# Volatile Anesthetics Depress Ca ${ }^{2+}$ Transients and Glutamate Release in Isolated Cerebral Synaptosomes 

Ning Miao, M.D.,* Martha J. Frazer, B.S., $\dagger$ Carl Lynch III, M.D., Ph.D. $\ddagger$

r JG, Stricharri Gi luring sciatic nene tract). Reg Anesh
ural epithelium: peripheral nerrou
ivacaine and etion-
7-153, 1984
, volume, and con acaine. Reg Anext
ferential sensitivity lian myelinated as 953,1987 Neurokinetics of li Relation to senson thetic interactions
dies on the absorp caine and lidocaine 4:389-403, 1966 ade, Clinical Ane Lippincott, 1988
trichartz GR: Tht in impulse block
ad quaternary loca c injury at concent siol $67: 236-240$

Uptake and wash Idy (abstract). Reg

Background: The current study was performed to determine whether volatile anesthetics may include as part of their action in the central nervous system the depression of presynaptic transmitter release by alteration in intrasynaptic $\left[\mathrm{Ca}^{2+}\right]$ $\left(\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}\right)$.
Methods: Guinea pig cerebrocortical synaptosomes were studied at $37^{\circ} \mathrm{C}$ suspended in control buffer solution containing 1.3 mm external $\left[\mathrm{Ca}^{2+}\right]\left(\left[\mathrm{Ca}^{2+}\right]_{e}\right)$. Spectrofluorometric assays were used to monitor $\left[\mathrm{Ca}^{2+}\right]_{i}$ with the $\mathrm{Ca}^{2+}$-sensitive fluorophore Fura-2 and to monitor glutamate release with an en-zyme-coupled assay that produced the fluorescent product nicotinamide adenine dinucleotide phosphate. To activate the increase in $\left[\mathrm{Ca}^{2+}\right]_{i}$ and glutamate release, synaptosomes were depolarized by abruptly increasing external [ $\mathrm{K}^{+}$] from 5 to 35 mm . Responses were determined in solutions equilibrated with approximately 1 or 2 minimum alveolar concentration (MAC) isoflurane, enflurane, or halothane and also in solutions with decreased $\left[\mathrm{Ca}^{2+}\right]_{e}(0.025,0.05,0.1,0.2,0.4$, and 0.6 mm$)$.

Results: Although they had no action on basal behavior, the anesthetics depressed the $\mathrm{K}^{+}$-depolarization-induced increase in both $\left[\mathrm{Ca}^{2+}\right]_{i}$ and glutamate release in a dose-dependent fashion. The $\left[\mathrm{Ca}^{2+}\right]_{i}$ transient was inhibited by $13-21 \%$ per MAC, and glutamate release was depressed $14-28 \%$ per MAC. The depression of both $\left[\mathrm{Ca}^{2+}\right]_{i}$ and glutamate release caused by $2.5 \%$

This article is accompanied by a Highlight. Please see this issue of Anesthesiology, page 28A.

[^0]isoflurane, $3.4 \%$ enflurane, and $1.5 \%$ halothane could be reproduced by a reduction in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{e}}$ to $0.2-0.4 \mathrm{~mm}$.

Conclusions: In this setting, isoflurane, enflurane, and halothane decrease $\left[\mathrm{Ca}^{2+}\right]_{\text {i }}$ in a manner consistent with inhibition of $\mathrm{Ca}^{2+}$ entry, possibly by specific voltage-gated neuronal $\mathrm{Ca}^{2+}$ channels. This decrease in $\left[\mathrm{Ca}^{2+}\right]_{i}$ is sufficient to account for all or most of the associated decrease in glutamate release. (Key words: Anesthetics, volatile: enflurane; halothane; isoflurane. Brain: synaptosomes. Ions: calcium. Neurotransmitters: glutamate.)

THE primary effect of volatile anesthetics has been attributed to alteration of synaptic transmission in the central nervous system. Although some detailed descriptions have been made of anesthetic effects on postsynaptic neuronal sites, particularly the anesthetic enhancement of $\gamma$-aminobutyric acid $_{A}$-mediated inhibitory $\mathrm{Cl}^{-}$currents, ${ }^{1,2}$ fewer studies have defined presynaptic effects. In the absence of decreased postsynaptic glutamate sensitivity, the observed decrease in glutamate-mediated excitatory postsynaptic potentials by anesthetics in central neurons has been attributed a presynaptic action, possibly mediated by inhibition of $\mathrm{Ca}^{2+}$ entry. ${ }^{3-5}$ In isolated cerebrocortical synaptosomes, $\mathrm{Ca}^{2+}$ influx through voltage-gated $\mathrm{Ca}^{2+}$ channels (VGCC) leads to an increase in intrasynaptic $\left[\mathrm{Ca}^{2+}\right]\left(\left[\mathrm{Ca}^{2+}\right]_{i}\right)$ and, subsequently, exocytotic secretion of the excitatory neurotransmitter glutamate. ${ }^{6-9}$ In mammalian neuronal systems a variety of VGCC ( N -, P - and Q-type) appear to contribute to synaptic release processes in various tissues. ${ }^{9-16}$ The ability of volatile anesthetics to depress $\mathrm{Ca}^{2+}$ currents in the myocardium has been recognized for more than a decade, ${ }^{17,18}$ particularly via the dihydropyridine-sensitive long-lasting, high-threshold (L-type) VGCC. ${ }^{19,20}$ Recently, the Ntype VGCC in hippocampal cells has been shown to be depressed by volatile agents. ${ }^{21}$ In contrast, the P type VGCC, which appears to mediate a large fraction of synaptosomal $\mathrm{Ca}^{2+}$ entry in the central nervous system, ${ }^{16}$ may be far less affected by the volatile anesthetic agents. ${ }^{22}$ To determine whether presynaptic $\mathrm{Ca}^{2+}$ entry
is significantly altered by volatile anesthetics and is as－ sociated with depressed transmitter release，we ex－ amined the effects of isoflurane，enflurane and halo－ thane on voltage－activated $\mathrm{Ca}^{2+}$ influx and glutamate release from isolated cerebral cortex synaptosomes． Depending on the correlation between $\mathrm{Ca}^{2+}$ entry and glutamate release，these observations might also pro－ vide insights into other processes that may be altered by anesthetics，such as $\mathrm{Ca}^{2+}$ elimination（by the plas－ malemmal Ca ${ }^{2+}$－adenosine triphosphatase or $\mathrm{Na}^{+}-\mathrm{Ca}^{2+}$ exchanger），intracellular $\mathrm{Ca}^{2+}$ mobilization，and $\mathrm{Ca}^{2+}$ interaction with vesicular release proteins（such as synaptotagmin，synapsin，and syntaxin ${ }^{23}$ ）．

## Materials and Methods

## Synaptosome Preparation

For each day＇s experiments，synaptosomes were pre－ pared by a modification of the method of Nicholls ${ }^{24}$ and Bowman et al．${ }^{9}$ Following protocols approved by the University of Virginia Animal Research Committee， 250－350－g Dunkin－Hartley guinea pigs were killed by cervical dislocation，or by cardiac excision after anes－ thesia with $0.1 \mathrm{~g} / \mathrm{kg}$ pentobarbital given by intraperi－ toneal injection．Cerebral cortexes（ $\sim 1 \mathrm{~g}$ ）were rapidly excised，cooled to $0^{\circ} \mathrm{C}$ ，homogenized in 9 ml 0.3 M sucrose，and centrifuged at $1,500 \mathrm{~g}$ for 10 min ．The pellet obtained was centrifuged at $1,500 \mathrm{~g}$ for 10 min again after resuspension in approximately the original volume of 0.3 m sucrose．The combined supernatants were centrifuged at $9,000 \mathrm{~g}$ for 20 min and the pellet （crude synaptosome fraction）was resuspended in 5 ml 0.3 m sucrose．Aliquots（ 2 ml ）of this suspension were layered on 5 ml 0.8 m sucrose and centrifuged at $9,000 \mathrm{~g}$ for 30 min ．Particles dispersed in 0.8 m sucrose solution were diluted with an equal volume of ice－cold incu－ bation medium containing（in millimolar concentra－ tions） $\mathrm{NaCl} 125, \mathrm{KCl} 5, \mathrm{NaHCO}_{3} 5, \mathrm{Na}_{2} \mathrm{HPO}_{4} 1.2$ ， $\mathrm{MgCl}_{2} 1$ ，glucose 10 ，and hydroxyethylpiperazine－ ethane sulfonic acid 20 ，at $p \mathrm{H} 7.4$ and centrifuged at $16,000 \mathrm{~g}$ for 20 min ．The pellet（purified synaptosome fraction）was resuspended in incubation medium．
Measurements of intracellular $\mathrm{Ca}^{2+}$ and glutamate re－ lease were performed using a luminescence spectro－ fluorometer（LS－50，Perkin－Elmer Ltd．，Beaconsfield， Buckinghamshire，England）．During each experiment， the cuvette temperature was thermostatically regulated at $37^{\circ} \mathrm{C}$ with magnetic stirring of the synaptosome sus－ pension to ensure adequate mixing．

## Ca ${ }^{2+}$ Measurements

The free $\mathrm{Ca}^{2+}$ concentration inside the synaptosomes $\left(\left[\mathrm{Ca}^{2+}\right]_{i}\right)$ was measured using the $\mathrm{Ca}^{2+}$－sensitive fluor－ ophore Fura－2 and conventional excitation wavelength ratio methods．${ }^{9,25}$ The synaptosomal suspension was preincubated for 5 min at $37^{\circ} \mathrm{C}$ ，followed by the ad－ dition of $100 \mu \mathrm{M} \mathrm{CaCl}_{2}, 16 \mu \mathrm{~m}$ bovine serum albumin， and $1 \mu \mathrm{M}$ Fura－2／AM（Sigma Chemical，St．Louis，MO）， which diffuses into the synaptosomes and remains there after hydrolysis of the acetoxymethyl（AM）groups．Af－ ter 35 min ，the synaptosomes were centrifuged for 2 min and washed twice with 2 ml fresh medium to elim－ inate residual Fura－2／AM．An aliquot of Fura－2／AM－ loaded synaptosomes（containing $\sim 1.34 \mathrm{mg}$ protein） was then placed in a cuvette containing 2 ml medium to which $\mathrm{CaCl}_{2}$ was added to achieve a final $\left[\mathrm{Ca}^{2+}\right]$ of 1.3 mm ．Following standardized protocols，fluores－ cence was determined at 510 nm with an excitation wavelength switched between 340 or 380 nm ；data points were collected every 1.89 s ．One hundred sec－ onds after the addition of $\mathrm{Ca}^{2+},\left[\mathrm{K}^{+}\right]$was increased to 35 mm （by addition of $20 \mu \mathrm{l} 3 \mathrm{~m} \mathrm{KCl}$ ）to depolarize the synaptosomes and initiate $\mathrm{Ca}^{2+}$ influx．After 180 s ， synaptosomes were made soluble with $1 \%$（weight／ volume）Triton $\mathrm{X}-100$ to permit $\mathrm{Ca}^{2+}$ entry and satu－ ration of Fura－2／AM，followed by addition of ethylene－ glycol－bis－（ $\beta$－aminoethyl ether）tetraacetic acid to a fi nal concentration 7.5 mm to bind $\mathrm{Ca}^{2+}$ ，thereby gen－ erating the maximum and minimum 340／380 fluorescence ratios，respectively．Based on the maxi－ mum and minimum ratios，a computer program then calculated the synaptosomal $\left[\mathrm{Ca}^{2+}\right]_{i}$ from fluorescence ratio measured during the 280 －s experimental period． In control experiments，this technique was found to be insensitive to the anesthetics．Seven to $13\left[\mathrm{Ca}^{2+}\right]_{i}$ assays on different synaptosomal preparations were carried out for each anesthetic concentration．

## Glutamate Release

Glutamate release was measured under identical conditions used for $\mathrm{Ca}^{2+}$ influx，except for omission of Fura－2／AM loading and the addition of an enzyme－cou－ pled assay using glutamate dehydrogenase as described by Nicholls and coworkers．${ }^{7.26}$ In the presence of glu－ tamate dehydrogenase（ $50 \mathrm{U} / \mathrm{ml}$ ），nicotinamide ade－ nine dinucleotide phosphate（NADPH）and ketoglu－ tarate are produced from $\mathrm{NADP}^{+}(1 \mathrm{~mm})$ and glutamate． NADPH fluorescence was excited at 340 nm and mon－ itored at 460 nm （emission wavelength）as a measure of glutamate release．As in the $\mathrm{Ca}^{2+}$ assay，glutamate it requires time for react gluiamate due to additior or or r surable fluorescence signaw．that loa final value．For a standक्षेंd er of substrate utilization（ in this case glutamate）is
$-\mathrm{dS} / \mathrm{dt}=[\mathrm{S}] \times \mathrm{V}_{\mathrm{m}}^{\mathrm{O}} \mathrm{O} / \mathrm{O} / \mathrm{K}$ where $\mathrm{P}=$ the product angigd $\mathrm{K}_{\mathrm{m}}$ tation at which $50 \%$ of 甹e m is obtained for a constar enz cause the glutamate congentra $\mathrm{K}_{\mathrm{n}}$ of glutamate dehydro $\vec{g}$ enas tion may be simplified to

$$
\mathrm{dP} / \mathrm{dt}=-\mathrm{dS} / \mathrm{dt}=([
$$

Thus the initial rate of NADPI tional to the glutamate conc siden increase in glutamate lefenitial slope of NADPH ap
the linearity of the assay as w ssumplion，the fluorescence sured in response to the sudd calsed by the addition of a sp
nimol）to the incubation medi

SYNAPTOSOMAL $\mathrm{Ca}^{2+}$ AND GLUTAMATE RELEASE
he synaptosome ${ }^{-}$-Sensitive fluor ation waveleng suspension owed by the ad serum albumin St. Louis, MO nd remains ther (AM) groups. AE entrifuged for? nedium to elim. of Fura-2/AM34 mg protetin g 2 ml medium a final $\left[\mathrm{Ca}^{2+}\right] 0$ tocols, fluores. h an excitation 380 nm ; dat te hundred see. as increased to ) to depolarize ix. After 180 s, h $1 \%$ (weight entry and satlon of ethylene. etic acid to af , thereby gen. um 340/380 1 on the maxi program then n fluorescence mental period. was found to to $13\left[\mathrm{Ca}^{2+}\right.$ arations were ration.
ader identical or omission of n enzyme.col se as described esence of glu. tinamide ade and glutamate. nm and mon ) as a measure say, glutamate

Fig. 1. Calibration for glutamate release. (A) Fluorescence intensity ( FI ) response at 460 nm (excitation at 340 nm ) versus time with the sudden addition of glutamate ( $1-7$ nmol) to the standard medium at 40 s , using an enzyme-coupled assay system using $50 \mathrm{U} / \mathrm{ml}$ glutamate dehydrogenase. FI increases because of the production of fluorescent product nicotinamide adenine dinucleotide phosphate (NADPH) from $\mathrm{NADP}^{+}(1 \mathrm{~mm})$ in the medium. According to standard enzyme kinetics, when $K_{m}$ of the enzyme for the substrate (where $K_{m}=$ the substrate concentration at which $50 \%$ of the maximum velocity is obtained for a constant enzyme concentration) exceeds the substrate concentration by $\mathbf{> 2 0}$-fold, the initial rate of enzyme reaction will be proportional to the substrate concentration. ( $B$ ) The initial slope of FI increase at 460 nm for the addition of various amounts of glutamate. Circles = the slopes determined from $A$; squares $=$ an additional experiment. The response is linear over the range studied.
release was activated by increase in $\mathrm{K}^{+}$to 35 mm 100 $s$ after the addition of $\mathrm{Ca}^{2+}$ to the solution. The addition of KCl increased the osmolarity of the solution by $\sim 20 \%$, but control experiments in which an equivalent amount of NaCl was added showed neither an increase in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ nor detectable glutamate release.
Because of the enzyme-coupled aspect of this assay, it requires time for reaction. The sudden increase in glutamate due to addition or release results in a measurable fluorescence signal that increases exponentially to a final value. For a standard enzyme reaction, velocity of substrate utilization $(-\mathrm{dS} / \mathrm{dt}$, where $\mathrm{S}=$ substrate, in this case glutamate) is given by:

$$
\begin{equation*}
-\mathrm{dS} / \mathrm{dt}=[\mathrm{S}] \times \mathrm{V}_{\max } /\left(\mathrm{K}_{\mathrm{m}}+[\mathrm{S}]\right)=\mathrm{dP} / \mathrm{dt} \tag{1}
\end{equation*}
$$

where $\mathrm{P}=$ the product and $\mathrm{K}_{\mathrm{m}}=$ the substrate concentration at which $50 \%$ of the maximum velocity $\left(\mathrm{V}_{\text {max }}\right)$ is obtained for a constant enzyme concentration. Because the glutamate concentration is much lower than $\mathrm{K}_{\mathrm{m}}$ of glutamate dehydrogenase ( $\sim 120 \mu \mathrm{M}$ ), the equation may be simplified to:

$$
\begin{equation*}
\mathrm{dP} / \mathrm{dt}=-\mathrm{dS} / \mathrm{dt}=\left([\mathrm{S}] \times \mathrm{V}_{\max }\right) / \mathrm{K}_{\mathrm{m}} . \tag{2}
\end{equation*}
$$

Thus the initial rate of NADPH production is proportional to the glutamate concentration $([\mathrm{S}])$, and any sudden increase in glutamate can be estimated from the initial slope of NADPH appearance. To assess both the linearity of the assay as well as the validity of the assumption, the fluorescence intensity (FI) was measured in response to the sudden increase in glutamate caused by the addition of a specified amount (0.25-7 nmol ) to the incubation medium, which contained 50
$\mathrm{U} / \mathrm{ml}$ glutamate dehydrogenase and $1 \mathrm{~mm} \mathrm{NADP}^{+}$(fig. 1A). As predicted from enzyme kinetics, the increase in FI was an exponential function of time after the addition of glutamate with a time constant of $\sim 190 \mathrm{~s}$ at each glutamate concentration, the final FI stabilizing after 800-900 s. To 7 nmol added glutamate, the initial slope was a linear function of the added glutamate and the resulting [glutamate] (fig. 1B). Unlike the calibration curves, which achieve a stable FI once the added glutamate is metabolized, the initial and subsequent ongoing synaptosomal glutamate release activated by KCl depolarization results in a slow, ongoing increase in FI after 900 s . Consequently, absolute value of FI at any point cannot be used as a measure of initial or total glutamate release. However, because the initial slope of FI is a linear function of added glutamate to 7 nmol , the initial glutamate released can still be estimated from the initial slope. Although a deconvolution of the FI response based on the time constant of the reaction permitted an estimate of ongoing glutamate release, this was not routinely performed. To provide for any variation in each assay, the change in FI slope resulting from the addition of 6 nmol glutamate at 900 s was used an internal calibration for that particular assay (see fig. 4 , for example). Five to eight glutamate assays on different synaptosomal preparations were carried out for each anesthetic concentration. We also verified that this method of glutamate determination is insensitive to the volatile anesthetics.

## Anesthetic Administration

Anesthetic effects were determined by incubation of the synaptosomes for 5 min before study in an assay

Table 1. Anesthetic Concentrations in Assay Solution at $37^{\circ} \mathrm{C}$ Determined by Gas Chromatographic Analysis

|  | Gas Phase <br> $(\%)$ | Solution Phase <br> $(\mathrm{mm})$ |
| :--- | :---: | :---: |
| Anesthetic | 1.7 | 0.44 |
| Enflurane | 3.4 | 1.01 |
|  | 0.75 | 0.23 |
| Halothane | 1.5 | 0.44 |
|  | 1.3 | 0.28 |
| Isoflurane | 2.5 | 0.57 |

solution preequilibrated with the specified anesthetic concentration. Solutions were preequilibrated for 20 min by bubbling with anesthetic-containing filtered air from a calibrated vaporizer, whereas control solutions were bubbled with filtered air only. Incubation and assays were carried out in cuvettes in which an appropriate concentration of anesthetic-containing air continually flowed through the head space to prevent loss of anesthetic from the medium to the atmosphere. The $\mathrm{Ca}^{2+}$ influx or glutamate release assay were performed with approximately equipotent anesthetic concentrations: 0.75 or $1.5 \%$ halothane; 1.3 or $2.5 \%$ isoflurane; 1.7 or $3.4 \%$ enflurane; representing one or two times human minimum alveolar concentration (MAC), or $\sim 0.8$ and $\sim 1.6$ times guinea pig MAC. ${ }^{27}$ The aqueous phase anesthetic concentrations at $37^{\circ} \mathrm{C}$ as determined by gas chromatography are listed in table 1 and represent $89-105 \%$ of the value predicted from published partition coefficients. ${ }^{28}$
To decrease the amount of $\mathrm{Ca}^{2+}$ entry and thereby assess the relation between the $\mathrm{Ca}^{2+}$ transient and glu-
tamate release, assays were also performed in the presence of $25,50,100,200,400$, and $600 \mu \mathrm{M} \mathrm{Ca}^{2+}$ achieved by addition of smaller quantities of $\mathrm{CaCl}_{2}$ to the synaptosome-containing assay solution before the KCl -induced activation.

## Statistical Analysis

Comparison among the absolute values of control and the two anesthetic concentrations and were performed using analysis of variance and the Fisher's protected least significant difference test for planned comparisons (Statview, Abacus Software, Berkeley, CA). Significance of the concentration dependence of the effects was determined by calculating the slope and its estimated error (least-squares regression analysis) using the absolute values at 0,1 , and 2 MAC of anesthetic. Values were also calculated as percent of control for any given days experiments (one to three assays), and tested versus $100 \%$ by an unpaired $t$ test.

## Results

## $\mathrm{Ca}^{2+}$ Dependence of Synaptosomal Responses

The increase in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ as well as glutamate release from these isolated synaptosomes was clearly dependent on $\left[\mathrm{Ca}^{2+}\right]$ in the external medium $\left(\left[\mathrm{Ca}^{2+}\right]_{e}\right)$. The depolarization induced by increasing $\left[\mathrm{K}^{+}\right]$from 5 to 35 mm produced a characteristically rapid peak ( $<10 \mathrm{~s}$ ) of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ of 100-150 nm above the basal concentration (120-200 nm), followed by a partial decrease to a stable plateau phase of $50-80 \mathrm{~nm}$ above the basal $\left[\mathrm{Ca}^{2+}\right]_{i}$ (fig. 2A). In nominally $\mathrm{Ca}^{2+}$-free solutions, there was


Fig. 2. Intrasynaptosomal $\left[\mathrm{Ca}^{2+}\right]\left(\left[\mathrm{Ca}^{2+}\right]_{i}\right)$ and glutamate release in response to depolarization of synaptosomes ( 1.34 mg protein) by increasing $\mathrm{K}^{+}$from 5 to 35 mm . (A) The $\left[\mathrm{Ca}^{2+}\right]_{1}$ changes as determined by the Fura2/am fluorescence ratio method. In the presence of $1.3 \mathrm{~mm} \mathrm{Ca}^{2+}$, a large initial transient was observed on the increase in external $\left[K^{+}\right]$. The large initial transient subsequently decreased to a plateau that was typically half that of the initial transient. In the absence of added $\mathrm{Ca}^{2+}$ (nomi nally $\mathrm{Ca}^{2+}$-free), no $\mathrm{Ca}^{2+}$ transient is observed. ( $B$ ) Nicotinamide adenine dinucleotide phosphate (NADPH) fluorescence response to added KCl in the presence of $1.3 \mathrm{~mm} \mathrm{Ca}{ }^{2+}$ and in nominally $\mathrm{Ca}^{2+}$-free solution. The initial slope of the fluorescence response in $1.3 \mathrm{~mm} \mathrm{Ca}{ }^{2+}$ gives an estimate of the initial glutamate release of 1.5 nmol , based on the equivalence of its slope to one fourth of the slope observed on addition of the internal standard of $6 \mathbf{n m o l}$ (done at 900 s and not shown in the tracing; see fig. 4 , for example).

Fig. 3. Intrasynaptosomal $\left[\mathrm{Ca}^{2+}\right]\left(\left[\mathrm{Ca}^{2+}\right]_{i}\right)$ and the glutamate release in response to KCl depolarization in the presence of varied $\left[\mathrm{Ca}^{2+}\right]$ in the external medium ( $\left[\mathrm{Ca}^{2+}\right]_{e}$ ). (A) Changes in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ from one synaptosomal preparation in the presence of the varying $\left[\mathrm{Ca}^{2+}\right]_{e}$ indicated. (B) The dependence of the net $\left[\mathrm{Ca}^{2+}\right]_{i}$ transient on $\left[\mathrm{Ca}^{2+}\right]_{e}$ (ext[Ca]). Each point represents the mean of three to five measurements. (C) Changes in nicotinamide adenine dinucleotide phosphate (NADPH) fluorescence intensity ( FI ) representing glutamate release with varied $\left[\mathrm{Ca}^{2+}\right]_{e}$, in which the decreased slope of the FI increase is proportional to the magnitude of glutamate release. (D) Fractional change in the $\mathrm{Ca}^{2+}$ transient and glutamate release plotted as a fraction of the control level observed in presence of $1.3 \mathrm{~mm}\left[\mathrm{Ca}^{2+}\right]_{\mathrm{e}}$.

Responses
tamate release clearly depen. $\left(\left[\mathrm{Ca}^{2+}\right] \mathrm{c}\right)$. The ${ }^{+}$] from 5 to 35 peak (<10s) concentration crease to a stae basal $\left[\mathrm{Ca}^{2+}\right]$ ons, there was nse to depolar. .34 mg protein) 35 mm . (A) ${ }^{\text {The }}$ led by the Furd method. In the a large intitial the increase in nitial transient a plateau that the initial tran. ded $\mathrm{Ca}^{2+}$ (nomi ransient is ob ransien dinude
denine denine dinu he fluorescence $e$ of its slopel in the tracing
never an increase in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$. In such cases, the contaminant $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{c}}$ in the absence of a $\mathrm{Ca}^{2+}$ chelating agent was typically in the range of $2-4 \mu \mathrm{M}$.
In the presence of external $\mathrm{Ca}^{2+}$, the release of glutamate was evident from the increase in NADPH FI after KCl -induced depolarization, where the initial slope is proportional to the amount of the initial glutamate release (fig. 2B). The slope is subsequently maintained by ongoing glutamate release. Based on the FI slope resulting from addition of 6 nmol glutamate (tracing at 900 s not shown), the initial glutamate release was estimated as 1.5 nmol glutamate from the initial slope of the curve. In $30-40 \%$ of experiments, a modest baseline of glutamate release before depolarization was present as evidenced by a slightly positive slope of FI. In these cases, KCl-independent release of glutamate was subtracted from KCl -dependent release before tabulation. Depolarization in nominally $\mathrm{Ca}^{2+}$-free solution did not activate glutamate release, indicating that $\mathrm{Ca}^{2+}$ influx is responsible for the observed increase.

If instead of 1.3 mm or nominally zero $\mathrm{Ca}^{2+}$, an intermediate $\left[\mathrm{Ca}^{2+}\right]_{e}$ was used, $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ transients of intermediate amplitude were obtained, and glutamate re-

lease was also reduced below the control ( 1.3 mm ) concentration. Figure 3A presents the effects of 25$400 \mu \mathrm{M}\left[\mathrm{Ca}^{2+}\right]_{\mathrm{e}}$ on the amplitude of the $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ transient and plateau initiated by the $\mathrm{K}^{+}$-induced depolarization. A modest reduction occurred with $400 \mu \mathrm{M}\left[\mathrm{Ca}^{2+}\right]_{\mathrm{c}}$, with smaller $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ transients evident in the presence of the lower $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{c}}$. In spite of various complicating considerations, the decrease in the $\left[\mathrm{Ca}^{2+}\right]_{i}$ transient was a simple linear function of the $\log$ of $\left[\mathrm{Ca}^{2+}\right]_{e}$ (fig. 3B). This relation would be anticipated if the $\left[\mathrm{Ca}^{2+}\right]_{i}$ transients were a linear function of inward $\mathrm{Ca}^{2+}$ current amplitude, and assuming current can be approximated by a simple conductance model, current will be proportional to the $\mathrm{Ca}^{2+}$ equilibrium potential, which is proportional to $\log \left(\left[\mathrm{Ca}^{2+}\right]_{c} /\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}\right)$. The glutamate release, as assessed by the initial slope of increasing FI, also decreased as $\left[\mathrm{Ca}^{2+}\right]_{c}$ was decreased (fig. 3C). Figure 3D presents the dose-dependent depression in glutamate release, as well as in the $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ transient, for the reductions in $\left[\mathrm{Ca}^{2+}\right]_{c}$. With a reduction in $\left[\mathrm{Ca}^{2+}\right]_{c}$, glutamate release was typically more depressed than was the $\mathrm{Ca}^{2+}{ }_{\mathrm{i}}$ transient. Neither the basal $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ nor the basal glutamate release before depolarization was altered by the decreased $\left[\mathrm{Ca}^{2+}\right]_{c}$ (data not shown).

## Anesthetic Inhibition of KCl-evoked Increase in Intrasynaptic $\left[\mathrm{Ca}^{2+}\right]$ and Glutamate Release

 The effect of isoflurane on KCl -induced $\left[\mathrm{Ca}^{2+}\right]_{i}$ changes and glutamate release are shown in figure 4. Both the $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ transients and the initial slope of the glutamate assay were reduced by isoflurane, with a greater effect present at the higher concentration. The effects of clinically comparable concentrations of halothane ( 0.75 and $1.5 \%$ ), enflurane ( 1.7 and $3.4 \%$ ) and isoflurane ( 1.3 and $2.5 \%$ ) caused quantitatively similar decreases in the peak and plateau $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ response (table 2) and in glutamate release (table 3). Basal $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and glutamate release were not altered by the anesthetics. The changes in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and secretion of glutamate induced by three anesthetics were also documented by the regression analysis. A significant negative slope of peak $\left[\mathrm{Ca}^{2+}\right]$ transient and initial glutamate release versus anesthetic concentration was present for all three anesthetics. The concentration dependence, when calculated for equivalent potency ( 1 or 2 MAC ), was similar for all three agents: $\mathrm{Ca}^{2+}$ transients were reduced $11-14 \%$ per MAC, and glutamate release was reduced about $20-25 \%$ per MAC.For the various anesthetics and for $\left[\mathrm{Ca}^{2+}\right]_{c}$ equal to $100-600 \mu \mathrm{M}$, figure 5 plots the quantity of glutamate release as a fraction of control $\left(\mathrm{Q}_{\mathrm{g} \text { gut }} / \mathrm{Q}_{\text {glut-control }}\right)$ versus the peak $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ transient, also expressed as a fraction of control $\left(\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}} /\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}\right.$-control $)$, where the control values were those observed in $1.3 \mathrm{~mm}\left[\mathrm{Ca}^{2+}\right]_{\mathrm{e}}$ in the absence of anesthetic. The mean percent same-day control values are plotted. If glutamate release is a simple linear function of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$, then the points should fall on the line of unity $(\mathrm{n}=1)$. Instead, the fractional reduction in glutamate release is slightly greater than that for $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$. Assuming a simple model for $\mathrm{Ca}^{2+}$-dependent glutamate release in which $\mathrm{nCa}^{2+}$ ions induce exocytosis, then:

$$
\begin{equation*}
\mathrm{Q}_{\text {glut }} / \mathrm{Q}_{\text {glut-control }}=\left(\left[\mathrm{Ca}^{2+} \mathrm{i}_{\mathrm{i}} /\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i} \text {-control }}\right)^{\mathrm{n}},\right. \tag{3}
\end{equation*}
$$

where $\mathrm{n}=$ the cooperativity of the $\mathrm{Ca}^{2+}$. In general, the points defined for reduced $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{c}}$ as well as for the three anesthetics fall in the range of the lines defined by $\mathrm{n}=1$ and $\mathrm{n}=2$ (fig. 5).

## Discussion

Although homogenization of brain tissue destroys neuronal cell bodies, the membranes of nerve endings reseal into synaptosomes, small functional sacs that re-
tain not only synaptic vesicles but also the ability to secrete neurotransmitter in response to a depolarizing stimulus. Although they of course do not reflect intact neuronal function mediated by axonally transmitted depolarizations, synaptosomes have been widely used to elucidate the mechanisms of excitation-secretion coupling. In the mammalian cerebrocortical synaptosomes, the predominant excitatory neurotransmitter is glutamate, which is released when $\mathrm{Ca}^{2+}$ entry is activated. ${ }^{6-8,29}$ We found that isoflurane, enflurane, and halothane significantly depressed the synaptosomal $\left[\mathrm{Ca}^{2+}\right]_{i}$ increase and release of glutamate evoked by a depolarizing concentration of $\mathrm{K}^{+}(35 \mathrm{~mm})$. These effects on $\mathrm{Ca}^{2+}$ are consistent with those reported by Kress et al. ${ }^{30,31}$ in a variety of neuronal and some nonneuronal cells as well as with electrophysiologic evidence suggesting decreased neuronal glutamate release. ${ }^{4,5}$ In the current study, solutions equilibrated with roughly equivalent clinical concentrations of isoflurane, enflurane, and halothane produced similar degrees of inhibition. As anticipated, the increase in synaptosomal $\mathrm{Ca}^{2+}\left(\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}\right)$ and the release of glutamate were both clearly dependent on $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{e}}$ and could be proportionally reduced by decreasing $\left[\mathrm{Ca}^{2+}\right]_{e}$. Furthermore, effects on $\left[\mathrm{Ca}^{2+}\right]_{i}$ and glutamate release caused by a reduction in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{c}}$ to $400 \mu \mathrm{~m}(\sim 30 \%$ of the 1.3 mm control value) replicated the actions of the anesthetics. Because in nominally $\mathrm{Ca}^{2+}$-free solution, KCl depolarization by itself did not increase $\left[\mathrm{Ca}^{2+}\right]$, release of $\mathrm{Ca}^{2+}$ from any intrasynaptosomal stores present did not appear to be occurring.

The observation that the decrease in the $\left[\mathrm{Ca}^{2+}\right]_{i}$ transient and greater decrease in glutamate release caused by the anesthetics can be closely duplicated by decreasing $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{e}}$ has important implications. Because the relation between the reduced $\left[\mathrm{Ca}^{2+}\right]_{i}$ transient and glutamate release observed in the presence of the anesthetics can be seen in their absence with decreased $\left[\mathrm{Ca}^{2+}\right]_{e}$, it is likely that the intrasynaptosomal mechanisms responsive to $\mathrm{Ca}^{2+}$, which ultimately progress to vesicle exocytosis, are not markedly altered by the anesthetics. If the synaptosomal proteins that bind $\mathrm{Ca}^{2+}$ and then foster vesicle fusion with the membrane were directly depressed (or enhanced) by anesthetics, then for a given $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ transient, the glutamate release should be less than (or greater than) that observed when the transient was depressed by altering $\left[\mathrm{Ca}^{2+}\right]_{e}$. If either the anesthetics or decreased $\left[\mathrm{Ca}^{2+}\right]_{e}$ altered the resting $\left[\mathrm{Ca}^{2+}\right]_{i}$ before depolarization, then the behavior of various $\mathrm{Ca}^{2+}$ sensitive regulatory enzymes might in- otide phosphate (NADPH) fluorescen pansity (FI), representing the ${ }_{\infty}^{\text {An }}$ umate release in the presencs of nae. Ihe small initial step in infi see Cl adition was occasionallo seen certain preparations and regresen mixing artifact, not glu
fluence subsequent exoegigtos change in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ behaviè wa: theobserved glutamate rege ease anbe largely explained हैy pr mediate their action preeeomin drupt increase in $\left[\mathrm{Ca}^{2+}\right], \frac{9}{?}$ espo exocytotic cascade. Whe her th appied to intact neuron출requ The reduction of $\left[\mathrm{Ca}^{2+}{ }_{\mathrm{i}}^{\mathrm{i}}\right.$ tran aslighty greater decrease in t? release $\left(Q_{\text {pluw }} / Q_{\text {gluc control }}\right)$ Th
made that the process of exocy in is $\mathrm{Ca}^{2+}$ dependence such must bind to specific sites. ${ }^{11,13}$ istyical of that observed pre function of the reduction in [ pretions using decreased $\left[\mathrm{Ca}^{2+}\right]$

Fig. 4. The effects of isoflurane on the KCl induced $\mathrm{Ca}^{2+}$ transient and glutamate release. (A) $\mathrm{Ca}^{2+}$ transients in the absence and presence of isoflurane in the extrasynaptosomal medium, where isoflurane concentrations in solution have been equilibrated with either 1.3 or $2.5 \%$ isoflurane. Shown are responses at slow (left) and fast (right) time scales, respectively. (B) Changes in nicotinamide adenine dinucleotide phosphate (NADPH) fluorescence intensity (FI), representing the initial glutamate release in the presence of isoflurane. The small initial step in FI seen on KCl addition was occasionally seen with certain preparations and represented a mixing artifact, not glutamate-dependent production of NADPH.

fluence subsequent exocytosis. However, no such change in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ behavior was noted. Consequently, the observed glutamate release from the synaptosomes can be largely explained by presuming the anesthetics mediate their action predominately by decreasing the abrupt increase in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ responsible for activating the exocytotic cascade. Whether this interpretation can be applied to intact neurons requires verification.
The reduction of $\left[\mathrm{Ca}^{2+}\right]_{i}$ transient is associated with a slightly greater decrease in the quantity of glutamate release $\left(\mathrm{Q}_{\text {glut }} / \mathrm{Q}_{\text {glut control }}\right)$. The suggestion has been made that the process of exocytosis shows cooperativity in its $\mathrm{Ca}^{2+}$ dependence such that two or more $\mathrm{Ca}^{2+}$ must bind to specific sites. ${ }^{1,13,32,33}$ Such a dependence is typical of that observed previously, in which transmitter release is reduced in proportion to some power function of the reduction in $\left[\mathrm{Ca}^{2+}\right]$. The current observations using decreased $\left[\mathrm{Ca}^{2+}\right]_{c}$ are consistent with the presence of some degree of cooperativity $(\mathrm{n}>1)$, and
the anesthetics do not appear to markedly alter the degree of cooperativity.
Neurotransmitter release from neurons is mediated by $\mathrm{Ca}^{2+}$ entry into nerve terminals, activating a complex of proteins that cause fusion of the membrane of the transmitter-containing synaptic vesicle with the cell membrane, resulting in exocytosis. ${ }^{23,34} \mathrm{Ca}^{2+}$ entry appears to be mediated by specific VGCC that are located near the active synaptosomal release zone of the neuronal membrane ${ }^{32}$ and that are insensitive to the $\mathrm{Ca}^{2+}$. entry blockers such as the dihydropyridines classically active in the cardiovascular system. ${ }^{35}$ Glutamate exocytosis appears to be coupled to $\mathrm{Ca}^{2+}$ entry through several VGCC types including the N -, P- and Q-types, which are sensitive to $\omega$-CTx-GVIA, $\omega$-Aga IVA, and $\omega$ -CTx-MVIIC, respectively. ${ }^{9,11,13-16,36,37}$ Although the exact VGCC may vary with the neuron, ${ }^{38} \mathrm{Ca}^{2+}$ entry through VGCC appears to be of major importance because the depolarization-coupled glutamate release is

Table 2．Synaptosomal $\mathrm{Ca}^{2+}$ Changes Induced by KCl Depolarization

|  | пм |  |  |  | Percent of Same Day Control |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Basal | Evoked （Peak－basal） | Net Plateau （Plateau－basal） | n | Evoked | Plateau |  |
|  | $190 \pm 8$ | $112 \pm 6$ | $\begin{array}{ll}64 & \pm \\ 54\end{array}$ | 18 |  |  |  |
| 1．3\％isoflurane | $180 \pm 6$ | $99 \pm 5$ | $54 \pm 5$ 43 | 11 8 | $74 \pm 5^{\star \star}$ | $67 \pm 11^{9}$ |  |
| 2．5\％isoflurane | $177 \pm 14$ | $88 \pm 4$ | $43 \pm 4^{*}$ | 8 |  |  |  |
| Slope（ $\mathrm{nm} / \mathrm{MAC}$ ） | NS | $-12.2 \pm 4.2 \dagger$ | $10.3 \pm 4.6 \ddagger$ |  |  |  |  |
| Control | $219 \pm 6$ | $136 \pm 7$ | $96 \pm 6$ | 19 13 |  |  |  |
| 1．7\％enflurane | $203 \pm 8$ | $118 \pm 6$ | $85 \pm 4$ | 13 | $86 \pm{ }^{\text {a }}$ $62 \pm 8^{*}$ | $65 \pm 6^{* *}$ | 6 |
| 3．4\％enflurane | $206 \pm 11$ | $97 \pm 4^{*}$ | $74 \pm 4^{*}$ | 12 |  |  |  |
| Slope（ $\mathrm{nm} / \mathrm{MAC}$ ） | NS | $-19.3 \pm 4.4 \dagger$ | $-5.3 \pm 4.7$ |  |  |  |  |
| Control | $215 \pm 7$ | $135 \pm 6$ | $95 \pm 5$ | 16 |  |  |  |
| 0．75\％halothane | $219 \pm 6$ | $119 \pm 9$ | $91 \pm 5$ | 8 | $79 \pm 7$ | $84 \pm 3^{* *}$ $67 \pm 5^{* *}$ |  |
| 1．5\％halothane | $200 \pm 11$ | $102 \pm 10^{*}$ | $84 \pm 12$ | 7 |  |  |  |
| Slope（ $\mathrm{nm} / \mathrm{MAC}$ ） | NS | $-15.5 \pm 5.2 \S$ | $-10.7 \pm 3.6 \dagger$ |  |  |  |  |

Values are mean $\pm$ SEM．For each experiment，the evoked and net plateau values were calculated as the total measured［Ca ${ }^{2+}$ ，at peak or plateau minus the basal level Slope of the dose－response assumes human MAC for the calculation；values would be $25 \%$ greater using guinea pig MAC．NS＝not significant

Different from control：${ }^{*} P<0.05$ ANOVA，PLSD test．
Different from 0 slope：$\dagger P<0.01, \ddagger P<0.05, \S P<0.0001$
Different from $100 \%$ ：${ }^{\top} P<0.05,{ }^{*} P<0.01$ ．
much more efficient than that observed with the non－ localized $\mathrm{Ca}^{2+}$ entry due to the $\mathrm{Ca}^{2+}$ ionophore iono－ mycin．${ }^{8.24,29}$ As with the L－type VGCC，volatile anes－ thetics appear to inhibit $\mathrm{Ca}^{2+}$ currents in hippocampal
neurons，${ }^{39}$ with a prominent effect observed on N－type and an unidentified，possibly P－or Q－type，VGCC．${ }^{21}$ In a separate investigation，P－type VGCC were interpreted as insensitive to volatile anesthetics，${ }^{22}$ although the au－

Table 3．Synaptosomal Glutamate Release

|  | Basal Release （ nmol ） | Initial Release （nmol） | n | Initial Release （\％same day control） | n |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Control | $0.88 \pm 0.11$ | $1.62 \pm 0.17$ | 10 |  |  |
| 1．3\％isoflurane | $0.63 \pm 0.10$ | $1.34 \pm 0.17$ | 8 | $86 \pm 1 \S$ | 8 |
| 2．5\％isoflurane | $0.42 \pm 0.11$ | $0.96 \pm 0.12^{*}$ | 5 | $67 \pm 1 \S$ | 5 |
| Slope（nmol／MAC） | NS | $-0.33 \pm 0.12 \dagger$ |  |  |  |
| Control | $0.46 \pm 0.17$ | $1.65 \pm 0.25$ | 8 |  |  |
| 1．7\％enflurane | $0.42 \pm 0.19$ | $1.33 \pm 0.27^{*}$ | 6 | $81 \pm 4 \S$ | 6 |
| 3．4\％enflurane | $0.58 \pm 0.21$ | $0.83 \pm 0.12^{*}$ | 7 | $59 \pm 2 \S$ | 7 |
| Slope（ $\mathrm{nmol} / \mathrm{MAC}$ ） | NS | $-0.41 \pm 0.15 \dagger$ |  |  |  |
| Control | $0.84 \pm 0.29$ | $1.30 \pm 0.09$ | 5 |  |  |
| 0．75\％halothane | $0.80 \pm 0.15$ | $0.93 \pm 0.05^{*}$ | 7 | $72 \pm 1 \S$ | 7 |
| 1．5\％halothane | $0.64 \pm 0.14$ | $0.77 \pm 0.04^{*}$ | 7 | $57 \pm 2 \S$ | 7 |
| Slope（nmol／MAC） | NS | $-0.26 \pm 0.04 \ddagger$ |  |  |  |

Values are mean $\pm$ SEM．To reduce the variability in glutamate release due to variation in synaptosomal preparations，the initial release in the presence of anesthetic was expressed as a percent of the same day control．Slope of the dose－response assumes human MAC for the calculation；values would be $25 \%$ greater using guinea pig MAC．NS $=$ not significant．
Different from control：${ }^{*} P<0.05$ ANOVA，Fisher PLSD test．
Different from 0 slope：$\dagger P<0.02, \ddagger P \leqq 0.0001$ ．
Different from 100\％：$\S P<0.01$ ．

ig． 5 ．The change in glutamative rel
 ariay of or 2 MAC anestholics 0 presence of 1 or 2 MA and $100^{\circ} \mathrm{m} / \mathrm{m}$ ，as ［a］ The lines indicate the response The lines indicate the respon
isstrictly linear function of $\left.\mathrm{Ca}^{2+}\right]$ $d \mathrm{~d}$ higher power of $\left[\mathrm{Ca}^{2+}\right], \hat{\beta}=2$ of three $\mathrm{Ca}^{2+}$ are required tB bind actiration of glutamate releasse，ac
hor＇assumption that ane ishigher at room temperagire n the dose－requirement．Aevert conperativity of $\mathrm{Ca}^{2+}$ in me ${ }^{\vec{\circ}} \mathrm{diat}$ the $10 \%$ depression obsegived a more profound actions 寅 pre leses．
Although association do⿳亠二口犬es nc rulls are consistent with a sch of VGCC by volatile anesêhetic of neurotransmitter rele $\vec{q}_{\text {sen }} \mathrm{s}$ ． diated alterations in oth言 asp ultion have been descrifbed he observed effects．${ }^{40,41}$ Volat thown to interfere with the s ine triphosphatase ${ }^{42}$ as well
howerer，the role of these （ $\mathrm{a}^{2}$ ）and influencing neurot Onal cells remains undefine polarization with $\left[\mathrm{K}^{+}\right]$of 55
tirate $\mathrm{Ca}_{\text {a entry }}$ only through
 $\mathrm{Ca}^{2+}$ istores in neuronal en
desthesiology，V 83，No 3，Sep 19


Fig. 5. The change in glutamate release versus the change in intrasynaptosomal $\left[\mathrm{Ca}^{2+}\right]\left(\left[\mathrm{Ca}^{2+}\right]_{i}\right)$ transient observed in the presence of 1 or 2 MAC anesthetics or with decreased external $\left[\mathrm{Ca}^{2+}\right](600,400,200$, and $100 \mu \mathrm{~m}$, as indicated), where values are expressed as a fraction of the $1.3 \mathrm{~mm} \mathrm{Ca}^{2+}$ control values. The lines indicate the response anticipated if glutamate release is strictly a linear function of $\left[\mathrm{Ca}^{2+}\right](\mathrm{n}=1)$ or if it is a function of a higher power of $\left[\mathrm{Ca}^{2+}\right]_{i}(n=2$ or $n=3)$-that is, if two or three $\mathrm{Ca}^{2+}$ are required to bind to a site responsible for activation of glutamate release, according to equation 3 .
thors' assumption that anesthetic potency (gas phase) is higher at room temperature may have underestimated the dose-requirement. Nevertheless, because of the cooperativity of $\mathrm{Ca}^{2+}$ in mediating release, ${ }^{11,13,32,33}$ even the $10 \%$ depression observed at $\sim 1$ MAC may result in more profound actions on presynaptic transmitter release.
Although association does not indicate causation, the results are consistent with a scheme in which inhibition of VGCC by volatile anesthetics accounts for inhibition of neurotransmitter release. However, anesthetic-mediated alterations in other aspects of cellular $\mathrm{Ca}^{2+}$ regulation have been described that could contribute to the observed effects. ${ }^{40,41}$ Volatile anesthetics have been shown to interfere with the sarcolemmal $\mathrm{Ca}^{2+}$-adenosine triphosphatase ${ }^{42}$ as well as $\mathrm{Na}^{+}-\mathrm{Ca}^{2+}$ exchange, ${ }^{43}$ however, the role of these processes in regulating $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and influencing neurotransmitter release in neuronal cells remains undefined. In synaptosomes, depolarization with $\left[\mathrm{K}^{+}\right]$of 55 mm or less appears to activate Ca entry only through VGCC, and does not activate the $\mathrm{Na}^{+}-\mathrm{Ca}^{2+}$ exchange pathway. ${ }^{44}$ Although $\mathrm{Ca}^{2+}{ }_{i}$ stores in neuronal endoplasmic reticulum or
"calciosomes" may also contribute to changes in neuronal $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}},{ }^{45}$ neurotransmitter vesicle release appears to be mediated by local domains of $\mathrm{Ca}^{2+}$ that has entered near active zones at presynaptic endings. ${ }^{46}$ In pheochromocytoma cells, anesthetics depress depolarization mediated $\mathrm{Ca}^{2+}$ entry and norepinephrine release, but do not decrease $\mathrm{Ca}^{2+}$ release from intracellular stores nor the norepinephrine exocytosis caused by receptor-activated synthesis of inositol trisphosphate ${ }^{31}$ In the current study, no significant change in resting $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ and glutamate release occurred in the presence of halothane, isoflurane or enflurane, suggesting that the anesthetics did not markedly alter the various $\mathrm{Ca}^{2+}$ homeostatic pathways in resting synaptosomes. It is not possible to exclude indirect effects that might decrease the $\mathrm{Ca}^{2+}$ transient, such as anesthetic depression of $\mathrm{Na}^{+}$influx on depolarization, which in turn could reduce $\mathrm{Ca}^{2+}$ entry or enhance $\mathrm{Ca}^{2+}$ elimination by the $\mathrm{Na}^{+}-\mathrm{Ca}^{2+}$ exchanger. However, blockade of Na channels by tetrodotoxin does not inhibit glutamate release mediated by KCl -induced depolarization. ${ }^{47}$

The later phase of the NADPH FI assay contained components resulting from ongoing metabolism of the glutamate initially released and metabolism of glutamate released because of the ongoing analysis. Because these separate components could not be defined with certainty, the ongoing release was not quantitated. The plateau of the $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ was significantly reduced by anesthetics or decreased $\left[\mathrm{Ca}^{2+}\right]_{c}$. However, the physiological relevance of the sustained depolarization and the associated ongoing glutamate release is unclear.
Although glutamate release stimulated by the KCl depolarization represents an artificial situation that imperfectly reflects in situ synaptic behavior, the anesthetic depression of glutamate release is consistent with the reported depression by halothane of the presynaptic glutamate release that generates excitatory postsynaptic potentials in thalamic ${ }^{5}$ and hippocampal CA1 neurons. ${ }^{48}$ It is unclear to what degree a $15-25 \%$ decrease in glutamate release, observed with 1 MAC anesthetic, could by itself interfere with the capacity of neurons to integrate and communicate information. However, when such an action on presynaptic endings is combined with the enhancement of $\gamma$-aminobutyric $\operatorname{acid}_{A^{-}}$ mediated inhibitory activity also caused by the volatile anesthetics, ${ }^{1,2}$ the resulting effect should be more profound. Such combined actions might cause a greater alteration in behavior of individual neurons as well as in entire neural networks, and may also explain the
differences in the quality of the anesthetic state as well as the neurophysiologic behavior produced by the volatile agents when compared with more pure $\gamma$-aminobutyric acid ${ }_{A}$-activating agents (barbiturates and benzodiazepines). ${ }^{49}$

The authors thank Joseph J. Pancrazio, Ph.D., for helpful discussion and suggestions throughout this project.

## References

1. Jones MV, Brooks PA, Harrison NL: Enhancement of $\gamma$-aminobutyric acid-activated $\mathrm{Cl}^{-}$currents in cultured rat hippocampal neurones by three volatile anesthetics. J Physiol (Lond) 449:279-293, 1992
2. Tanelian DL, Kosek P, Mody I, MacIver B: The role of the GABA $A_{A}$ receptor/chloride channel complex in anesthesia. Anesthesiology 78:757-776, 1993
3. Kullmann DM, Martin RL, Redman SJ: Reduction by general anaesthetics of group Ia excitatory postsynaptic potentials and currents in the cat spinal cord. J Physiol (Lond) 412:277-296, 1989
4. Richards CD, Smaje JC: Anaesthetics depress the sensitivity of cortical neurones to L-glutamate. Br J Pharmacol 58:347-357, 1976
5. Sugiyama K, Muteki T, Shimoji K: Halothane-induced hyperpolarization and depression of postsynaptic potentials of guinea pig thalamic neurons in vitro. Brain Res 576:97-103, 1992
6. Nicholls DG, Sihra TS: Synaptosomes possess an exocytotic pool of glutamate. Nature 321:772-773, 1986
7. Nicholls DG, Sihra TS, Sanchez-Prieto J: Calcium-dependent and independent release of glutamate from synaptosomes monitored by continuous fluorometry. J Neurochem 49:50-57, 1987
8. McMahon HT, Nicholls DG: Transmitter glutamate release from isolated nerve terminals: Evidence for biphasic release and triggering by localized $\mathrm{Ca}^{2+}$. J Neurochem 56:86-94, 1991
9. Bowman D, Alexander S, Lodge D: Pharmacological characterisation of the calcium channels coupled to the plateau phase of $\mathrm{KCl}-$ induced intracellular free $\mathrm{Ca}^{2+}$ elevation in chicken and rat synaptosomes. Neuropharmacology 32:1195-1202, 1993
10. Hirning LD, Fox AP, McClesky EW, Olivera BM, Thayer ST, Miller RJ, Tsien RW: Dominant role of N-type $\mathrm{Ca}^{2+}$ channels in evoked release of norepinephrine from sympathetic neurons. Science 239: 57-60, 1988
11. Takahashi T, Momiyama A: Different types of calcium channels mediate central synaptic transmission. Nature 366:156-158, 1993
12. Momiyama A, Takahashi T: Calcium channels responsible for potassium-induced transmitter release at rat cerebellar synapses. J Physiol (Lond) 476:197-202, 1994
13. Wu L-G, Saggau P: Pharmacological identification to two types of presynaptic voltage-dependent calcium channels at CA3-CA1 synapses of the hippocampus. J Neurosci 14:5613-5622, 1944
14. Wheeler DB, Randall A, Tsien RW: Roles of N-type and Q-type $\mathrm{Ca}^{2+}$ channels in supporting hippocampal synaptic transmission. Science 264:107-111, 1994
15. Turner TJ, Adams ME, Dunlap K: Calcium channels coupled to glutamate release identified by omega-Aga-IVA. Science 258:310313, 1992
16. Mintz IM, Venema VJ, Swiderek KM, Lee TD, Bean BP, Adams ME: P-type calcium channels blocked by the spider toxin $\omega$-Aga-IVA. Nature 353:827-829, 1992
17. Lynch C III, Vogel S, Sperelakis N: Halothane depression of myocardial slow action potentials. Anesthesiology 55:360-368, 1981
18. Ikemoto Y, Yatani A, Arimura H, Yoshitake J: Reduction of the slow inward current of isolated rat ventricular cells by thiamylal and halothane. Acta Anaesthesiol Scand 29:583-586, 1985
19. Bosnjak Z, Supan FD, Rusch NJ: The effects of halothane, enflurane, and isoflurane on calcium current in isolated canine ventricular cells. Anesthesiology 74:340-345, 1991
20. Terrar DA, Victory JGG: Isoflurane depresses membrane currents associated with contractions in myocytes isolated from guineapig ventricle. Anesthesiology 69:742-749, 1988
21. Study RE: Isoflurane inhibits multiple voltage-gated calcium currents in hippocampal pyramidal neurons. ANESTHESIOLOGY 81:104116, 1994
22. Hall AC, Lieb WR, Franks NP: Insensitivity of P-type calcium channels to inhalational and intravenous general anesthetics. ANEs. thesiology 81:117-123, 1994
23. Damer CK, Creutz CE: Secretory and synaptic vesicle membrane proteins and their possible roles in regulated exocytosis. Prog Neurobiol 43:511-536, 1994
24. Nicholls DG: Ion channels and the regulation of neurotransmitter glutamate release. Biochem Soc Trans 21:53-58, 1993
25. Grynkiewiez G, Poenie M, Tsien R: A new generation of $\mathrm{Ca}^{2+}$ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440-3450, 1985
26. Nicholls DG: Calcium transport and proton electrochemical potential gradient in mitochodria from gunea-pig cerebral cortex and rat heart. Biochem J 170:511-522, 1978
27. Seifen AB, Kennedy RH, Bray JP, Seifen E: Estimation of minimum alveolar concentrations (MAC) for halothane, enflurane and isoflurane in spontaneously breathing guinea pigs. Lab Anim Sci 39: 579-581, 1989
28. Renzi F, Waud BE: Partition coefficients of volatile anesthetics in Krebs' solution. Anesthesiology 47:62-63, 1977
29. McMahon HT, Nicholls DG: The relationship between cytoplasmic free $\mathrm{Ca}^{2+}$ and the release of glutamate from synaptosomes. Biochem Soc Trans 18:375-377, 1989
30. Kress HG, Eckhardt-Wallasch H, Tas PWL, Koschel K: Volatile anesthetics depress the depolarization-induced cytoplasmic calcium rise in PC 12 cells. FEBS Lett 221:28-32, 1987
31. Kress HG, Müller J, Eisert A, Gilge U, Tas PW, Koschel K: Effects of volatile anesthetics on cytoplasmic $\mathrm{Ca}^{2+}$ signaling and transmitter release in a neural cell line. Anesthesiology 74:309319, 1991
32. Augustine GJ, Charlton MP, Smith SJ: Calcium action in synaptic transmitter action. Annu Rev Neurosci 10:633-653, 1987
33. Mulkeen D, Anwyl R, Rowan M: The effects of external calcium on long-term potentiation in the rat hippocampal slice. Brain Res 447:234-238, 1988
34. Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Südhof TC: Synaptotagmin I: A major $\mathrm{Ca}^{2+}$ sensor for transmitter release at a central synapse. Cell 79:717-727, 1994
35. Stanley EF, Atrakchi AH: Calcium currents recorded from a vertebrate presynaptic nerve terminal are resistant to the dihydropyridine nifedipine. Proc Natl Acad Sci U S A 87:9683-9687, 1990
${ }_{\text {i Y Y , Friedrich }} \mathrm{T}$, Kim M.S. Mikan
 Vmas: Primary structure and functional Dive ${ }^{\mathrm{NN}}$ of a brain calcium channel. J . Turner TJ : 7. Lueb In, , lumatatergic synaptic tran
son is. Nauron $11: 895-902,1993$
36. Regan 1 J, Sah $D W Y$. 38. Regan LJ, Sah DWY, Bean BP: Ca ${ }^{2+}$
pers pipheral neurons: High-threshold curr
rine blockers and $\omega$-conotoxin. Neuron meblocker . Kmievic K, Puil E: Halothane sup yhipocampal slices. CanJ Physiod Phar 40. Pocock $G$, Richards CD: TEC acti indursectetion coupling in bedivine a puermacol $95: 209-217,1988$ 41. Poocock G, Richards C: Celllular xatheia. BrJ Anaesth 66:116-13. 8,19 12. Kosk-Kosicka D, Roszczyy hane $\mathrm{Ca}^{2}$ - Alpase 199
37. Haworth RA, Goknur AB, 离erkof tunge by general anesthetics. Girc Re

## SYNAPTOSOMAL $\mathrm{Ca}^{2+}$ AND GLUTAMATE RELEASE

thane depression of logy 55:360-368
e J: Reduction of the ells by thiamylal 1985
ts of halothane, en solated canine ven.
ses membrane cu olated from guine
tage-gated calcium HESIOLOGY 81:104.
of P-type calcium anesthetics. Aves
ptic vesicle mem d exocytosis. Proge
ion of neurotans 3-58, 1993 generation of $\mathrm{Ca}^{2}$ erties. J Biol Chem

1 electrochemial g cerebral cortes
stimation of min. ne, enflurane and Lab Anim Sci 39:
latile anesthetic
ip between cyto. m synaptosomes.
schel K: Volatile plasmic calcium PW, Koschel K : ${ }^{2+}$ signaling and ology 74:309m action in 5 yn -3-653, 1987 external calcium slice. Brain Res
ahl TW, Stevens r for transmitter
ecorded from ${ }^{2}$ to the dihydro. $83-9687,1990$
36. Mori Y, Friedrich T, Kim M-S, Mikami A, Nakai J, Ruth P, Bosse E, Hofmann F, Flockerzi V, Furuichi T, Mikoshiba K, Imoto K, Tanabe T, Numa S: Primary structure and functional expression from a complementary DNA of a brain calcium channel. Nature 350:398-402, 1991
37. Luebke JI, Dunlap K, Turner TJ: Multiple calcium-channel types control glutamatergic synaptic transmission in the hippocampus. Neuron 11:895-902, 1993
38. Regan LJ, Sah DWY, Bean BP: $\mathrm{Ca}^{2+}$ channels in rat central and peripheral neurons: High-threshold current resistant to dihydropyridine blockers and $\omega$-conotoxin. Neuron 6:269-280, 1991
39. Krnjevic K, Puil E: Halothane suppresses slow inward currents in hippocampal slices. Can J Physiol Pharmacol 66:1570-1575, 1988 40. Pocock G, Richards CD: The action of volatile anesthetics on stimulus-secretion coupling in bovine adrenal chromaffin cells. Br J Pharmacol 95:209-217, 1988
41. Pocock G, Richards C: Cellular mechanisms in general anaesthesia. Br J Anaesth 66:116-128, 1991
42. Kosk-Kosicka D, Roszczynska G: Inhibition of plasma membrane $\mathrm{Ca}^{2+}$-AtPase activity by volatile anesthetics. Anesthesiology 79:774-780, 1993
43. Haworth RA, Goknur AB, Berkoff HA: Inhibition of Na-Ca exchange by general anesthetics. Circ Res 65:1021-1028, 1989
44. Taglialatela M, Di Renzo G, Annunziato L: $\mathrm{Na}^{+} \cdot \mathrm{Ca}^{2+}$ exchange activity in central nerve endings: I. Ionic conditions that discriminate ${ }^{45} \mathrm{Ca}^{2+}$ uptake through the exchanger from that occurring through voltage-operated $\mathrm{Ca}^{2+}$ channels. Mol Pharmacol 38:385-392, 1990
45. Rossier MF, Putney JW Jr: The identity of the calcium-storing, inositol 1,4,5-trisphosphate-sensitive organelle in non-muscle cells: Calciosome, endoplasmic reticulum . . . or both? Trends Neurosci 14:310-314, 1991
46. Llinás R, Sugimori M, Silver RB: Microdomains of high calcium concentration in a presynaptic terminal. Science 256:677679, 1992
47. Romano-Silva MA, Ribeiro-Santos, Ribeiro AM, Gomez MV, Diniz CR, Cordeiro MN, Brammer MJ: Rat cortical synaptosomes have more than one mechanism for $\mathrm{Ca}^{2+}$ entry linked to rapid glutamate release: Studies using Phoneutria nigriventer toxin PhTX2 and potassium depolarization. Biochem J 296:313-319, 1993
48. Perouansky M, Baranov D, Yaari Y: Halothane effects on glutamate receptor-mediated synaptic currents in hippocampal CA1 neurons (abstract). ANESTHESIOLOGY 81:A1474, 1994
49. Kendig JJ, Gibbs LM: The $\mathrm{GABA}_{\mathrm{A}}$ receptor in anesthesia: Isoflurane (abstract). ANesthesiology 81:A1477, 1994


[^0]:    - Research Associate
    $\dagger$ Senior Laboratory Specialist.
    $\ddagger$ Professor
    Received from the Department of Anesthesiology, University of Virginia Health Sciences Center, Charlottesville, Virginia. Submitted for publication December 28, 1994. Accepted for publication May 12, 1995. Supported by National Institutes of Health grant GM3 1144. Presented in part at the American Society of Anesthesiologists Annual Meeting, October 1994, San Francisco, California.

    Address reprint requests to Dr. Lynch: Department of Anesthesiology, Box 238, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908. Address electronic mail to: cl7y@ virginia.edu.

