandstater et al. ${ }^{24}$ found in four halothane-anesthetized dogs that increasing anesthetic depth from 1 to 2 MAC profoundly depressed this slope. However, their values for MAC, determined individually in each dog studied, exceeded those used in our study $(0.98 \%$ vs. 0.86% halothane, respectively). Perhaps related to this difference, they found that their dogs became apneic at 2.1 MAC , behavior clearly different from that noted in this and other studies. Analysis of inspiratory muscle EMG activity shows that the preservation of the slope of the $\dot{\mathrm{V}}_{\mathrm{E}}$ response with increases in anesthetic depth is associated with preservation of the response of the electrical activity of the diaphragm in these dogs. Consistent with these measurements, increases in volume displaced by the diaphragm were preserved as depth increased. These findings are consistent with those of Stuth et al., ${ }^{25}$ who found in vagotomized, isoflurane-anesthetized dogs that the response of phrenic nerve activity to steady-state changes in $\mathrm{Pa}_{\mathrm{CO}_{2}}$ over a similar range was not affected by changing anesthetic depth from 1 to 2 MAC. The EMG responses of the costal and crural portions of the diaphragm to rebreathing were similar, unlike previous reports in pentobarbital-anesthetized dogs. ${ }^{19,26}$
In contrast to these findings in dogs, Fourcade et al. ${ }^{27}$ found that increasing anesthetic depth from 1 to 2 MAC significantly decreased the slope of the relationship between $\dot{\mathrm{V}}_{\mathrm{E}}$ and $\mathrm{P}_{\mathrm{CO}_{2}}$ in halothane-anesthetized humans. If this slope is interpreted as a measure of the overall gain of the respiratory controller in response to in-
creases in central respiratory drive, this finding suggests that the human respiratory controller is more sensitive to halothane's effects over this range of anesthetic dose. The effect of increasing anesthetic depth on the responses of individual respiratory muscles to CO_{2} rebreathing in human subjects is unknown.

In contrast to the preservation of the EMG response observed in the diaphragm, the slope of the relationship between parasternal EMG activity and Pco_{2} was depressed in dogs when anesthetic depth was increased from 1 to 2 MAC . Consistent with this finding, increases produced by rebreathing in the volume displaced by the rib cage were attenuated as anesthetic depth increased. During quiet breathing, increasing the halothane dose from 1 to 2 MAC also preferentially decreases parasternal activity in dogs ${ }^{1}$ and cats ${ }^{28}$ during quiet breathing.
No quantitative measurements are available in dogs comparing activity in the parasternal intercostal muscle while awake, with activity while anesthetized, although all of the dogs in the current study demonstrated marked phasic inspiratory activity while awake. ${ }^{1}$ Human parasternal intercostal muscle activity is clearly more sensitive to halothane-induced depression compared with the dog. During quiet breathing, halothane abolishes parasternal intercostal activity in humans. ${ }^{2,4}$ During 1 MAC halothane anesthesia, rebreathing produces minimal recruitment of parasternal muscle activity in humans, ${ }^{6}$ whereas we noted brisk recruitment in the dog under similar conditions. These differences in the pattern of parasternal intercostal muscle activity are correlated with differences in the pattern of chest wall motion between the two species. During the course of rebreathing at 1 MAC halothane anesthesia, the relative contribution of rib cage expansion to tidal volume increased in these dogs, but decreases in humans. ${ }^{6}$
Possible mechanisms responsible for this marked species difference in the sensitivity of parasternal intercostal muscle activity to halothane-induced depression are unclear. It has been proposed that suppression of such activity in human subjects is related to depression of proprioceptive feedback from muscle spindles in the parasternal intercostal muscles. ${ }^{4.29}$ However, these spindles are also present in the intercostal muscles of the dog. Furthermore, in the human, the abdominal muscles, which also have many muscle spindles, are recruited by halothane anesthesia. ${ }^{2,3}$ In animals, evidence exists for separate premotor pathways controlling phrenic and intercostal motoneurons, so
that the source of differential suppression of phrenic and intercostal activities by halothane could be in the respiratory controller itself in addition to possible ef－ fects on motoneurons．${ }^{30}$ There are no comparable data in humans，other than to note that phrenic and inter－ costal motoneurons can be differentially activated by voluntary effort，suggesting separate premotor control systems that may be differentially affected by halothane．

Pronounced species differences were also noted in the effect of halothane on the responses of rib cage and abdominal muscles with expiratory actions．Phasic ac－ tivity was absent at the onset of rebreathing，and de－ veloped in only a minority of dogs．In dogs，when ac－ tivity did develop，it had no measurable mechanical effect，as measured by end－expiratory thoracic volume． If a mechanical effect had been present，the end－ex－ piratory thoracic volume would be decreased com－ pared with quiet breathing ${ }^{9,11}$ ；however，this was not observed．In contrast，expiratory muscle activity in－ creases significantly during rebreathing in halothane－ anesthetized humans，with marked mechanical effects．${ }^{6}$
The mechanism responsible for the profound suppression of expiratory muscle activity in dogs is unclear．The central respiratory rhythm generator con－ trols separate groups of medullary inspiratory and ex－ piratory neurons that drive the motoneurons of inspi－ ratory and expiratory muscle groups．${ }^{30}$ Activity of these neurons is also influenced by afferent activity from pe－ ripheral receptors．For example，vagotomy profoundly depresses expiratory muscle activity in the dog and other quadrupeds，suggesting that vagal input has an important facilitatory influence on expiratory moto－ neuron activity in anesthetized animals．${ }^{31,32}$ Halothane could exert differential effects on separate medullary neurons or motoneurons to inspiratory and expiratory muscle groups．Stüth et al．，${ }^{25}$ however，found that ex－ piratory bulbospinal neurons were more resistant to isoflurane－induced suppression compared with the phrenic nerve；inspiratory bulbospinal nerves were not examined．Steady－state increases in $\mathrm{Pa}_{\mathrm{CO}_{2}}$ increased ac－ tivity in both the phrenic nerve and expiratory bul－ bospinal nerves．Because in these dogs vagotomy and pneumonectomy had been performed to eliminate af－ ferent activity from lung and chest wall receptors，this finding suggests a differential sensitivity of inspiratory and expiratory bulbospinal neurons to isoflurane．Sim－ ilar findings have been reported in a similar feline preparation for halothane．${ }^{33}$ The very different pattern of results observed in the EMG activities of the intact animals in the current study suggests that halothane－
induced suppression of expiratory muscle activities may by modulated via peripheral afferent activity．
We have little insight into the mechanisms respon－ sible for these species differences in the response of expiratory muscle groups．Humans and quadrupeds such as dogs use very different strategies of breathing while awake．For example，awake quadrupeds exhibit prominent phasic expiratory activity in rib cage and abdominal muscles in all body positions，so that ex－ piration is an active process，even during quiet breath－ ing．${ }^{15,16,34}$ This activity provides an important mechan－ ical contribution to the tidal volume in dogs in the following manner．${ }^{9,11,35,36}$ During expiration，this ac－ tivity constricts the chest wall，so that thoracic volume is less than it would be in the absence of muscle activity （i．e．，less than its relaxed volume）．At the onset of in－ spiration，this activity ceases，and thoracic volume pas－ sively increases to approach relaxed volume．Muscles with inspiratory activity，such as the parasternal inter－ costal muscles and diaphragm，then are activated and complete the inspiration．In contrast，the expiratory muscles of humans demonstrate phasic activity only during hyperpnea，such as produced by exercise．${ }^{37}$ In other words，in humans，expiration is usually a passive process．These fundamental differences in breathing strategies may reflect adaptations to the differing grav－ itational challenges posed by the predominant positions maintained by each species（upright in humans and prone in dogs）．These alternative strategies imply sig． nificant species differences in systems controlling the extradiaphragmatic muscles of respiration，systems that respond quite differently to anesthetic drugs．

It is important to note that we studied primarily the individual effectors of an overall system to maintain chemical homeostasis．The presence of species differ－ ences in the control of individual respiratory muscles does not necessarily imply the presence of such differ－ ences in all other elements of the system（e．g．，che－ moreceptors）．However，some global measures of overall ventilatory control（such as the response of ventilatory timing parameters）differ significantly be－ tween dogs and humans，suggesting species differences in anesthetic effects at sites other than just individual effector muscles．

We conclude that in the dog， CO_{2} rebreathing during halothane anesthesia significantly increases the activity of the parasternal intercostal muscles，whereas activity in respiratory muscles in the rib cage and abdomen with expiratory actions remains absent．These findings are markedly different from those observed in previous WhFishman AP．Bethe $\overline{\text { E．}} \mathrm{d}$ ，An PP 793 －813

6 Wamer DO，Warne̊ MA： rake and during halotha今， gig Alethesiology 82：20－ 31 ， 7．Easton PA，Fitting J Sed Arn wery of diaphragm furtion nicrometer implantatioro，J App 8．Quasha AL，Eger EI $\overrightarrow{\mathrm{P}}$, Tink IMAC．ANESTHESIOLOGY 恣3：31 9．Krayer S，Decramerğ umequantification of clegist wa 2213－2220， 1988.
10．Garland H，Angetber ， ilter for electromyogra雨 proc 1972.

11．Wamer DO，Krayę̣ $\mathrm{S}, \operatorname{Re}$ during spontaneous breathing Appl Physiol 66：1179－垂189， 12．Paskin S，Skovsteg retex to account for tachypn talothane，fluroxene，methox Hology 29：550－558， 1968. 13．Guz A，Noble MIM，Tr tudies on the vagus nerves i circulatory control．Clin Sci 2 14．Berkenbosch A，de Goc action of halothane on respi CO_{2} in cats．ANESTHESIOLOG Costal PA ，Fitting J－W， trake dops crural diaphragm 16．Ainsworl Physiol 74 The effects of chemical ve t the onset of in. acic volume pas. volume. Muscles parasternal inter are activated and t , the expiratory sic activity only by exercise. ${ }^{37}$ In usually a passire ces in breathing he differing gravominant positions t in humans and ategies imply sig s controlling the tion, systems that ic drugs. ied primarily the stem to maintain of species differ spiratory muscles ice of such differ. ystem (e.g., che bal measures of the response of r significantly bepecies differences an just individual
ebreathing during reases the activiti s , whereas activily age and abdomen These finding
served served in previous
studies in humans, and provide further evidence that the dog, and perhaps other quadrupeds, is not a suitable model to study anesthetic effects on human respiratory muscle control.

The authors thank Kathy Street and Darrell Loeffler for their technical assistance, Janet Beckman for secretarial support, and Don Erd man and Mike Rhyner for operating the dynamic spatial reconstructor

References

1. Warner DO, Joyner MJ, Ritman EL: Anesthesia and chest wall function in dogs. J Appl Physiol 76:2802-2813, 1994.
2. Warner DO, Warner MA, Ritman EL: Human chest wall function while awake and during halothane anesthesia. I. Quiet breathing Anesthesiology 82:6-19, 1995.
3. Freund F, Roos A, Dodd RB: Expiratory activity of the abdominal muscles in man during general anesthesia. J Appl Physiol 19:693697, 1964.
4. Tusiewicz K, Bryan AC, Froese AB: Contributions of changing rib cage-diaphragm interactions to the ventilatory depression of halothane anesthesia. Anesthesiology 47:327-337, 1977
5. Pavlin EG, Hornbein TF: Anesthesia and the control of ventilation. Handbook of Physiology, sect. 3: The Respiratory System. Edited by Fishman AP. Bethesda, American Physiological Society, 1986, pp 793-813
6. Warner DO, Warner MA: Human chest wall function while awake and during halothane anesthesia. II. Carbon dioxide rebreathing. Anesthesiology 82:20-31, 1995.
7. Easton PA, Fitting J-W, Arnoux R, Guerraty A, Grassino AE: Recovery of diaphragm function after laparotomy and chronic sonomicrometer implantation. J Appl Physiol 66:613-621, 1989
8. Quasha AL, Eger EI II, Tinker JH: Determination and applications of MAC. Anesthesiology 53:315-334, 1980.
9. Krayer S, Decramer M, Vettermann J, Ritman EL, Rehder K: Volume quantification of chest wall motion in dogs. J Appl Physiol 65: 2213-2220, 1988
10. Garland H, Angel RW, Melen RD: A state variable averaging filter for electromyogram processing. Med Biol Eng 10:559-560, 1972.
11. Warner DO, Krayer S, Rehder K, Ritman EL: Chest wall motion during spontaneous breathing and mechanical ventilation in dogs. J Appl Physiol 66:1179-1189, 1989.
12. Paskin S, Skovsted P, Smith, TC: Failure of the Hering-Breuer reflex to account for tachypnea in anesthetized man: A survey of halothane, fluroxene, methoxyflurane, and cyclopropane. AnestheSIOLOGY 29:550-558, 1968
13. Guz A, Noble MIM, Trenchard D, Cochrane HL, Makey AR: Studies on the vagus nerves in man: Their role in respiratory and circulatory control. Clin Sci 27:293-304, 1964.
14. Berkenbosch A, de Goede J, Olievier CN, Quanjer PH: Sites of action of halothane on respiratory pattern and ventilatory response to CO_{2} in cats. Anesthesiology 57:389-398, 1982.
15. Easton PA, Fitting J-W, Arnoux R, Guerraty A, Grassino AE Costal and crural diaphragm function during CO_{2} rebreathing in awake dogs. J Appl Physiol 74:1406-1418, 1993.
16. Ainsworth DM, Smith CA, Eicker SW, Henderson KS, Dempsey JA : The effects of chemical versus locomotory stimuli on respiratory muscle activity in the awake dog. Respir Physiol 78:163-176, 1989
17. van Lunteren E, Cherniack NS: Electrical and mechanical activity of respiratory muscles during hypercapnia. J Appl Physiol 61 : 719-727, 1986.
18. van Lunteren E, Haxhiu MA, Cherniack NS, Arnold JS: Rib cage and abdominal expiratory muscle responses to CO_{2} and esophageal distension. J Appl Physiol 64:846-853, 1988.
19. van Lunteren E, Haxhiu MA, Deal EC Jr, Perkins D, Cherniack, NS: Effects of CO_{2} and bronchoconstriction on costal and crural diaphragm electromyograms. J Appl Physiol 57:1347-1353, 1984.
20. Pengelly LD, Tarshis AM, Rebuck AS: Contribution of rib cage and abdomen-diaphragm to tidal volume during CO_{2} rebreathing. J Appl Physiol 46:709-715, 1979.
21. Lindahl SG, Yates AP, Hatch DJ: Respiratory depression in children at different end tidal halothane concentrations. Anaesthesia 42:1267-1275, 1987.
22. Gautier H, Gaudy JH: Changes in ventilatory pattern induced by intravenous anesthetic agents in human subjects. J Appl Physiol 45:171-176, 1978.
23. Gautier H, Bonora M, Gaudy JH: Breuer-Hering inflation reflex and breathing pattern in anesthetized humans and cats. J Appl Physiol 51:1162-1168, 1981
24. Brandstater B, Eger EI II, Edelist G: Constant-depth halothane anesthesia in respiratory studies. J Appl Physiol 20:171-174, 1965.
25. Stüth EAE, Tonkovic-Capin M, Kampine JP, Zuperku EJ: Dosedependent effects of isoflurane on the CO_{2} responses of expiratory medullary neurons and the phrenic nerve activities in dogs. Aves thesiology 76:763-774, 1992.
26. D'Angelo E, Garzaniti N, Bellemare F: Inspiratory muscle activity during unloaded and obstructed rebreathing in dogs. J Appl Physiol 64:90-101, 1988
27. Fourcade HE, Larson CP Jr, Hickey RF, Bahlman SH, Eger EI II: Effects of time on ventilation during halothane and cyclopropane anesthesia. ANesthesiology 36:83-88, 1972.
28. Ochiai R, Guthrie RD, Motoyama EK: Effects of varying con centrations of halothane on the activity of the genioglossus, inter costals, and diaphragm in cats: An electromyographic study. ANesthesiology 70:812-816, 1989
29. Sears TA: Efferent discharges in alpha and fusimotor fibres of intercostal nerves of the cat. J Physiol 174:295-315, 1964
30. Monteau R, Hilaire G: Spinal respiratory motoneurons. Prog Neurobiol 37:83-144, 1991
31. Bishop B, Bachofen H: Comparison of neural control of dia phragm and abdominal muscle activities in the cat. J Appl Physiol 32:798-805, 1972
32. De Troyer A, Ninane V: Effect of posture on expiratory muscle use during breathing in the dog. Respir Physiol 67:311-322, 1987
33. Grelot L, Bianchi AL: Differential effects of halothane anesthesia on the pattern of discharge of inspiratory and expiratory neurons in the region of the retrofacial nucleus. Brain Res 404:335-338, 1987.
34. De Troyer A, Gilmartin JJ, Ninane V: Abdominal muscle use during breathing in unanesthetized dogs. J Appl Physiol 66:20-27, 1989.
35. Warner DO, Brichant J-F, Ritman EL, Rehder K: Chest wall motion during epidural anesthesia in dogs. J Appl Physiol 70:539547, 1991
36. Schroeder MA, Tao H-Y, Farkas GA: Mechanical role of expiratory muscle recruitment during eupnea in supine anesthetized dogs. J Appl Physiol 70:2025-2031, 1991
37. Druz WS, Sharp JT: Activity of respiratory muscles in upright and recumbent humans. J Appl Physiol 51:1552-1561, 1981.

[^0]: Assistant Professor of Anesthesiology and Physiology and Biophysics.
 \dagger Associate Professor of Anesthesiology.
 \ddagger Professor of Physiology and Biophysics and Medicine.
 Received from the Departments of Anesthesiology and Physiology and Biophysics, Mayo Clinic and Mayo Foundation, Rochester, Minnesota Submitted for publication April 17, 1995. Accepted for publication June 21, 1995. Supported in part by National Institutes of Health grant GM-40909. Dr. Warner is a recipient of the Anesthesiology Young Investigator/Parker B. Francis Investigator Award from the Foundation for Anesthesia Education and Research.
 Address reprint requests to Dr. Warner: Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota 55905.

[^1]: Values are mean \pm SE (seconds).
 Initial = values measured during quiet breathing; Final = values measured at the conclusion of rebreathing

 - Significant difference from initial value.

[^2]: $\Delta \mathrm{V}_{\mathrm{th}}=$ inspiratory change in thoracic volume；$\Delta \mathrm{V}_{\text {biq }}=$ inspiratory change in thoracic liquid volume
 －Significant difference from initial value．
 \dagger Significant interaction between depth and condition．
 \ddagger Significant difference in initial value versus 1 MAC

