Influence of High-dose Aprotinin on Anticoagulation, Heparin Requirement, and Celiteand Kaolin-Activated Clotting Time in Heparinpretreated Patients Undergoing Open-Heart Surgery

A Double-blind, Placebo-controlled Study

W. Dietrich, M.D., ${ }^{*}$ G. Dilthey, M.D., ${ }^{*}$ M. SpannagI, M.D., \dagger M. Jochum, Ph.D., \ddagger S. L. Braun, M.D.,§ J. A. Richter, M.D. ||

Background: Aprotinin causes a prolongation of the celiteactivated clotting time (CACT), but not of the kaolin-activated clotting time (KACT). Therefore, concern has been raised regarding the reliability of CACT to monitor anticoagulation in the presence of aprotinin. The current study was designed to test the efficacy of aprotinin to improve anticoagulation, and to investigate whether the prolongation of CACT reflects true anticoagulation or is an in vitro artifact. To elucidate this antithrombotic effect of aprotinin, this study was done in patients prone to reduced intraoperative heparin sensitivity.

Methods: In a prospective, randomized, double-blind clinical trial, 30 male patients scheduled for elective primary coronary revascularization and treated with heparin for at least 10 days preoperatively, received either high-dose aprotinin (group A) or placebo (group C). The CACT and KACT were determined, but only CACT was used to control anticoagulation with hep-

> This article is accompanied by a Highlight. Please see this issue of Anesthesiology, page 29A.

[^0]arin. Parameters of coagulation that are indicators of thrombin generation and activity (F_{1+2} prothrombin fragments, throm-bin-antithrombin III complex, and fibrin monomers), parameters of fibrinolysis (D-dimers), aprotinin, and heparin plasma concentrations were measured. Postoperative blood loss and allogeneic blood transfused were recorded.

Results: Total heparin administered was 36,200 units (95% confidence interval: 31,400-41,000; group C) compared with $27,700(25,500-29,800)$ units (group $A ; P<0.05)$. Hemostatic activation during cardiopulmonary bypass (CPB) was significantly reduced in group A compared with group C. After 60 min of CPB, all parameters were significantly different ($P<$ 0.05) between the groups (group C vs. group A): \mathbf{F}_{1+2} prothrombin fragments, 9.7 (8.9-11.7) ng/ml versus 7.5 (6.2-8.6) $\mathrm{ng} / \mathrm{ml}$; thrombin-anti-thrombin III complex (TAT), 53 (42-68) $\mathrm{ng} / \mathrm{ml}$ versus 29 (23-38) ng/ml; and fibrin monomers, 23 (12$43) \mathrm{ng} / \mathrm{ml}$ versus $8(3-17) \mathrm{ng} / \mathrm{ml}$. Fibrinolysis was also attenuated; D-dimers at the end of operation were 656 (396-1,089) and $2,710(1,811-4,055) \mathrm{ng} / \mathrm{ml}$ for groups A and C, respectively ($P<0.05$). The CACT 5 min after the onset of CPB was 552 (485-627) versus 869 (793-955) s for groups C and A, respectively ($P<0.05$), whereas the KACT showed no differences between the groups (569 [481-675] vs. 614 [541-697] s for groups C and A, respectively; $P=$ NS). The $24-\mathrm{h}$ blood loss was $1,496(1,125-1,995)$ versus $597(448-794) \mathrm{ml}$ for groups C and A, respectively ($P<0.05$).

Conclusions: Aprotinin treatment in combination with heparin leads to less thrombin generation during CPB. Aprotinin has anticoagulant properties. Celite-activated ACT is reliable for monitoring anticoagulation in the presence of aprotinin, because the prolonged CACT in the aprotinin group reflects improved anticoagulation. Kaolin-activated ACT does not reflect this effect of aprotinin. (Key words: Arteries, coronary: thrombosis. Blood: aprotinin; fibrinolysis. Blood, coagulation: antithrombin III; prothrombin fragments; thrombin. Complications: bleeding. Monitoring: activated clotting time. Pharmacology: celite; heparin; kaolin. Surgery: cardiac.)

THE protease inhibitor aprotinin reduces blood loss after cardiac surgery. ${ }^{1-7}$ Activation of fibrinolysis ${ }^{8}$ is at-
tenuated by aprotinin treatment and platelet function is better preserved than in control patients after car－ diopulmonary bypass（CPB）．.910 In addition，some ev－ idence indicates that aprotinin also acts as antico－ agulant．${ }^{11,12}$ This anticoagulant effect of aprotinin may be produced by the inhibition of the contact phase of hemostasis via kallikrein inhibition and subsequent re－ duction of clotting activation．${ }^{13}$
Aprotinin causes prolongation of celite－activated clotting time（CACT），${ }^{14}$ which is commonly used in cardiac surgery to determine the efficacy of heparin－ induced anticoagulation．Recently，it was questioned whether an ACT employing celite as an activator in the presence of aprotinin may lead to inadequate heparin－ induced anticoagulation with the potential for a hy－ percoagulable state and the risk of subsequent graft occlusion and myocardial infarction．${ }^{15}$ On the other hand，if kaolin is applied as an activator，the ACT （KACT）is not prolonged in the presence of aprotinin．${ }^{16}$ Therefore，the KACT was recommended to control an－ ticoagulation in patients treated with aprotinin．${ }^{12}$
Patients with heparin－induced anticoagulation for several days before operation are prone to develop re－ duced sensitivity to heparin．${ }^{17-19}$ Heparin by itself has no anticoagulant properties．It accelerates the action of the physiologic inhibitor antithrombin III（AT III）． Diminished AT III activity often found in these patients is one mechanism for poor sensitivity to heparin，which leads to increased activation of coagulation during $\mathrm{CPB} .{ }^{20}$ These patients with inadequate anticoagulation by heparin were chosen for the current study to inves－ tigate the influence of aprotinin on prothrombin acti－ vation．The underlying assumption was that a possible anticoagulant effect of aprotinin would be more evident under the conditions of increased activation of coag－ ulation than in patients with normal heparin response， in whom the suppression of coagulation during CPB may be adequate solely by heparin．

We hypothesized that aprotinin contributes to heparin－ induced anticoagulation by inhibiting prothrombin ac－ tivation during CPB．The aims of the current study were： 1）to investigate the ability of aprotinin to inhibit throm－ bin generation during CPB in patients prone to inadequate anticoagulation by heparin alone，and 2）to determine whether the increase of CACT in the presence of aprotinin reflects true anticoagulation or is an in vitro artifact．

Materials and Methods

Thirty male patients，scheduled for elective primary coronary revascularization，gave informed consent to
participate in this prospective，randomized，placebo－ controlled study that had been approved by the local ethics committee．Inclusion criterion was preoperative treatment with heparin，either intravenously or sub cutaneously，for at least 10 days before surgery．Patients with warfarin pretreatment were excluded from the study，but those receiving antiplatelet therapy until the operation were not．

Study Design

Patients were independently randomized，using a ta－ ble of random numbers，to either the aprotinin group （group A）or the control group（group C）．On the basis of a presumed difference of one standard deviation of fibrin monomers between aprotinin and control pa－ tients found in a previous study，${ }^{21}$ we determined that a sample size of 30 patients（ 15 in each group）would provide 80% power with a type I statistical error of 5% ．

Protocol

Aprotinin and the respective placebo were provided by the manufacturer（Bayer AG，Leverkusen，Germany） in identical packages，each containing 14 bottles，that could only be identified by the random number．Each bottle of aprotinin contained 5×10^{5} kallikrein inac－ tivator units（ $\mathrm{KIU} ;=70 \mathrm{mg}$ ）of aprotinin in 50 ml 0.9% saline solution，and the placebo bottles contained only saline．The dosage regimen of aprotinin was as follows：patients received a loading dose of 2×10^{6} KIU aprotinin over a $15-\mathrm{min}$ period at the start of sur－ gery，followed by a continuous infusion of 5×10^{5} KIU／h throughout the entire course of surgery．An ad－ ditional bolus of $2 \times 10^{6} \mathrm{KIU}$ was added to the prime of the heart－lung machine．Patients in group C received an equal volume of saline．

Anesthetic Technique

Anesthesia was induced by $0.02 \mathrm{mg} / \mathrm{kg}$ flunitrazepam and $10-20 \mu \mathrm{~g} / \mathrm{kg}$ fentanyl．Neuromuscular blockade was achieved and maintained with $0.1 \mathrm{mg} / \mathrm{kg}$ pancu－ ronium．To maintain anesthesia， $10-20 \mu \mathrm{~g} / \mathrm{kg}$ fentanyl and $0.02 \mathrm{mg} / \mathrm{kg}$ flunitrazepam were given．

Control of Heparin－induced Anticoagulation

Blood was anticoagulated for CPB with 375 units $/ \mathrm{kg}$ porcine mucosa heparin（La Roche，Basle，Switzerland） injected via the central venous catheter before aortic cannulation．Ten minutes later，the anticoagulation was monitored using CACT（Hemochron 800，Intern． of heparin was monitored by
two CACT＇s did not reach 400 two CACTs did not reach 400
heparin of 125 units／kg was Thepe ACT measur
Thin 125 was g and min until the end of CPB ．For lue of the duplical CPB ．For as used．Additionally，measur une additionally，the me
urements during anges，the ACT ion，${ }^{22}$ the mes does n⿳⺈⿴囗十灬⿱⿰㇒一十凵⿴囗十灬 exceeded 1,000 s． cally at 999 s by
cat for analysis．After was neutralized by prole $\mathrm{mg} / 125$ units of protagnine CACT in the presence inigl h after protamine infusion protamine was an incore a K $\mathrm{mg} / \mathrm{kg}$ ）．

Cardiopulmonary By 長ass The extracorporeal ciecuit ygenator（High Flex D 7 nonocclusive roller pưomps， （Dideco D742，Mirando秉，Ita The oxygenator was pri解ed solution，containing 5，g00 pulmonary bypass was $\stackrel{\stackrel{\rightharpoonup}{\Phi}}{\dot{\Phi}}$ erfo pothermia of $30-32^{\circ} \mathrm{C}$ 영ecta rate of $2.41 \cdot \mathrm{~min}^{-1} \cdot \mathrm{~m}^{-{ }_{\circ}^{\circ}} \mathrm{My}$
 dioplegic solution（Beetsch Chemie，Alsbach，Gern⿳⺈⿵冂𠃍冂口心侖y） a0ttic cross clamping．
Transfusion Policy
The indication for allogene a hematocrit of 30% or less Requirement of allogeneic b mas recorded during the wh loss was recorded $2,6,12$ ， and at the removal of the ches or more than $200 \mathrm{ml} / \mathrm{h}$ dur reere indications for surgical antor（Haemonetics，Munich
concentrate the remaining ce

Transfusion Policy

The indication for allogeneic blood transfusion was a hematocrit of 30% or less after arriving at the ICU. Requirement of allogeneic blood and blood products was recorded during the whole hospital stay. Blood loss was recorded $2,6,12$, and 24 h postoperatively and at the removal of the chest tubes. Blood loss greater than $300 \mathrm{ml} / \mathrm{h}$ during the first two postoperative hours or more than $200 \mathrm{ml} / \mathrm{h}$ during the subsequent time were indications for surgical reexploration. A cell separator (Haemonetics, Munich, Germany) was used to concentrate the remaining cellular contents of the oxy-
genator after termination of bypass. The hard shell reservoir of the heart-lung machine was employed for postoperative shed mediastinal blood collection. The shed mediastinal blood was retransfused up to 6 h after surgery if at least 250 ml blood had been collected.

Blood Samples

Blood samples were taken from the radial artery or, during CPB, from the port of the oxygenator at the following times: 1) after induction of anesthesia but before aprotinin infusion, 2) 10 min after the administration of heparin but before CPB, 3) 30 min after start of CPB, 4) 60 min after start of CPB, 5) at the end of CPB , and 6) at the end of operation. After the first 10 ml of blood were discarded, blood was drawn into EDTA tubes for measurement of hematocrit and platelet count, or into sodium-citrate tubes (1:9) for coagulation tests. The blood was centrifuged at $3,000 \mathrm{~g}$ for 10 \min at room temperature and the plasma was separated from the cellular components. All plasma samples were frozen immediately at $-40^{\circ} \mathrm{C}$ in aliquots and thawed only before testing

Plasma samples for β-thromboglobulin ($\beta \mathrm{TG}$) were collected in precooled special sampling tubes (Kodak, Amersham, UK) and processed according to the manufacturer's instructions. Aprotinin plasma concentration was quantified by means of a competitive enzymelinked immunosorbent assay. ${ }^{23}$ The split products of the cross-linked fibrin were measured by two immunoassays, based on two independent monoclonal antibodies to D-dimers (Boehringer, Mannheim, Germany) and to fibrin (FbDP, Organon Teknika, Heidelberg, Germany). The complex of thrombin with antithrombin III (TAT), F_{1+2} prothrombin fragments, and platelet factor 4 (PF4) were determined by sandwich enzyme-linked immunosorbent assays (Behringwerke, Marburg, Germany). Fibrin monomers were measured by an immunoassay, using a monoclonal antibody against the N -terminal α chain of human fibrin ${ }^{24}$ (Boehringer, Mannheim, Germany). Heparin plasma concentration was measured by a chromogenic substrate assay using the anti-IIa-inhibiting capacity (Instrumentation Laboratory, Kirchheim, Germany). Calibration of this test was performed by the same heparin preparation used in the patients during this study. The AT III activity was determined by a chromogenic substrate assay (Boehringer, Mannheim, Germany). Activated partial thromboplastin time (aPTT) was measured by standard methods preoperatively, 6 h postoperatively, and on the first postoperative day.

Data Analysis

Two－way ANOVA was used to analyze normally dis－ tributed data．When P was less than 0.05 ，post boc comparisons were performed with Tukey＇s test．Para－ metric data are given as mean and 95% confidence in－ tervals（CI 0．95）．If Shapiro＇s test of normality revealed that data did not conform to a normal distribution （blood loss data，ACT， F_{1+2} prothrombin fragments， TAT，fibrin monomers，D－dimers，PF4，and β TG），log－ arithmic data transformation before analysis yielded normally distributed values．Antilog－transformed data are reported in this manuscript as mean and 95% con－ fidence intervals of the back－transformed values．Linear regression analysis was used to examine the relationship between heparin plasma－and dimer－concentrations and F_{1+2} prothrombin fragments at the end of CPB ．The chi－ square analysis was used for categorical data．A P value of less than 0.05 was considered to be statistically sig－ nificant．

Results

The data of all patients included in this study under－ went subsequent analysis．Ten patients in group C were pretreated with intravenous heparin and five patients with subcutaneous heparin，compared with eight and seven patients，respectively，in group A ．The duration of preoperative heparin treatment was 24 （CI 0.95 ： 16－32）and 29 （19－40）days for groups A and C，re－ spectively（ $P=\mathrm{NS}$ ）．Indication for heparin treatment was unstable angina and the risk of myocardial isch－ emia．Eight patients in group C and seven patients in group A were given antiplatelet therapy until the day before operation．The ejection fraction was less than 50% in five patients in group A and in three patients in group C．Mean body weight（77．3［73－82］and 74.1 ［68－80］kg for groups C and A ，respectively）and age （62［57－68］and 63 ［59－67］yr for groups C and A ， respectively）did not differ between the groups．The duration of operation was 270 （245－295）versus 229 （216－243）min in groups C and A，respectively $(P<$ 0.05 ）．Although the CPB time and the aorta cross－clamp time was not different between the groups，the time of chest closure was significantly shorter in group A（49 ［45－54］min）versus group C（67［55－78］min；$P<$ 0.05 ；table 1 ）．

Activated Clotting Time，Heparin Requirement， and Heparin Plasma Concentration

The lower of the two measured CACTs 10 min after heparin administration was $438(397-501)$ and 588
（519－693）s for groups C and A，respectively $(P<$ 0.05 ）and was significantly prolonged during antico． agulation in group A compared with the control group； however，no differences were evident in the KACT（fig． $1)$ ．The mean CACT during the whole period of anti－ coagulation was $522(471-581)$ and $760(689-841)$ s for groups C and A ，respectively $(P<0.05)$ ，and the mean KACT was 492 （435－556）and 518 （468－574） s for groups C and A ，respectively $(P=N S)$ ．In six patients－all of group C －one of the two CACTs did not reach 400 s after the initial bolus of 375 units $/ \mathrm{kg}$ heparin．This was the indication for a repeat bolus of heparin．However，in all patients of the aprotinin group，the CACT substantially exceeded the target of 400 s ．Ten minutes after the first heparin bolus，the KACT was 400 s or less in six patients in group A and seven patients in group C（fig． $2 ; P=\mathrm{NS}$ ）．In seven patients in each group，the KACT was below 400 s at the end of CPB．
Total heparin administered was 36，200（31，400－ $41,000)$ versus $27,700(25,500-29,800)$ units for groups C and A ，respectively $(P<0.05)$ ．Heparin plasma concentration at the end of CPB was significantly different： 3.2 （2．9－3．5）versus 2.6 （2．4－2．8）units／ ml for groups C and A ，respectively $(P<0.05$ ）（fig． $3)$ ．Ten patients（all group C ，but none in group A ） received more than one heparin bolus．This additional heparin was given when one CACT did not reach 400 s after the initial bolus or when it decreased to less than this value during CPB ．

Aprotinin Plasma Concentration

After 30 min on CPB，the plasma concentration of aprotinin was 181 （ $163-200$ ）KIU／ml in group A （range 137 to $249 \mathrm{KIU} / \mathrm{ml}$ ）．At the end of operation， it was $127(104-150) \mathrm{KIU} / \mathrm{ml}$（range 77 to $210 \mathrm{KIU} /$ $\mathrm{ml})$ ．

Hemostatic Parameters

The courses of the F_{1+2} prothrombin fragments， thrombin－antithrombin III complex，and fibrin monomers are shown in figure 4．After 60 min of CPB all parameters were significantly $(P<0.05)$ different between the groups（group C vs group A ）：F_{1+2} pro－ thrombin fragments， $9.7(8.9-11.7)$ versus 7.5 $(6.2-8.6) \mathrm{ng} / \mathrm{ml}$ ；TAT， 53 （42－68）versus 29 （23－ $38) \mathrm{ng} / \mathrm{ml}$ ；and fibrin monomers， 23 （12－43）versus $8(3-17) \mathrm{ng} / \mathrm{ml}$ ．D－dimer concentration at the end of operation was $656(396-1,089)$ and 2,710 $(1,811-4,055) \mathrm{ng} / \mathrm{ml}$ in groups A and C ，respectively

Tade	$\begin{aligned} & \text { Age } \\ & (\mathrm{yr}) \end{aligned}$	Weight （kg）
control	67	72
2	48	90
4	43	74
6	57	70
7	64	75
8	67	58 ס
12	69	83 号
16	72	79 흘
17	72	$70 \stackrel{\text { ® }}{ }$
18	48	85 榢
19	76	87 需
23	69	79 \％
25	60	85 ～
28	65	75 ¢
29	54	
Mean	62	77 ¢
C195\％	57－68	73－8\％
Aporotin		5
1	65	83 ¢
3	69	59 哀
5	57	71
9	71	$65 \frac{\stackrel{\circ}{\circ}}{}$
10	63	69 율
11	55	84 ¢
13	63	74 \％
14	53	82 \％
15	62	56 N
21	71	79 \％
22	77	75 枵
24	57	$92 \stackrel{*}{\stackrel{*}{*}}$
26	61	62 \％
27	57	85 ¢े
30	63	75 \％
Mean	63	74 \％
C195\％	59－67	68－88

$1 / A=$ internal mammary artery； $00_{0}^{\circ}=$ ope ＂Nimber of anastomoses（distal ang proxi $t P<0.05$ versus control．

INFLUENCE OF HIGH-DOSE APROTININ ON ANTICOAGULATION, CELITE, AND KAOLIN ACT

Table 1. Demographic Data

Patient No.	Age (yr)	Weight (kg)	Anastomoses*	IMA	OP Time (min)	CPB Time (min)	$\begin{gathered} 6 \text { h Blood Loss } \\ (\mathrm{ml}) \end{gathered}$	Allogeneic Blood (units)	Comments
Control									
2	67	72	7	No	240	105	930	7	Rethoracotomy
4	48	90	3	Yes	193	50	600	1	
6	43	74	4	Yes	220	68	400	2	
7	57	70	5	Yes	280	86	1,100	3	Rethoracotomy
8	64	75	7	Yes	300	85	1,750	10	
12	67	58	6	No	270	104	1,600	11	Died
16	69	83	7	Yes	255	95	850	1	
17	72	79	8	Yes	280	111	1,200	1	
18	72	70	6	Yes	260	92	1,150	4	
19	48	85	4	Yes	260	75	1,270	5	
20	76	87	7	No	400	165	110	17	Died
23	69	79	7	Yes	245	109	580	8	
25	60	85	6	Yes	290	114	1,850	10	ethoracotomy
28	65	75	7	Yes	280	91	1,500	10	
29	54	78	7	Yes	278	109	700	8	
Mean	62	77	6.1		270	97	1,039	6.5	
Cl 95\%	57-68	73-82	5.3-6.8		245-295	83-112	758-1,321	3.9-9.1	
Aprotinin 680808080									
1	65	83	5	Yes	240	87 115	530	1	
3	69	59	2	No	200	115 70	200	2	
5	57	71	5	Yes	210	70	310 100	2	
9	71	65	4	No	175	64 113	100	5	
10	63	69	7	Yes	240	113 109	600	0	
11	55	84	8	Yes	255	109	180	1	
13	63	74	5	No	215	106 62	300	2	
14	53	82	3	Yes	220	62 74	300	7	Rethoracotomy
15	62	56	5	Yes	230	72	300	0	
21	71	79	5	Yes	230	93	480	2	
22	77	75	7	Yes Yes	230	77	280	2	
24 26	57	92	5	Yes	260	79	400	5	
26 27	61	62	5	Yes	245 270	79 95	750	0	
27 30	57	85	5	Yes	270	70	450	2	
30 Mean	63	75	5	Yes	240 229	86	$360 \dagger$	$2.2 \dagger$	
Mean	63	74	5.1		$\stackrel{229 \dagger}{\text { 216-243 }}$	76-96	263-457	1.1-3.3	
Cl 95\%	59-67	68-80	4.2-5.9		216-243	76-96	263-457		

$I M A=$ internal mammary artery; $O P=$ operation; $C P B=$ cardiopulmonary bypass; $\mathrm{CI}=$ confidence interval

- Number of anastomoses (distal and proximal) per patient.
$\dagger P<0.05$ versus control.
bin fragments, x, and fibrin 60 min of CPB 0.05) different p A): $\mathrm{F}_{1+2} \mathrm{Pro}$ 7) versus 7.5 ersus 29 (23-12-43) versus tion at the end 9) and 2,710 C, respectively
($P<0.05$). There was no significant correlation between the D -dimer concentration, the F_{1+2} fragments, or fibrinmonomers at the end of CPB and the heparin plasma level, either within the groups or in the aggregate data (fig. 5)
AT III activity before operation was 74% ($69-79 \%$) compared with a normal plasma pool in group C and $73 \%(65-81 \%)$ in group A $(P=\mathrm{NS})$. In 24 patients, it was in a pathologic range of $<80 \%$. Out of the 12 patients in the control group demonstrating a reduced AT III activity, 7 needed additional heparin to reach
or maintain a CACT of more than 400 s . In contrast, none of 12 patients with reduced preoperative AT III activity in the aprotinin group received additional heparin. The aPTT 6 h after operation was significantly prolonged in the aprotinin group compared with the control group (group C, $42(28-55)$ s; group A, 67 (57-77) s; $P<0.05$)

Platelets

There were no differences in either platelet count (preoperative 238 [202-275] and 233 [187-280] \times

$10^{5} / \mathrm{mm}^{3}$ in groups C and A , respectively) or in $\beta \mathrm{TG}$ and PF4 at any time point.

Blood Loss and Transfusion Requirements

Blood loss (fig. 6) was significantly different at all time points between the groups. At 24 h postoperatively, it was $1,496(1,125-1,995)$ versus 597 (448-

Fig. 2. Response of celite ACT and kaolin ACT to 375 units/kg heparin. The upper panel shows the individual CACT response to the first heparin bolus. Six of 30 patients, all of whom were members of the control group, failed to reach a CACT of 400 s or greater and were treated with a second bolus of 125 units of heparin. The lower panel represents the heparin response reflected by the kaolin ACT. When the KACT is used, there is no difference between the aprotinin and control group.
$794) \mathrm{ml}$ in groups C and A , respectively $(P<0.05)$ In group C, 6.5 (3.9-9.1) units of allogeneic blood were transfused perioperatively, compared with 2.2 $(1.1-3.3)$ units in group $\mathrm{A}(P<0.05)$. Four patients in group A were discharged from the hospital without transfusion, but all patients in the control group received allogeneic blood during the hospital stay ($P<$ 0.05). There was no significant difference in the amount of red blood cells gained intraoperatively with the cell separator (696 [544-848] and 813 [603$1,022] \mathrm{ml}$ in groups C and A , respectively). Only 3 patients in group A underwent postoperative shed mediastinal blood retransfusion (mean of the retransfused patients: 447 [238-654] ml); while in 12 patients, the drainage volume did not meet the criterion for retransfusion. In contrast, in group C, 12 patients received their drainage blood (mean amount in patients with retransfusion: 975 [739-1,211] $\mathrm{ml} ; P<0.05$)

Hematocrit

The preoperative hematocrit was within normal ranges in both groups (group C, 41\% [38-43\%]; group A, 42% [39-46\%]; $P=$ NS). At discharge from the ICU, it was $33 \%(31-35 \%)$ and $36 \%(34-37 \%)$ in groups C and A , respectively $(P<0.05)$.

Outcome and Complications

One patient (group C) died of multiorgan failure during the first 30 postoperative days. Another patient (group C) died on postoperative day 41 of the complications of sepsis. Four patients (all group C) underwent rethoracotomy for surgical hemostasis. One patient (group A) was reoperated 6 h postoperatively because he exhibited signs of myocardial ischemia and circulatory instability. At the time of the second operation, all grafts were found patent and an additional vein graft was placed on the right coronary artery. In this patient, signs of myocardial ischemia (ST elevation

Fig. 1. Perioperative course of celite and kaolin ACT. Aprotinin causes a prolongation of the ACT when celite is used as an activator. There were no differences when kaolin was used. Data are given as mean; error bars in dicate the 95% confidence intervals.
vely ($P<0.05$) allogeneic blood npared with 2.2 5). Four patients hospital without ontrol group re ospital stay ($P<$ ifference in the operatively with and 813 [603ctively). Only 3 erative shed methe retransfused 12 patients, the erion for retrans ,atients received in patients with >0.05).
within normal [38-43\%]; group ge from the ICU, 7%) in groups C
ultiorgan failure Another patient 41 of the com hll group C) unhemostasis. One postoperatively dial ischemia and the second Op . ronary artery. ${ }^{\text {In }}$ mia (ST eleration

and chest pain) were already evident before and at induction for his first operation. Plasma creatinine increased from $1.3(1.1-1.5)$ and $1.2(1.1-1.3) \mathrm{mg} / \mathrm{dl}$ preoperatively to $1.5(1.1-2.0)$ and $1.8(1.3-2.2) \mathrm{mg} /$ dl on postoperative day 7 for groups C and A , respectively, $(P=\mathrm{NS})$. Four patients in group A and one in group C showed an increase of creatinine of more than $1 \mathrm{mg} / \mathrm{dl}$ within the first postoperative week $(P=\mathrm{NS})$.

Discussion

Aprotinin and Thrombin Generation

Coagulation and fibrinolysis are activated during CPB even in the presence of clinically sufficient heparin anticoagulation. ${ }^{25}$ Because thrombin plays a central role in hemostatic activation during CPB , parameters of thrombin generation and thrombin activity indicate the degree of anticoagulation. In high plasma concentrations ($>200 \mathrm{KIU} / \mathrm{ml}$), aprotinin acts as an inhibitor of the contact phase of hemostasis ${ }^{26,27}$ that is activated during CPB. ${ }^{13}$ We hypothesized that aprotinin, in addition to heparin, acts as an anticoagulant by inhibiting prothrombin activation during CPB. To study this anticoagulant effect of aprotinin, we selected patients with heparin treatment before operation. These patients are prone to develop reduced intraoperative heparin sensitivity
In the current study, F_{1+2} prothrombin fragments, thrombin-anti-thrombin III complex, as well as fibrin monomers were significantly reduced in the aprotinin group. These results confirm the anticoagulatory effect of aprotinin. ${ }^{28}$ It is of note that this reduced procoagulant activity was found with aprotinin plasma concentrations that were often less than $200 \mathrm{KIU} / \mathrm{ml}$. This
finding indicates that aprotinin in plasma concentrations less than $200 \mathrm{KIU} / \mathrm{ml}$ may already attenuate contact phase activation. The improved anticoagulation in the aprotinin group was achieved despite a smaller heparin dosage and lower heparin plasma concentrations compared with the control group. The most likely explanation for this finding is that prothrombin activation takes place during CPB and is attenuated by aprotinin. ${ }^{29}$
Normal AT III activity is a prerequisite of heparin function. ${ }^{30}$ The serine protease inhibitor AT III is the physiologic inhibitor of thrombin activity. Heparin catalyzes the speed of this reaction and increases the inhibitory activity of AT III dramatically. As a serine protease inhibitor, ${ }^{31}$ aprotinin cannot enhance AT III function. Thus, Najman et al. ${ }^{12}$ postulated an AT III independent anticoagulatory effect of aprotinin. Because of lowered AT III activity, patients under longterm anticoagulation with heparin develop reduced sensitivity to heparin during cardiac surgery. ${ }^{19,20}$ Preoperative AT III activity was reduced in the current study in both groups. Compared with patients undergoing the same surgical procedure but without heparin pretreatment, ${ }^{2}$ the need for a repeat bolus of heparin was increased in the control group.

Activated Clotting Time and Heparin

Requirement

According to the protocol of this investigation, anticoagulation was monitored by the celite ACT. The CACT was more prolonged during the entire period of anticoagulation in the aprotinin group compared with group C. This is a well known effect of aprotinin. ${ }^{14}$ The total amount of heparin used for anticoagulation during CPB was significantly lower in patients treated with

Fig．4．Activation of coagulation．This figure shows the intra－ operative course of indicators of thrombin generation and thrombin activity：F_{1+2} prothrombin fragments，thrombin－an－ tithrombin－III complex，and fibrin monomers．The preoper－ ative values were within the normal ranges of these test sys－ tems．In spite of heparin anticoagulation，thrombin was gen－ erated and fibrin was formed in both patient groups．However， activation of coagulation was significantly attenuated in aprotinin－treated patients．Data are given as mean and 95% confidence intervals．
aprotinin．This reduced dosage was reflected by a lower heparin plasma concentration at the end of CPB ．The question is whether this reduction in heparin dosage reflects improved anticoagulation in the presence of aprotinin or whether the reduced heparin dosage is based on improper monitoring of anticoagulation and
may potentially jeopardize patients＇outcomes．Our re－ sults illustrate that hemostatic activation is reduced in patients with aprotinin treatment and that there are no signs of＂underheparinization．＂，12

In 1990 ，Desmet et al．${ }^{32}$ corroborated the prolon－ gation of the celite ACT with aprotinin．They suggested that this would allow reduced heparinization for CPB ． The same group，however，based on in vitro studies， advised against changing heparinization regimens and warned that CACT should not be used to monitor hep－ arinization in aprotinin－treated patients．${ }^{33}$ These au－ thors argued that aprotinin may inhibit the protein C system and，thus，further promote clotting through the extrinsic pathway．Reduced concentrations of F_{1+2} ，TAT

Fig．5．Correlation of hemostatic activation and the heparin plasma concentration at the end of CPB．There was no signif－ icant correlation between heparin concentration and the ac－ tivation of hemostasis，shown as D－dimer concentration（top） and F_{1+2} fragments（bottom），neither for all patients nor within the groups．Thus，measurement of heparin concentration did not give information about the degree of anticoagulation measured with these parameters．

Fig．6．Postoperative cumgiativ
 ontrol P intervals．
complex，and fibrin－mê̆⿹ㅡ№ms of the current study indicicate not increased．This fingìing uypothesis of Desmet $\frac{\stackrel{\rightharpoonup}{d} t}{} t a l$ ． anicoagulant and has ixi hep． Some of the confusie，in t of $A C T$ in monitoring ịhtico of apotinini ${ }^{34}$ is causedd by ＂naticagulation＂and is present，the CACT regiflect dueed anticagulation，要ut th byboth heparin and apơotini
 eren in the absence of apr correlation between hẹ̆尹arin makers of activation oegclot Toestimate the degre erant than the measurement Because the measuremient o traions does not reflece the CPB，we must questio웅 the Concentrations to monfor a Deses aprotinin have ze hep： rens sudy demonstrates gre less heparin in the presence mas not the aim of this stu heparin dosage for cardiac s phase activation is very impo is also the possibility of ext aion．${ }^{36}$ Only heparin is pathray of activation．Becat paiens in the current study Ominend a reduced bolus o

INFLUENCE OF HIGH-DOSE APROTININ ON ANTICOAGULATION, CELITE, AND KAOLIN ACT

Fig. 6. Postoperative cumulative blood loss. Blood loss of aprotinin-treated patients was significantly less than that of control patients. Data are given as mean and 95% confidence intervals.
complex, and fibrin-monomers in the aprotinin group of the current study indicate that clotting activity was not increased. This finding would support the initial hypothesis of Desmet et al. that aprotinin acts as an anticoagulant and has a heparin-saving effect. ${ }^{32}$
Some of the confusion in the assessment of the role of $A C T$ in monitoring anticoagulation in the presence of aprotinin ${ }^{34}$ is caused by interchanging the terms "anticoagulation" and "heparinization." If aprotinin is present, the CACT reflects not only the heparin-induced anticoagulation, but the anticoagulation induced by both heparin and aprotinin. During CPB, there is no correlation between heparin plasma levels and ACT, even in the absence of aprotinin. ${ }^{35}$ There is also no correlation between heparin plasma concentration and markers of activation of clotting or fibrinolysis (fig. 5). To estimate the degree of anticoagulation is more relevant than the measurement of heparin concentrations. Because the measurement of heparin plasma concentrations does not reflect the hemostatic changes during CPB , we must question the measurement of heparin concentrations to monitor anticoagulation.
Does aprotinin have a heparin-saving effect? The current study demonstrates greater anticoagulation with less heparin in the presence of aprotinin. However, it was not the aim of this study to find a safe minimal heparin dosage for cardiac surgery. The role of contact phase activation is very important during CPB, but there is also the possibility of extrinsic activation of coagulation. ${ }^{36}$ Only heparin is capable of inhibiting this pathway of activation. Because of the small number of patients in the current study, it is not advisable to recommend a reduced bolus of heparin for anticoagula-
tion. However, the need for additional heparin during CPB is reduced in the presence of aprotinin.
On the other hand, it is also known that, if kaolin is used instead of celite as an activator, the ACT is not influenced by aprotinin. By adding aprotinin to test tubes, Wang et al. ${ }^{16}$ demonstrated a dose-dependent prolongation of the CACT by aprotinin, while the KACT was not influenced. Our results corroborate the different behavior of CACT and KACT. This different response of kaolin and celite ACT was interpreted as "artificial" prolongation of the CACT caused by aprotinin. ${ }^{37} \mathrm{Be}$ cause one study ${ }^{38}$ indicated that repeat CABG patients receiving aprotinin may have a higher incidence of perioperative myocardial infarction-although the difference among the groups was not statistically signifi-cant-concern was raised regarding the method of monitoring intraoperative anticoagulation. Cosgrove et al. ${ }^{38}$ speculated that the prolonged CACT with aprotinin tempts one to to lessen heparin therapy and, consequently, leads to inadequate anticoagulation. To avoid insufficient anticoagulation in the presence of aprotinin, it was suggested to discontinue use of the CACT, ${ }^{12,19}$ to use a CACT of more than $750 \mathrm{~s},{ }^{15}$ or to monitor heparin plasma concentration. ${ }^{6}$

We demonstrated ${ }^{39}$ that the positively charged aprotinin is absorbed by the highly negatively charged kaolin, while it does not bind to celite. Thus, aprotinin is not able to inhibit contact activation in vitro in the presence of kaolin. The KACT reflects the anticoagulation by heparin alone and not the clinically relevant effects of aprotinin on coagulation. Therefore, the CACT is not "artificially" prolonged, but the KACT is "artificially"' shortened. The KACT is recommended if the pure heparin effect on coagulation is of primary interest, i.e., to detect residual heparin after protamine antagonization.
The aPTT was significantly prolonged in the aprotinin group, even 6 h after operation. This global test monitors coagulation from the activation of the contact phase of hemostasis to fibrin formation. Thus, because the contact phase activation is attenuated by aprotinin, the aPTT is useless for monitoring residual heparin after operation in the presence of aprotinin.

Bleeding and Allogeneic Blood Requirement

The clinical effectiveness of aprotinin in reducing intra- and postoperative bleeding in cardiac surgery has been well demonstrated in several studies. ${ }^{\text {2,3,6, , ,31.40-42 }}$ In the current investigation, reduced activation of hemostasis as measured by reduced thrombin generation

10．van Oeveren W，Eijsman L，Ro 10．he mechanism of platelet preserv on 1 and by aprotinin．Lancet $1: 644,19$ 11．Lu H，Du Buit C，Soria J，Touc
conseiller C Echter conseiller C，Echter E，Soria C：Posto nolysis in patients undergoing cardion nout aprotinin therapy．Thromb Haem 12．Najman DM，Walenga JM，Faree on anticoagulant monitoring：Implica Ann Thorac Surg 55：662－666， 1993 13．Wachtfogel YT，Kucich U，Hac s．Colman RW，Edmunds LH：Aprotin phil，and platelet activation sy perfusion．J Thorac Cardiovas Ses Surg 4．Dietrich W，Barankay 坛，Dilt1 bening F，Richter JA：Reduction of h experience in 152 cardich 37．92－98， 1989
ardiac su忽ical p 15．Hunt BJ，Segal HC，Yaco $\stackrel{\sim}{\sim}$ ै $u b ~ M ~: ~$ arin by the activated clottin＠time
 212． 1992
16．Wang JS，Lin CY，Hung $\frac{\stackrel{\rightharpoonup}{0}}{\stackrel{\rightharpoonup}{0}} \mathrm{~T}, \mathrm{Th}$ faprotinin on activated clơaing ti tivators．J Thorac Cardiovasc 17．Cloyd G，D＇Ambra MNO Akins esponse to heparin in patie $\frac{\bar{c}}{1}$ ts grafting．J Thorac Cardiovasc $\frac{\widehat{\hbar} \text { 万人 }}{6}$ urg 9
 ipencer FC：Heparin resistan⿳⺈⿴囗㐅㐅二⿺辶力 de of heparin pretreatment．\＄Thor 1983
19．Staples MH，Dunton R Heparin resistance after preogierativ balloon pumping．Ann Thoraf Surg 20．Dietrich W，Spannagli＇M，Sc Richter J：The influence of preoper： esponse during cardiopulmê웅 b 102：505－514， 1991
21．Dietrich W，Mossingeक्ष H，Sp Barankay A，Meisner H，Richter JA： diopulmonary bypass with differen patients having cardiac ope堅tions． 712－720， 1993
22．Young J，Kisker C，Dộ ardiopulmonary bypass det Prmine the appearance of fibrin mogomer． ，
23．Müller－Esterl W，Oettl A，Tru aprotinin plasma levels by an enzy （ELLSA）．Fresenius Z Anal Chem 31 24．Lill H，Spannagl M，Trauner A loch Haehnle D，Draeger B，Naser W coagulation fin sensin senvely detec 25．Slaughter TF，Lebleu TH，D Greenberg CS：Characterization of
ardiac surgery $80: 520-526,1994$

INFLUENCE OF HIGH-DOSE APROTININ ON ANTICOAGULATION, CELITE, AND KAOLIN ACT

 This may be an ad atment during car 1 as an activator of ctivator and, theregulatory properite 1 of anticoagulation ced reliable resultsaylor KM: Reduction in nary bypass with high asc Surg 97:364-37?

Wendt P, Schramm II of high-dose aprotinin tern in patients under ology $73: 1119-1126$
ter JA: High-dose apio ence in 1,784 patients wer A, Schlosser V : Re open heart surgerb by liminary results. Thorac
van Oeveren W, Wilder nd postoperative blood ary bypass. Ann Thorac
en JF, Chomka EV, Eld MJ, Schaff HV, Tatoole ss operations-efficac. graft patency-a mull bo-controlled study.

3P, Royston D. Westaby: protinin on hemosataic 5. Ann Thorac surg ${ }^{\text {t }}$ Tilsner V: The effect cardiac surgery. ${ }^{\text {Cs }}$ rotinin prevents cardio on: A scanning election 1992
26. Fritz H, Wunderer G: Biochemistry and applications of aprotinin, the kallikrein inhibitor from bovine organs. Arzneimittelforschung 33:479-494, 1983
27. Levy J, Bailey J, Salmenpera M: Pharmacokinetics of aprotinin in preoperative cardiac surgical patients. Anesthesiology 80:10131018, 1994
28. Dietrich W, Richter JA, Schramm W, Spannag1 M: What is the mechanism of action of aprotinin (reply). Anesthesiology 75:378379, 1991
29. Spannagl M, Dietrich W, Beck A, Schramm W: High dose aprotinin reduces prothrombin and fibrinogen conversion in patients undergoing extracorporeal circulation for myocardial revascularization. Thromb Haemost 72:159-160, 1994
30. Rosenberg RD: Actions and interactions of antithrombin and heparin. N Engl J Med 292:146-151, 1975
31. Royston D: High-dose aprotinin therapy: A review of the first five years' experience. J Cardiothorac Vasc Anesth 6:76-100, 1992
32. DeSmet AA, Joen MCN, van Oeveren W, Roozendaal KJ, Harder MP, Eijsman L, Wildevuur CRH: Increased anticoagulation during cardiopulmonary bypass by aprotinin. J Thorac Cardiovasc Surg 100: 520-527, 1990
33. van Oeveren W, van Oeveren B, Wildevuur CR: Anticoagulation policy during use of aprotinin in cardiopulmonary bypass (letter). J Thorac Cardiovasc Surg 104:210-211, 1992
34. Tabuchi N, Njo TL, Tigchelaar I, Huyzen RJ, Boonstra PW, van Oeveren W: Monitoring of anticoagulation in aprotinin-treated patients during heart operation. Ann Thorac Surg 58:774-777, 1994
35. Despotis GJ, Summerfield AL, Joist JH, Goodnough LT, Santoro SA, Spitznagel E, Cox JL, Lappas DG: Comparison of activated coagulation lime and whole blood heparin measurements with laboratory plasma anti-Xa heparin concentration in patients having cardiac operations. J Thorac Cardiovasc Surg 108:1076-1082, 1994
36. Boisclair MD, Lane DA, Philippou H, Esnouf MP, Sheikh S, Hunt B, Smith KJ: Mechanisms of thrombin generation during surgery and cardiopulmonary bypass. Blood 82:3350-3357, 1993
37. Wang JS, Lin CY, Hung WT, Karp RB: Monitoring of heparininduced anticoagulation with kaolin-activated clotting time in cardiac surgical patients treated with aprotinin. Anesthesiology 77:10801084, 1992
38. Cosgrove DM, Heric B, Lytle BW, Taylor PC, Novoa R, Golding L, Stewart RW, Mccarthy PM, Loop FD: Aprotinin therapy for reoperative myocardial revascularization: A placebo-controlled study. Ann Thorac Surg 54:1031-1038, 1992
39. Dietrich W, Jochum M: Effect of celite and kaolin on activated clotting time in the presence of aprotinin: Activated clotting time is reduced by binding of aprotinin to kaolin. J Thorac Cardiovasc Surg 109:177-178, 1995
40. Bidstrup BP, Royston D, Sapsford RN, Taylor KM: Effect of aprotinin on need for blood transfusion in patients with septic endocarditis having open heart surgery. Lancet $1: 366-367,1988$
41. Blauhut B, Gross C, Necek S, Doran JE, Spath P, LundsgaardHansen P: Effects of high-dose aprotinin on blood loss, platelet function, fibrinolysis, complement, and renal function after cardiopulmonary bypass. J Thorac Cardiovasc Surg 101:958-967, 1991
42. Murkin JM, Lux J, Shannon NA, Guiraudon GM, Menkis AH, Mckenzie FN, Novick RJ: Aprotinin significantly decreases bleeding and transfusion requirements in patients receiving aspirin and undergoing cardiac operations. J Thorac Cardiovasc Surg 107:554-561, 1994

[^1]
[^0]: - Staff Anesthesiologist, Department of Anesthesiology, German Heart Center
 \dagger Research Fellow, Department of Hematology, University Clinic.
 \ddagger Assistant Professor, Department of Surgery, Division of Clinical Biochemistry, University Clinic
 $\$$ Staff Clinical Chemist, Institute of Clinical Chemistry, German Heart Center.
 || Chairman, Department of Anesthesiology, German Heart Center.
 Received from the Department of Anesthesiology and the Institute of Clinical Chemistry, German Heart Center, Munich, Germany; and the Departments of Hematology and Surgery, Division of Clinical Biochemistry, University Clinic, Munich, Germany. Submitted for publication July 8, 1994. Accepted for publication June 6, 1995.
 Address reprint requests to Dr. Dietrich: Department of Anesthe siology, German Heart Center, Munich, Lothstraße 11, D-80335 Mu nich, Germany.

[^1]: Anesthesiology, V 83, No 4, Oct 1995

