Ancsthesiology
83：66－76， 1995
C 1995 American Society of Anesthesiologists，Inc

Lippincott－Raven Publishers

Dynamic and Static Cerebral Autoregulation during Isoflurane，Desflurane，and Propofol Anesthesia

Stephan Strebel，M．D．，＊Arthur M．Lam，M．D．，F．R．C．P．C．，\dagger Basil Matta，M．B．，F．R．C．A．，\ddagger Teresa S．Mayberg，M．D．，§ Rune Aaslid，Ph．D．，｜｜David W．Newell，M．D．\＃

Background：Although inhalation anesthetic agents are thought to impair cerebral autoregulation more than intra venous agents，there are few controlled studies in humans．
Methods：In the first group（ $\mathrm{n}=24$ ），dynamic autoregulation was assessed from the response of middle cerebral artery blood flow velocity（Vmca）to a transient step decrease in mean arterial blood pressure（MABP）．The transient hypotension was induced by rapid deflation of thigh cuffs after inflation for 3 min ．In the second group（ $\mathrm{n}=18$ ），static autoregulation was studied by observing Vmca in response to a phenyleph ine－induced increase in MABP．All patients were studied dur ing fentanyl（ $3 \mu \mathrm{~g} \cdot \mathrm{~kg}^{-1} \cdot \mathbf{h}^{-1}$ ）／nitrous oxide（ 70% ）anesthesia， followed by，in a randomized manner，isoflurane，desflurane， or propofol in a low dose（ 0.5 MAC or $100 \mu \mathrm{~g} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1}$ ）and a high dose（ $\mathbf{1 . 5} \mathbf{~ M A C}$ or $200 \mu \mathrm{~g} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1}$ ）．The dynamic rate of regulation（dROR）was assessed from the rate of change in cerebrovascular resistance（MABP／Vmca）with the blood pressure decreases using computer modeling，whereas the static rate of regulation（SROR）was assessed from the change in Vmca with the change in MABP．

Results：Low－dose isoflurane delayed（dROR decreased）but did not reduce the autoregulatory response（sROR intact）．Low－ dose desflurane decreased both dROR and sROR．During 1.5 MAC isoflurane or desflurane，autoregulation was ablated （both dROR and sROR impaired）．Neither dROR nor sROR changed with low－or high－dose propofol．
Conclusions：At 1.5 MAC ，isoflurane and desflurane impaired autoregulation whereas propofol（ $200 \mu \mathrm{~g} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1}$ ）pre－ served it．（Key words：Anesthetics，intravenous：propofol．An

[^0]esthetics，volatile：desflurane；isoflurane．Brain：autoregula－ tion；cerebral blood flow velocity．Equipment：transcranial Doppler ultrasonography．Sympathetic nervous system， pharmacology：phenylephrine．）

CEREBRAL autoregulation minimizes changes in cere－ bral blood flow（CBF）when cerebral perfusion pres－ sure changes．${ }^{1,2}$ The capacity for the human brain to regulate its blood flow independent of blood pressure was first demonstrated by performing repeated static measurements of brain perfusion at different blood pressures，thereby establishing the range of blood pressure in which this mechanism was effective．${ }^{3}$ In clinical and experimental studies，the ability of this physiologic system to maintain relatively constant CBF within a cerebral perfusion pressure of $50-170 \mathrm{mmHg}$ has been documented．${ }^{4,5}$ However，cerebral autoreg－ ulation is a sensitive mechanism and has been observed to be impaired by pathologic process and by general anesthesia．${ }^{6,7}$

There are few controlled studies addressing the in－ fluence of anesthetics on cerebral autoregulation．An imal investigations suggest that volatile anesthetics lead to an impairment of cerebral autoregulation，whereas intravenous anesthetics preserve cerebral autoregula－ tion．${ }^{8-12}$ Most human data available are derived indi－ rectly from studies in which cerebral autoregulation was not the primary study interest．${ }^{13,14}$ There are several reasons for this lack of autoregulatory data in humans． First，assessment of cerebral autoregulation requires measurement of CBF during a period of hypotension or hypertension．Deliberate hypo－or hypertension， however，present ethical and strategic problems in pa－ tients．Second，measurement of CBF often requires bulky equipment and／or radioactive material，it is time－ consuming，and only a limited number of measure－ ments can be obtained．Third，drugs used to induce hypertension and／or hypotension may have direct ef－ fects on cerebral vessels and thus may influence auto－ regulation．${ }^{2}$

We have studied the influence ne，and propofol in a dose－relat yuregulation in healthy patient hought to have less cerebral v ： It least in the cortex）than otl petics at equipotent concentrati pal volatile anesthetic for neuro pathe other hand，the cerebral （iv）of propofol makes this intr： Htactive alternative to is is．flur： procedures in patients witl㱫redt liance or increased cerebsal el
 tric desflurane，a low bloळَّ d－ga crebral effects to isoflura⿳⺈⿴囗十心夊心e，m suitable alternative for use

Vethods and Material

The study was approved $\frac{\stackrel{\circ}{\circ} \% \text { y th }}{}$ igton Human Subjects Retigew dults，ASA physical status $1 \stackrel{⿳ 亠 二 口 阝 亍) ~}{\top} \mathrm{r} 2$ ， arthopedic surgery were remi duded in the study．Writte wined from each subject．P想ient urcardiovascular diseases o气్ه心．who pychoactive drugs were exgेlude fomed in two parts：In the kebbal autoregulation w $\stackrel{\rightharpoonup}{\mathscr{G}} \mathrm{e}$ in ients．In the second，the stetidic a： uregulation were investiga发d in

Determination of Mean 寅iddl Blood Flow Velocity
Both middle cerebral arte ad depth providing the 奇est rough the temporal windo in usi mhy monitor（MCD－TCD7 $\xlongequal[\sim]{\sim} \mathrm{DWW}$ ingen，Germany）．The techniqu la had been described previou hateral probe arrangement strapp rad and locked in position pe
ridele cerebral artery blood fle masurements was used．The shi xerra of the Doppler signals wer

[^1] usion pres. an brain to od pressure eated static rent blood e of blood fective. ${ }^{3}$ In ility of this onstant CBF 170 mmHg ral autoreg. en observed by general
sing the in ulation. An sthetics lead on, whereas autoregula lerived inditoregulation ce are several in humans ion requires hypotension ypertension. blems in $p^{\text {p }}$ ten requires ial, it is time of measure ed to induce ave direct ${ }^{\text {ef }}$ fluence auto

We have studied the influence of isoflurane, desflurane, and propofol in a dose-related manner on cerebral autoregulation in healthy patients. Isoflurane, generally thought to have less cerebral vasodilatory properties (at least in the cortex) than other halogenated anesthetics at equipotent concentrations, is considered the ideal volatile anesthetic for neurosurgical procedures. ${ }^{15}$ On the other hand, the cerebral vasoconstricting property of propofol makes this intravenous anesthetic an attractive alternative to isoflurane for neurosurgical procedures in patients with reduced intracranial compliance or increased cerebral elastance. ${ }^{16}$ Finally, the qualities of the recently introduced inhalation anesthetic desflurane, a low blood-gas solubility and similar cerebral effects to isoflurane, make this anesthetic a suitable alternative for use in neuroanesthesia. ${ }^{17}$

Methods and Materials

The study was approved by the University of Washington Human Subjects Review Committee. Forty-four adults, ASA physical status 1 or 2 , scheduled for elective orthopedic surgery were recruited, and 42 were included in the study. Written informed consent was obtained from each subject. Patients who had neurologic or cardiovascular diseases or who were medicated with psychoactive drugs were excluded. The study was performed in two parts: In the first, dynamic aspects of cerebral autoregulation were investigated in 24 patients. In the second, the static aspects of cerebral autoregulation were investigated in 18 patients.

Determination of Mean Middle Cerebral Artery Blood Flow Velocity

Both middle cerebral arteries (MCA) were insonated at a depth providing the best signal ($45-50 \mathrm{~mm}$) through the temporal window using a TCD ultrasonography monitor (MCD-TCD7, DWL Elektronische, Sipplingen, Germany). The technique used to locate the MCA had been described previously. ${ }^{18}$ A custom-made bilateral probe arrangement strapped onto the patient's head and locked in position permitting continuous middle cerebral artery blood flow velocity (Vmca) measurements was used. The shifts in the frequency spectra of the Doppler signals were converted into ve-

[^2]locity (cm / s) and calculated as mean Vmca. The bilateral Vmca and mean arterial blood pressure (MABP) obtained from direct invasive monitoring were displayed simultaneously on a video screen and recorded using the standard algorithm implemented on the instrument.

Determination of Dynamic Cerebral Autoregulation

The dynamic autoregulation tests were induced by a rapid transient change in MABP to activate the autoregulatory mechanism. ${ }^{19}$ Large cuffs modified with larger tubings were placed around one or both thighs of the patient. The cuffs were inflated to 30 mmHg above the patient's systolic blood pressure. After 3 min of inflation, the cuffs were ($<0.5 \mathrm{~s}$) deflated rapidly. This process was repeated until a decrease of at least 10 mmHg in MABP and a duration of $10-20 \mathrm{~s}$ or longer was achieved.
As a method of determining the dynamic rate of regulation (dROR), the instrument used a special algorithm with several refinements compared to the one used by Aaslid et al. ${ }^{19,20, * *}$ This algorithm was developed to study autoregulation during microgravity experiments. The new algorithm compensated for the lack of consistent step change in MABP during microgravity by using a mathematical model and simple parameter estimation techniques.

The details of the mathematical model are outlined in the appendix. This method examines how quickly Vmca returns to baseline while the MABP remains lowered for a short period. The mathematical model fits the change in cerebral vascular resistance as derived from MABP/Vmca to a family of curves for the best fit. The descriptor of dynamic autoregulation, dROR, describes the rate of restoration of Vmca ($\mathrm{m} \% / \mathrm{s}$) with respect to the decrease in MABP. Previous studies by Aaslid et al. showed that the autoregulation process normally is complete within 5 s . Thus, the normal dROR is $100 \% / 5 \mathrm{~s}=20 \% / \mathrm{s}(0.2 / \mathrm{s})$. All data, MABP, and the Vmca during the autoregulation tests were stored on the hard disk of the computer for subsequent analysis.

Determination of Static Cerebral Autoregulation

The static autoregulation was tested with an increase of 20 mmHg in MABP by infusion of phenylephrine. The initial (i) and final (f) Vmca and MABP were recorded for subsequent calculation of cerebrovascular resistance $(\mathrm{CVR}=\mathrm{MABP} / \mathrm{Vmca})$ and analysis. To avoid
overshoot, MABP was increased gradually with a slow infusion of phenylephrine. Analogous to the dROR for the dynamic autoregulatory test, an index of static autoregulation (although not a rate of regulation), static rate of regulation (sROR), was defined, and calculated from the MABP and Vmca values as follows:

$$
\operatorname{sROR}(\%)=100(\% \Delta \mathrm{CVR} \div \% \Delta \mathrm{MABP})
$$

where $\triangle C V R=$ change in $C V R$, and $\triangle \mathrm{MABP}=$ change in MABP.
Alternatively, sROR can be calculated as:
sROR $(\%)=100([i] V m c a /[f] V \mathrm{Vmca}$

- [i] MABP/[f]MABP/(1 - [i]MABP//ff MABP).

Accordingly, an sROR of 1 or 100% implies a Vmca independent of MABP or perfect cerebral autoregulation; whereas, in a purely passive, nonregulating cerebrovascular bed, Vmca varies proportionally with MABP resulting in an SROR of 0 .

Experimental Protocol

In both study parts, the patients were randomly allocated to one of three groups: isoflurane, desflurane, or propofol anesthesia. Patients were not premedicated. Physiologic variables monitored included invasive blood pressure, electrocardiogram, heart rate, end-tidal measurement of carbon dioxide and volatile anesthetics, and pulse oximetry (Spacelabs, Redmond, WA). The end-tidal concentration of desflurane was not measured; the inspired concentration from a regularly calibrated vaporizer was used instead. This was considered acceptable in view of the low blood-gas solubility. Anesthesia was induced with $4-6 \mathrm{mg} / \mathrm{kg}$ thiopental, 3 $\mu \mathrm{g} / \mathrm{kg}$ fentanyl, and $0.1 \mathrm{mg} / \mathrm{kg}$ vecuronium. After the trachea was intubated, the lungs were mechanically ventilated to achieve normocapnia ($\mathrm{Pa}_{\mathrm{CO}_{2}}$ of $38-40$ mmHg). Anesthesia was maintained with $70 \% \mathrm{~N}_{2} \mathrm{O}$ in oxygen and a fentanyl infusion of $3 \mu \mathrm{~g} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~h}^{-1}$. When necessary, an additional bolus of fentanyl was administered to maintain an adequate depth of anesthesia as judged by clinical signs, i.e., presence of tachycardia and/or hypertension. Body temperature was maintained higher than $36.0^{\circ} \mathrm{C}$ in all patients using warmed intravenous infusion and thermal blankets. Maintenance infusion of Plasma-Lyte (Baxter, Deerfield, IL) was given at $150 \mathrm{ml} / \mathrm{h}$ after an initial bolus of $1,000 \mathrm{ml}$.
Cerebral autoregulatory tests were performed three times in each patient. Initially, during stable fentanyl/ nitrous oxide anesthesia (a minimum of 15-20 min),
baseline measurements were obtained. Next, the patient was randomly allocated to receive either low- or high-dose isoflurane, desflurane, or propofol, and the measurements were repeated. Final measurements were made during the same allocated anesthetic regimen but equilibrated to a different dose (i.e., low dose reequilibrated to high dose or high dose reequilibrated to low dose). Low dose was defined as 0.5 MAC of volatile anesthetic or $100 \mu \mathrm{~g} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1}$ of propofol infusion after a bolus of $1.5 \mathrm{mg} / \mathrm{kg}$, and high dose as 1.5 MAC of volatile anesthetic or $200 \mu \mathrm{~g} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1}$ of propofol. The intravenous bolus of propofol was given once, just before the first infusion of propofol. The minimum alveolar concentration of isoflurane was considered to be $1.15 \%,{ }^{21}$ and the minimum alveolar concentration of desflurane was considered to be $7.3 \%{ }^{22}$ For the purpose of this study, the contribution of nitrous oxide to minimum alveolar concentration was ignored. Cerebral autoregulatory tests were not performed until at least 15 min of steady-state unchanged end-tidal isoflurane concentration or 20 min of unchanged inspired desflurane concentration had been reached (or 30 min after propofol infusion). During high-dose anesthetics, MABP was maintained within $5-10 \%$ of the baseline value during fentanyl/nitrous oxide anesthesia using a phenylephrine infusion.

Analysis of Data

Results from bilateral recordings were averaged before statistical analysis. All results are expressed as mean \pm SE when not otherwise indicated. A two-way analysis of variance for repeated measures was used for intergroup comparisons. Intragroup comparisons were evaluated using one-way analysis of variance for repeated measures. When significance was found, Fisher's protected least significant difference test was used as a post boc multiple comparison procedure. A P value of less than 0.05 was considered statistically significant.

Results

Demographic data of the three patient groups studied in both autoregulatory tests are summarized in table 1.

Two patients demonstrating no cerebral vascular autoregulation during baseline tests were replaced. In both patients, subsequent review of their medical history revealed a mild head injury with concussion, which excluded them from participation in the study. There were no complications from the study. No patient re-
xt, the p_{2} her low. of ol, and the ments were egimen but ose reequi. librated to of volatile ol infusion as 1.5 MAC n^{-1} of pro. was given pofol. The urane was im alveolar red to be ontribution acentration s were no ly-state unor 20 min tration had sion). Dur ined within nyl/nitrous fusion.
veraged be sed as mean vay analysis d for inter isons were ince for re ind, Fisher's as used as ${ }^{2}$ A P value of significant.
pups studied d in table 1 . vascular aut replaced. In medical his ssion, which study. There o patient re

Table 1. Characteristics of Patients Studied during Cerebral Autoregulatory Tests

	Isoflurane		Desflurane		Propofol	
	Dynamic ($\mathrm{n}=8$)	Static ($\mathrm{n}=6$)	Dynamic ($\mathrm{n}=8$)	Static ($\mathrm{n}=6$)	Dynamic ($\mathrm{n}=8$)	Static ($\mathrm{n}=6$)
Age (yr)	30 ± 11	37 ± 4	35 ± 16	31 ± 7	33 ± 16	32 ± 9
Weight (kg)	78 ± 19	73 ± 7	78 ± 8	70 ± 20	72 ± 19	91 ± 15
Sex (M/F)	5/3	5/1	7/1	4/2	4/4	6/0

Values are mean \pm SD. There were no intergroup differences.
quired blood transfusion before the completion of the study, and there was no significant change in hematocrit during the study.

Dynamic Autoregulatory Tests

There was no significant change in heart rate, MABP, and $\mathrm{Pa}_{\mathrm{CO}_{2}}$ during the study procedure. Changes in heart rate, MABP, Vmca, and $\mathrm{Pa}_{\mathrm{CO}_{2}}$ are presented in table 2. CBF velocity decreased significantly during low- and high-dose propofol infusion ($P<0.01$) compared to baseline (fentanyl/nitrous oxide anesthesia) and was significantly lower $(P<0.001)$ compared to both volatile anesthetics. The dose-related increase in Vmca

Table 2. Physiologic Variables during Dynamic Cerebral Autoregulatory Tests

	Isoflurane $(\mathrm{n}=8)$	Desflurane $(\mathrm{n}=8)$	Propofol $(\mathrm{n}=8)$
Baseline			
MABP (mmHg)	89 ± 2	83 ± 3	92 ± 6
$\mathrm{~Pa}_{\mathrm{CO}_{2}(\mathrm{mmHg})}$	38 ± 1	38 ± 1	39 ± 1
Vmca $\left(\mathrm{cm} \cdot \mathrm{s}^{-1}\right)$	68 ± 6	67 ± 7	65 ± 7
Decrease in MABP (mmHg)	19 ± 2	19 ± 1	17 ± 1
Low dose			
MABP (mmHg)	89 ± 4	86 ± 7	83 ± 4
$\mathrm{~Pa}_{\mathrm{co}}^{2}$	(mmHg)	36 ± 2	37 ± 1
Vmca $\left(\mathrm{cm} \cdot \mathrm{s}^{-1}\right)$	61 ± 3	64 ± 9	48 ± 1
Decrease in MABP (mmHg)	21 ± 1	17 ± 1	16 ± 2
High dose			
MABP (mmHg)	86 ± 5	83 ± 5	82 ± 5
Paco (mmHg)	37 ± 1	38 ± 1	37 ± 1
Vmca $\left(\mathrm{cm} \cdot \mathrm{s}^{-1}\right)$	75 ± 10	74 ± 9	$39 \pm 4^{\star} \dagger$
Decrease in MABP (mmHg)	17 ± 2	18 ± 1	17 ± 1

Values are mean \pm SE. Baseline $=$ nitrous oxide + fentanyl; Low dose $=0.5$ MAC for volatile anesthetics, $100 \mu \mathrm{~g} \cdot \mathrm{~kg} \cdot \mathrm{~min}^{-1}$ for propofol; High dose $=1.5$ MAC for volatile anesthetics, $200 \mu \mathrm{~g} \cdot \mathrm{~kg} \cdot \mathrm{~min}^{-1}$ for propofol; HR = heart rate; $\mathrm{MABP}=$ mean arterial blood pressure; $\mathrm{Pa}_{\mathrm{cO}^{2}}=$ arterial $\mathrm{CO}_{2} ; \mathrm{Vmca}=$ mean cerebral blood flow velocity in the middle cerebral artery.

* Significantly different versus baseline, $P<0.01$.
\dagger Significantly different versus the other two anesthetics, $P<0.001$.
with volatile anesthetics did not reach statistical significance. Illustrative recordings demonstrating preservation and impairment of dynamic autoregulation are displayed in figure 1 . Deflation of the thigh cuffs resulted in an abrupt decrease of MABP and Vmca. During fentanyl/nitrous oxide anesthesia, Vmca returned rapidly to baseline level, whereas MABP remained low for approximately $10-20 \mathrm{~s}$ before it was gradually restored almost to the control value. There were no differences in baseline dROR among the three groups, and the dROR was similar to reported values for awake individuals. ${ }^{19}$ The maximum decrease in MABP with cuff deflations was similar between and within groups. Both isoflurane and desflurane produce a dose-related delay in the return of Vmca to baseline with a significant reduction of dROR, whereas propofol had no effect

Fig. 1. Recordings from the study of dynamic autoregulation. (Top) The abrupt change in mean arterial blood pressure with cuff deflation. (Bottom) The corresponding change in right and left middle cerebral artery blood flow velocity. (Left) Normal dynamic autoregulation. (Right) Abolished autoregulation. The computer modeling for calculation of the dynamic rate of regulation is depicted by the dark lines on the bottom graphs.
(fig. 2). Compared to baseline, the decrease in dROR at low dose was significant $(P<0.05)$ for isoflurane and highly significant for desflurane ($P<0.001$), whereas at high dose, the decrease in dROR was highly significant for both anesthetics ($P<0.001$).

Static Autoregulatory Tests

No significant changes in heart rate, MABP, and $\mathrm{Pa}_{\mathrm{CO}_{2}}$ occurred between baseline and increased anesthetic doses (table 3). All Vmca data reported are values recorded before elevation of MABP. The dose-related decrease in CBF velocity during propofol anesthesia was similar to the changes observed in the dynamic autoregulatory study in part one. There was no change in CBF velocity during low-dose inhaled anesthetics, but the flow velocity during high-dose desflurane anesthesia was significantly higher than baseline ($P<$ 0.001).

The illustrative recordings for a static autoregulation testing demonstrating preserved and abolished autoregulation, respectively, are shown in figure 3 . During fentanyl/nitrous oxide anesthesia, the increase in MABP resulted in little or no change in Vmca, and no difference in sROR among the three study groups (fig. 4). In contrast to the observations made during the dynamic autoregulatory test, low-dose isoflurane and desflurane

Fig. 2. Dynamic rate of regulation (dROR) during BASELINE (fentanyl + nitrous oxide), LOW DOSE (0.5 MAC for volatile anesthetic, $100 \mu \mathrm{~g} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1}$ for propofol), and HIGH DOSE (1.5 MAC for volatile anesthetic, $200 \mu \mathrm{~g} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1}$ for propofol) anesthetics. Values are mean \pm SE. ${ }^{*} P>0.05$ versus baseline. *P<0.001 versus baseline. Values of dROR observed in all three groups during fentanyl/nitrous oxide anesthetic were similar to previously awake values. ${ }^{19}$ Both volatile anesthetics decreased dROR in a dose-related manner, with almost complete absence of dynamic autoregulation during 1.5 MAC. In contrast, propofol had no significant effect on dROR with either dose.

Table 3. Physiologic Parameters during Static Cerebral Autoregulatory Tests

	Isoflurane $(n=6)$	Desflurane $(n=6)$	Propofol $(n=6)$
Baseline			
MABP (mmHg)	80 ± 6	87 ± 6	75 ± 2
$\mathrm{Pa}_{\mathrm{CO}_{2}}(\mathrm{mmHg})$	39 ± 1	38 ± 2	37 ± 1
Vmca ($\mathrm{cm} \cdot \mathrm{s}^{-1}$)	61 ± 10	66 ± 9	47 ± 3
Low dose			
MABP (mmHg)	81 ± 2	86 ± 6	75 ± 2
$\mathrm{Pa}_{\mathrm{CO}_{2}}(\mathrm{mmHg})$	39 ± 1	37 ± 1	36 ± 1
Vmca ($\mathrm{cm} \cdot \mathrm{s}^{-1}$)	69 ± 12	72 ± 10	$37 \pm 5^{*} \dagger$
High dose			
MABP (mmHg)	80 ± 4	89 ± 6	76 ± 2
$\mathrm{Pa}_{\mathrm{CO}_{2}}(\mathrm{mmHg})$	38 ± 1	35 ± 1	36 ± 1
Vmca ($\mathrm{cm} \cdot \mathrm{s}^{-1}$)	71 ± 15	$84 \pm 10^{*}$	$33 \pm 3^{*} \cdot \dagger$

Values are mean $\pm \mathrm{SE}$. Baseline $=$ nitrous oxide + fentanyl; Low dose $=0.5$ MAC for volatile anesthetics, $100 \mu \mathrm{~g} \cdot \mathrm{~kg} \cdot \mathrm{~min}^{-1}$ for propofol; High dose $=1.5$ MAC for volatile anesthetics, $200 \mu \mathrm{~g} \cdot \mathrm{~kg} \cdot \mathrm{~min}^{-1}$ for propofol; $\mathrm{HR}=$ heart rate; MABP = mean arterial blood pressure; $\mathrm{Pa}_{\mathrm{CO}_{2}}=$ arterial $\mathrm{CO}_{2} ; \mathrm{Vmca}=$ mean cerebral blood flow velocity in the middle cerebral artery.

* Significantly different versus baseline (for high dose desflurane and propofol Vmca $P<0.001$, low dose propofol Vmca $P<0.01$).
\dagger Significantly different versus the other two anesthetics (low dose propofol Vmca vs. isoflurane and desflurane $P<0.01$, high dose propofol Vmca vs. isoflurane and desflurane $P<0.001$).
caused only a small decrease in sROR, which reached statistical significance only in the desflurane group. However, during 1.5 MAC isoflurane and desflurane, the static autoregulatory response was impaired, as indicated by a corresponding increase in Vmca with the increase in MABP and a significantly reduced sROR (P <0.001; fig. 4). During propofol anesthesia, Vmca did not change with the increase in MABP at either low dose or high dose, resulting in no significant sROR changes throughout the study (fig. 4).

Discussion

We demonstrated in this study that anesthetic agents may influence the cerebral autoregulatory capacity; inhaled agents such as isoflurane and desflurane preserve autoregulation at 0.5 MAC but not 1.5 MAC , whereas the intravenous anesthetic propofol had no effect on autoregulation.
The cerebral autoregulatory mechanism is likely to be a homeostatic control system based on feedback. ${ }^{23}$ Such systems can be characterized by both dynamic and static performance criteria. For dynamic testing, it is necessary to induce a rapid change in MABP so that

Wh. Recordings of the study of stat 7. ana aterial blood pressure (MABP) an
aldery midle cerebral artery bloo Hereal middle cerebral artery bloo Wrelocity with infusion of pheny prine are shown. (Lefi) Normal stat anequlation with unchanged Vm
anP increase. (Right) In pired autoregulation.
de ransient response can hnges in MABP are too slow ị to be perfore, we employed a digect dlowering the MABP. In corger trast, biliry to correct for a distu $\stackrel{\stackrel{3}{3}}{\substack{3}} \mathrm{~b}$ banc tednamics have settled. Fo ${ }^{\frac{0}{2}}$ such where a relatively prolonge离 cha upratical clinical testing, $\stackrel{\stackrel{\rightharpoonup}{D}}{0} \mathrm{O}$ ly treadministration of a druほ్ witl

 exied by repeated static mea@्<्ठ indicator methods have been
 Low dose rile anesthetic, 100 nitrous oxide), LOW $\operatorname{Cose}_{\mathrm{E}}\left(1.5 \mathrm{MAC}, 100 \mu \mathrm{~g} \cdot \mathbf{k g}^{-1} \cdot \mathrm{~min}^{-1}\right.$ fo (opofol) anesthet volatile anesthetic, Hitine, " $P<0.001$. Values are mear Hesthesia 85% and 95% during baseline. bedesflumd there werg baseline aligh doses of sulted in a slight dec.

Fig. 3. Recordings of the study of static autoregulation. simultaneous change in mean arterial blood pressure (MABP) and bilateral middle cerebral artery blood flow velocity with infusion of phenylephrine are shown. (Left) Normal static autoregulation with unchanged vimca during the MABP increase. (Right) Impaired autoregulation.

the transient response can be seen. Drug-induced changes in MABP are too slow to be used for such tests; therefore, we employed a direct mechanical method of lowering the MABP. In contrast, for a static test, the ability to correct for a disturbance is measured after the dynamics have settled. For such a test, it is necessary to have a relatively prolonged change in MABP, which in practical clinical testing, only can be achieved by the administration of a drug without direct cerebral effects, such as phenylephrine.

Cerebral autoregulation traditionally has been assessed by repeated static measurements of CBF. Various indicator methods have been used to obtain these mea-

Fig. 4. Index of static rate of regulation (sROR) during BASELINE (fentanyl + nitrous oxide), LOW DOSE (0.5 MAC for volatile anesthetic, $100 \mu \mathrm{~g} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1}$ for propofol), and HIGH DOSE (1.5 MAC for volatile anesthetic, $200 \mu \mathrm{~g} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1}$ for propofol) anesthetics. Values are mean $\pm \mathrm{SE}$. ${ }^{*} \boldsymbol{P}<0.05$ versus baseline. ${ }^{* *} P<0.001$ versus baseline. Values of sROR ranged between 85% and 95% during baseline fentanyl/nitrous oxide anesthesia, and there were no intergroup differences. Lowdose desflurane resulted in a slight decrease in SROR, whereas in high doses of both isoflurane and desflurane significantly decreased sROR.
surements at different blood pressure levels. ${ }^{1,24}$ The methodology and techniques, because of the poor temporal resolution, can measure static changes only after a steady-state has been achieved, usually in minutes rather than seconds. Cerebral autoregulation, however, is a complex process composed of several physiologic mechanisms operating possibly at different rates. ${ }^{25-27}$ Observations on the reaction of the CBF to different levels of perfusion pressure suggest that pressure-induced changes of CVR consist of two components; a rapid response sensitive to pressure pulsations followed by a slow response to changes in mean pressure. ${ }^{28}$ There is considerable experimental evidence of the initial fast component of cerebral autoregulation. ${ }^{28-31}$ In cats, 23 s of hypotension had been found sufficient to initiate compensatory pial vasodilation, and within 3-7 s, a 10% increase in vessel diameter was observed. ${ }^{29}$ In rabbits, an autoregulatory plateau was reached $3-13 \mathrm{~s}$ after hypotension. ${ }^{30}$ In humans, intraoperative CBF measurements with electromagnetic flowmeters placed round the intracranial carotid artery recorded an almost immediate compensatory vasodilation from collateral circulation after proximal carotid artery occlusion. ${ }^{31}$ In addition, a rapid autoregulatory response to sudden hypotension was noted, with reestablishment of flow in less than $5 \mathrm{~s} .^{32}$ Transcranial Doppler ultrasonography studies have confirmed the presence of these fast autoregulatory responses; CBF velocity as an index of CBF was fully restored to the baseline value as early as after $5-8 \mathrm{~s}$ after a step decrease in MABP. ${ }^{19}$ Conventional CBF measurement techniques with the inability to record instantaneous changes probably would miss these initial fast components and, therefore, at best can be characterized as an incomplete assessment of the cerebral autoregulatory response. Studies with TCD ul-
trasonography allow continuous measurement of the autoregulatory response and，therefore，provide insight into both the rapid and the delayed components of ce－ rebral autoregulatory mechanisms．On the other hand， with the short duration of hypotension achieved in our dynamic testing，a delayed but nevertheless intact au－ toregulation would be interpreted as impaired during dynamic testing but intact during static testing．Thus the results of dynamic and static testing complement each other
Before discussing our results in detail，several meth－ odologic aspects of this approach to test cerebral au－ toregulation need to be addressed：（1）TCD ultraso－ nography provides a rapid and noninvasive assessment of cerebral hemodynamics in which flow velocity in large intracranial vessels can be measured with ultra－ sound signals transmitted through the skull．${ }^{33}$ However， TCD ultrasonography cannot provide absolute measures of CBF but rather offers an accurate assessment of rel－ ative changes in CBF．${ }^{34}$ Flow velocity is proportional to flow provided the diameter of the vessel does not change and，therefore，can serve as a continuous index of blood flow through the insonated vessel．（2）The validity of the assumption that CBF is proportional to Vmea depends on the premise that the cross－sectional area of the MCA does not significantly change during induced MABP changes．Studies using TCD ultrasonog－ raphy for dynamic autoregulation analysis demon－ strated no difference in percentage change between Vmca and CBF（based on simultaneous venous outflow or internal carotid artery blood flow）during step－wise changes in MABP．${ }^{20,35}$ Additionally，these findings are consistent with comparison studies using electromag－ netic flowmetry as a reference in which a close linear correlation was found between flow velocity and vol－ ume flow during moderate changes in arterial blood pressure．${ }^{36}$ Direct observation of the MCA during cra－ niotomy has indicated that the diameter of this artery changes only slightly（2．5\％）during moderate MABP changes，a degree of change that probably will not cause an appreciable discrepancy between velocity and flow for most TCD applications．${ }^{37}$（3）The ideal stim－ ulus to test cerebral autoregulation is with an abrupt change in cerebral perfusion pressure and not MABP However，in subjects without intracranial pathology， changes in MABP should approximate changes in ce－ rebral perfusion pressure．Similarly，in our study， changes in jugular or central venous pressure with cuff deflation are ignored．This is considered acceptable because the potential decrease in venous pressure is
likely too small to affect the vasodilating stimulus．The decrease in MABP should be maintained during the en－ tire interval in which autoregulation study takes place MABP after deflation of the thigh cuffs in our studies was lowered for only $10-20 \mathrm{~s}$ before it began to return to baseline．During normocapnia，however，this period of hypotension was observed to be sufficiently long enough for the brain to autoregulate with full resto－ ration of Vmca to baseline．${ }^{19,20}$ The built－in software of our TCD equipment accordingly analyzed the period （from 1 to 10 s after the decrease in blood pressure） during which the step decrease in MABP occurs．（4） The relatively carbon dioxide－rich blood from the legs after cuff deflation，with its potential influence on the cerebrovascular tone，is a possible source of error in our experimental design．However，it is estimated that the transport time from the legs to the cerebrovascular system is approximately 15 s ，by which time the data for analysis would have been collected．${ }^{19}$ The duration of ischemia（ 3 min ）is insufficient to raise the systemic carbon dioxide after reperfusion．（5）Various authors have given different criteria to assess cerebral autoreg． ulation．In almost all cases，the ability of the brain to autoregulate CBF was qualified as being either absent or present based on an arbitrarily defined value of the equation $\Delta \mathrm{CBF} / \Delta \mathrm{MABP}$ ．Cerebral autoregulation， however，probably is not an all－or－none phenomenon and can exhibit incremental impairments in both mag． nitude and rate of response．The key issue in autoreg－ ulation is whether CVR changes in response to pressure changes．To this end，we quantify the dynamic cerebral autoregulation with the descriptor of dROR using a new approach based on a mathematical model and pa－ rameter estimation．In initial trials，we found that the data from this test could not be used to estimate all three parameters in the model independently because the duration of the decrease in MABP typically was only $10-20 \mathrm{~s}$ ．Therefore，only the first 10 s of the response were used，and we made a selection of model param－ eters corresponding to a relevant physiologic selection of dRORs．Many other such selections will give rea－ sonably good predictions of the autoregulatory re－ sponse．However，only one dROR will match the ob－ served response，and this is the reason we selected the dROR to express the dynamic characteristics and not the parameters themselves．A decreased dROR can re－ sult from a delayed（because the hypotension is not sustained）or an abolished autoregulatory response． Correspondingly，we defined the descriptor of static cerebral autoregulation sROR as $\% \Delta C V R / \% \Delta M A B P$ ．Al－
wough we only used two points（a
forend of a $20-\mathrm{mm}$
hat frend of $220-\mathrm{mmHg}$ increase in sROR，the continuou
verifies the presence sical stimulation gity of surgical stimulation ponding fluctuation in Vmca．Th phy may provide a more accura eno derived paration than dg con nic time－related chars $\frac{\xi_{5}^{\circ}}{0}$ llow
 miminherent in these a marup and in these derizatio weyp and intergroup coinpar
 dstuc confol values weik whitrous oxide anesthes． Hifr control as dROR angid $s R$ ardamkik values of 0.2 and 1 ． Ind 4 ）
anstaic autoregulatory re⿳⿵人一⿲口口口欠刂ults mutrisifurane in differentṑnim：
 timan high dose．In dog ${ }^{\underline{⿳}}$ whenreported to be mairifaine inof MaC but not 2 MA憲 iso inlr results have been refeemplec dauncergulation measured dîn iso mbitind different blood pegessur yarimant dose－related increcèse ir Irghaion at 1 MAC in medidbra nexandsubcortex．${ }^{11}$ The 娄ffer ximulurne and propofol on cer Whare been demonstrateg̊ in mildere，no autoregulatore data Hitevills sugest that low－Gose
icreral autoregulatory $=$ capa riperent dose of isoflurante． metertappear to be similar betw
Thential criticisms of our study ＊o femanyl／nitrous oxide－anes mantol group，and the choic Mivinhluence cererb opal autoreg morla autreegulation was found Thralautiore animals anesthet Weleriteredegulation was wimhet
nulus. The ing the en. akes place. pur studies n to return this period ently long full resto. n software the period 1 pressure) ccurs. (4) m the legs nce on the of error in imated that orovascular ne the data ne duration 1e systemic bus authors cal autoreg. he brain to ther absent alue of the regulation, henomenon a both mag. in autoreg. to pressure aic cerebral OR using a del and pa ind that the estimate all tly because lly was only he response odel param. ic selection ill give rea gulatory re atch the $o b$ selected the tics and not ROR can re nsion is not ry response. otor of static $\% \triangle M A B P$.
though we only used two points (at the beginning and the end of a $20-\mathrm{mmHg}$ increase in MABP) for the computation of sROR, the continuous measurement of Vmca verifies the presence of a relatively steady-state of surgical stimulation, because fluctuation in the intensity of surgical stimulation might lead to corresponding fluctuation in Vmca. Thus TCD ultrasonography may provide a more accurate assessment of cerebral autoregulation than do conventional methods. The two derived parameters allow us to assess the dynamic time-related change and the static response of the cerebral autoregulatory mechanism. The normalization inherent in these derivations allow an accurate intragroup and intergroup comparison independent of the baseline Vmca variability. (6) We did not study cerebral autoregulation while the subjects were awake, thus true control values were lacking. However, fentanyl/nitrous oxide anesthesia is an acceptable substitute for control as dROR and sROR approached expected awake values of 0.2 and 1.0 , respectively (figs 2 and 4).

Our static autoregulatory results agree with previous data for isoflurane in different animal models, indicating preserved autoregulation at low dose and lost autoreg. ulation at high dose. In dogs, cerebral autoregulation has been reported to be maintained during administration of 1 MAC but not 2 MAC isoflurane anesthesia. ${ }^{10}$ Similar results have been reported in humans. ${ }^{38}$ Cerebral autoregulation measured in isoflurane-anesthetized rats within different blood pressure ranges produced a significant dose-related increase in CBF and loss of autoregulation at 1 MAC in midbrain and at 2 MAC in cortex and subcortex. ${ }^{11}$ The differential effects of highdose isoflurane and propofol on cerebral autoregulation also have been demonstrated in baboons. ${ }^{9.12}$ To our knowledge, no autoregulatory data exist for desflurane. Our results suggest that low-dose desflurane may affect the cerebral autoregulatory capacity more than an equipotent dose of isoflurane. The overall results, however, appear to be similar between the two inhaled agents.
Potential criticisms of our study design include the use of fentanyl/nitrous oxide-anesthetized patients as the control group, and the choice of the anesthetic doses. Nitrous oxide and opioids, however, are assumed not to influence cerebral autoregulation. In humans, cerebral autoregulation was found to be preserved during $70 \% \mathrm{~N}_{2} \mathrm{O} .{ }^{7}$ In animals anesthetized with alfentanil, cerebral autoregulation was similar to that in animals anesthetized without opioids. ${ }^{39}$ As mentioned above,
our dynamic autoregulatory results at baseline compare favorably with results found in awake subjects, ${ }^{19}$ and the static autoregulatory results are consistent with normal values.

Although blood levels of fentanyl and propofol were not drawn, we had assumed that the infusion regimen would result in relatively steady-state levels. Because our results indicate that neither fentanyl nor propofol affects cerebral autoregulation, the maintenance of an absolute steady-state is not imperative. The use of the vasoconstrictive drug phenylephrine to induce MABP changes in the static autoregulatory tests might be questioned. Although vasopressor agents generally are considered to have limited vasoconstrictive effect on the cerebral vasculature, their effect on intracerebral dynamics is not consistent, although the difference may be due to in vivo ${ }^{40}$ versus in vitro ${ }^{41}$ experimental settings. In animal experiments, cerebral vasoconstriction after phenylephrine infusion has been demonstrated. ${ }^{42.43}$ However, our findings demonstrated no relevant cerebrovascular effect of phenylephrine. Any cerebral vasoconstrictive effect would have reduced Vmca unless the cross-sectional area of the Vmca is reduced by a proportional amount. However, direct intraoperative measurement of Vmca diameter has reported a negligible effect from phenylephrine. ${ }^{37}$ The fact that an equivalent increase in MABP induced with phenylephrine caused no change in Vmca during propofol anesthesia and an increase in Vmca during volatile anesthetics (with 1.5 MAC) suggests that a relevant cerebral vasoconstrictive effect of phenylephrine does not exist, and the results reflect autoregulation changes.

It is possible that dynamic and static autoregulation, as tested in the current study, using different stimuli (transient hypotension $v s$ s static hypertension) and different limbs of the autoregulatory curves (decrease $v s$. increase in MABP), do not measure the same regulatory mechanism. This possibility is not supported by the reasonably good concordance of results observed. However, the difference observed between dynamic and static autoregulation during 0.5 MAC inhaled anesthetic suggests that the dynamic process is impaired before the static process.
Our data provide no insight into the mechanisms by which anesthetics influence cerebral autoregulation. Cerebral autoregulation is known to be easily influenced by physiologically and pharmacologically induced changes in vasomotor tone: cerebral autoregulation was found to be perturbed during hypercapnia and restored after normalization of $\mathrm{Pa}_{\mathrm{CO}_{2}} \cdot{ }^{44}$ Because all
volatile anesthetics have some cerebral vasodilating properties（in high doses）in contrast to intravenous anesthetics，which generally have vasoconstrictive ca－ pabilities（with the exception of ketamine），this dif ference in vasomotor tone might explain the impaired autoregulation during high－dose volatile anesthesia． Our data do not reveal which of several proposed mechanisms of cerebral autoregulation may be opera－ tive．However，the similarity in the time response be－ tween metabolic mediated responses and autoregula－ tory responses suggests a metabolic mechanism．
In summary，cerebral autoregulation is significantly influenced by anesthetics．During 0.5 MAC isoflurane and desflurane anesthesia，dynamic cerebral autoreg－ ulation is reduced，and static autoregulation is only minimally affected，suggesting that the autoregulatory process is delayed but preserved；whereas，during 1.5 MAC，cerebral autoregulation is absent．In contrast， during propofol anesthesia，cerebral autoregulation is not affected．Although we studied only neurologically normal patients，these findings may have relevant clin－ ical implications in patients with neurologic disorders．

The authors thank S．Bernischke，M．D．，B．Henley，M．D．，D．Smith， M．D．，and M．Swiontkowski，M．D．，for permission to study their pa－ tients，and Terri Mathisen for technical assistance．The authors also thank Dieter Denner，DWL Elektronische Systeme Gmbh，Germany， for the specially designed TCD probe used in the study．

References

1．Paulson OB，Strandgaard S，Edvinsson L：Cerebral autoregulation Cerebrovasc Brain Metab Rev 2：161－192， 1990
2．Strandgaard S，Paulson OB：Cerebral autoregulation．Stroke 15： 413－416， 1984
3．Lassen NA：Cerebral blood flow and oxygen consumption in man．Physiol Rev 39：183－238， 1959
4．Harper AM：Autoregulation of cerebral blood flow：Influence of arterial blood pressure on the blood flow through the cerebral cortex．J Neurol Neurosurg Psychiat 29：398－403， 1966
5．Strandgaard S，MacKenzie ET，Sengupta D，Rowan JO，Lassen NA，Harper AM：Upper limit of autoregulation of cerebral blood flow in the baboon．Circ Res 34：435－440， 1974
6．Agnoli A，Fieschi C，Bozzao L，Battistini N，Prencipe M：Auto regulation of cerebral blood flow：Studies during drug－induced hy－ pertension in normal subjects and in patients with cerebral vascular diseases．Circulation 38：800－812， 1968
7．Smith AL，Neigh JL，Hoffman JC，Wollman H：Effects of general anesthesia on autoregulation of cerebral blood flow in man．J Appl Physiol 29：665－669， 1970

8．Miletich DJ，Ivankovich AD，Albrecht RF，Reiman CR，Rosenberg R，Mckissic ED：Absence of autoregulation of cerebral blood flow during halothane and enflurane anesthesia．Anesth Analg 55：100－ 109， 1976

9．Van Aken H，Fitch W，Graham DI，Brüssel T，Themann H：Car diovascular and cerebrovascular effects of isoflurane－induced hypo－ tension in the baboon．Anesth Analg 65：565－574， 1986

10．McPherson RW，Traystman RJ：Effects of isoflurane on cerebral autoregulation in dogs．Anesthesiology 69：493－499， 1988

11．Hoffman WE，Edelman G，Kochs E，Werner C，Segil L，Albrecht RF：Cerebral autoregulation in awake versus isoflurane－anesthetized rats．Anesth Analg 73：753－757， 1991

12．Fitch W，Van Hemelrijck J，Mattheussen M，Van Aken H：Re－ sponsiveness of the cerebral circulation to acute alterations in mean arterial pressure during the administration of propofol．J Neurosurg Anesth 4：375－376， 1989

13．Engberg M，Øberg B，Christensen KS，Bach Pedersen M，Cold GE：The cerebral－arterio－venous oxygen content differences（ AVDO_{2} ） during halothane and neurolept anaesthesia in patients subjected to craniotomy．Acta Anaesthesiol Scand 33：642－646， 1989

14．Madsen BJ，Cold GE，Hansen ES，Bardrum B：The effect of isoflurane on cerebral blood flow and metabolism in humans during craniotomy for small supratentorial cerebral tumors．Anesthesiology 66：332－336， 1987

15．Algotsson L，Messeter K，Nordstrom CH，Ryding E：Cerebral blood flow and oxygen consumption during isoflurane and halothane anesthesia in man．Acta Anaesthesiol Scand 32：15－20， 1988

16．Ravussin P，Tempelhoff R，Modica PA，Bayer－Berger MM：Pro－ pofol vs．thiopental－isoflurane for neurosurgical anesthesia：Com－ parison of hemodynamics，CSF pressure，and recovery．J Neurosurg Anesth 3：85－95， 1991

17．Ornstein E，Young WL，Fleischer LH，Ostapkovich N：Desflur－ ane and isoflurane have similar effects on cerebral blood flow in patients with intracranial mass lesions．Anesthesiology 79：498－502， 1993
18．Eng C，Lam AM，Mayberg TS，Mathisen TL，Lee C：Influence of propofol with and without nitrous oxide on cerebral blood flow ve－ locity and carbon dioxide reactivity in humans．Anesthesiology 77： 872－879， 1992

19．Aaslid R，Lindegaard KF，Sorteberg W，Nornes H：Cerebral au－ toregulation dynamics in humans．Stroke 20：45－52， 1989

20．Aaslid R，Newell D，Stoos R，Sortenberg W，Lindegaard KF： Assessment of cerebral autoregulation dynamics from simultaneous arterial and venous transcranial Doppler recordings in humans．Stroke 22：1148－1154， 1991

21．Stevens WC，Dolan WM，Gibons RT，White A，Eger EI II，Miller RD，DeJong RH，Elashoff RM：Minimum alveolar concentrations（MAC） of isoflurane with and without nitrous oxide in patients of various ages．Anesthesiology 42：197－200， 1975

22．Rampil IJ，Lockhart SH，Zwass MS，Peterson N，Yasuda N，Eger EI II，Weiskopf RB，Damask MC：Clinical characteristics of desflurane in surgical patients：Minimum alveolar concentration．ANESTHESIOLOGY 74：429－433， 1991

23．Heistad DD，Kontos HA：Cerebral circulation，Handbook of Physiology，Section 2．Volume 3．The Cardiovascular System．Edited by Shepherd JT，Abboud FM．Bethesda，Oxford University，1983，pp 137－182
24．Enevoldsen EM，Jensen FT：Autoregulation and CO_{2} responses of cerebral blood flow in patients with acute severe head injury．J Neurosurg 48：689－703， 1978

25．Baumbach GL，Heistad DD：Regional，segmental and temporal heterogeneity of cerebral vascular autoregulation．Ann Biomed Eng 13：303－310， 1985

26．HalperaW，Osol G：Influence of trat
aictesponses of isolated cerebral arteri
and qictrap $13: 87-293,198$ 17．Wrgger EM，Traystman RJ：Cerebrov
pitoreguation，Ann Biomed Eng 13：

8．Symon L ，Held K，Dorsch NWC：A 8．in the cerebral circulation to inct prmocapnia and hypercapnia．Stroke y．Kontos HA，Wei EP，Navari RM，Lev ration Jl：Responses of cerebral arteri mponsion and hypertension．Agn J
 2ra A laser－Doppler flowmetry stoto $d y$ ． ： $64-680,1992$
31．Nornes H，Wikeby P：Cerebr 楚 arter mpary：Part
18.1977
 d meunsm surgery：Part 2．Ind ar apacity．J Neurosurg 47：81 33．haslid R，Markwalder TM，N\＆̈rnes F mpper ultrasound recording of fer wow ve （ix．）Neurosurg 57：769－774， $1 \frac{0}{2} 82$ 34．Bishop CCR，Powell S，Rutt $\stackrel{\circ}{9}$ ，Brov a messurement of middle cereb总 alidrion study．Stroke 17：913－9 $\frac{\bar{\Phi}}{5} 5,19$ 35．Newell DW，Aaslid R，Lam xison of flow and velocity durine ahumans．Stroke 25：793－797， 1 ⿷్m 36．Lindegard KF，Lundar T，Wifiserg J， 4Vtritions in middle cerebral araery bl minrasive transcranial Doppler b\＆ood fl ioke 18：1025－1030， 1987
37．Giller CA，Bowman G，Dyer $\stackrel{\text { क्भी，Moc }}{\text { O}}$ atrial diameters during changes ionblooc deduring craniotomy．Neurosurgeity 32 38．Olsen KS，Henriksen L，Ow\＆्ठ）－Falk senom J Chraemmer－Jorgensen 會：Effec thor without ketanserin on cerepral bl
20．BrJ Anaesth 72：66－71，1999！
39．McPherson RW，Krempasan会a E，E asoflifentanil on cerebral vascưar rea ）：1232－1238， 1985
i0．Oleson J：The effect of intrac／ourotid at and angiotensin on the regiontal ce （turology 22：978－987， 1972
41．Duckles SP，Bevan JA：Ph
teryic receptors of a WT Ther 197：371－378， 1976
${ }^{\text {12 }}$ Chikovani 0 ，Corkill G，McLeish I rolonged hal othood flow of two comr 43．Newberg LA，Milde JH，Michenfelde
itcts of isoflume Q0．541－ 546,1983
isflurane－induced hypotensio 4．Häggendal E
sion and oxyen E，Johansson B：Effects doges．Acta Physiol Scand $258: 27-53$ cerebral
jer EI II, Millet trations (MAC) ents of various

Yasuda N, Eger cs of desflurane Anesthesiolog , Handbook of System. Edited rsity, 1983, PP
CO_{2} responses head injury.!
al and temporal an Biomed Eng
26. Halpern W, Osol G: Influence of transmural pressure on myogenic responses of isolated cerebral arteries of the rat. Ann Biomed Eng 13:287-293, 1985
27. Wagner EM, Traystman RJ: Cerebrovascular transmural pressure and autoregulation. Ann Biomed Eng 13:311-330, 1985
28. Symon L, Held K, Dorsch NWC: A study of regional autoregulation in the cerebral circulation to increased perfusion pressure in normocapnia and hypercapnia. Stroke 4:139-147, 1973
29. Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL: Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol 234:H371-H383, 1978
30. Florence G, Seylaz J: Rapid autoregulation of cerebral blood flow: A laser-Doppler flowmetry study. J Cereb Blood Flow Metab 12:674-680, 1992
31. Nornes H, Wikeby P: Cerebral artery blood flow and aneurysm surgery: Part 1. Local arterial flow dynamics. J Neurosurg 47:810818, 1977
32. Nornes H, Knutzen HB, Wikeby P: Cerebral artery blood flow and aneurysm surgery: Part 2. Induced hypotension and autoregulatory capacity. J Neurosurg 47:819-827, 1977
33. Aaslid R, Markwalder TM, Nornes H: Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57:769-774, 1982
34. Bishop CCR, Powell S, Rutt D, Browse NL: Transcranial Doppler measurement of middle cerebral artery blood flow velocity: A validation study. Stroke 17:913-915, 1986
35. Newell DW, Aaslid R, Lam A, Mayberg TS, Winn HR: Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke 25:793-797, 1994
36. Lindegaard KF, Lundar T, Wiberg J, Sjøberg D, Aaslid R, Nornes H : Variations in middle cerebral artery blood flow investigated with noninvasive transcranial Doppler blood flow velocity measurements. Stroke 18:1025-1030, 1987
37. Giller CA, Bowman G, Dyer H, Mootz L, Krippner W: Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery 32:737-741, 1993
38. Olsen KS, Henriksen L, Owen-Falkenberg A, Dige-Petersen H, Rosenørn J Chraemmer-Jorgensen B: Effect of 1 or 2 MAC isoflurane with or without ketanserin on cerebral blood flow autoregulation in man. Br J Anaesth 72:66-71, 1994
39. McPherson RW, Krempasanka E, Eimerl D, Traystman RJ: Effects of alfentanil on cerebral vascular reactivity in dogs. Br J Anaesth 57:1232-1238, 1985
40. Oleson J : The effect of intracarotid epinephrine, norepinephrine and angiotensin on the regional cerebral blood flow in man. Neurology 22:978-987, 1972
41. Duckles SP, Bevan JA: Pharmacological characterization of adrenergic receptors of a rabbit cerebral artery in vitro. J Pharmacol Exp Ther 197:371-378, 1976
42. Chikovani O, Corkill G, McLeish I, Ong S, Beilin D: Effect on canine cerebral blood flow of two common pressor agents during prolonged halothane anesthesia. Surg Neurol 9:211-213, 1978
43. Newberg LA, Milde JH, Michenfelder JD: Systemic and cerebral effects of isoflurane-induced hypotension in dogs. Anesthesiology 60:541-546, 1983
44. Häggendal E, Johansson B: Effects of arterial carbon dioxide tension and oxygen saturation on cerebral blood flow autoregulation in dogs. Acta Physiol Scand 258:27-53, 1965

Appendix

The normal autoregulatory response is accomplished during 5-7 s with a smooth transition directly back to control flow. ${ }^{20}$ However, if the test is performed during hyperventilation, the response is faster and may overshoot. A damped oscillatory transition back to control values is seen. ${ }^{1920}$ The simplest dynamic mathematical model to describe such responses is a linear second-order differential equation. We used data from earlier investigations ${ }^{19,20}$ to determine a set of parameters (see below) that would provide dROR values to cover the physiologic range from no autoregulation to the fastest response seen to date in more than 500 measurements.

The response of this mathematical model is shown for various such sets of parameters in figure 5. The model is driven by an ideal 100% step in MABP. The dROR is the steepest slope of the response. The slope expresses the rate of regulation (\%/s) during the period of maximal change in cerebrovascular resistance or tone. The procedure for determining dROR using this model is as follows:

1. Both the MABP and Vmca tracings were filtered by a fourth-order low-pass filter at 0.5 Hz to remove pulsatility and determine the respective time courses of the means (MABP and Vmca). The relative amplitude and phase relationships between the measurements were not changed by this procedure.
2. Control MABP and control Vmca were determined during the 5-10-s interval immediately before cuff release.
3. We used the MABP time-course as input to the mathematical model for all ten parameter sets. The error of the prediction was determined by subtracting Vmca from the model velocity (mV). The root-mean square of the error (RMSe) was calculated for the interval from 1 to 10 s after the blood pressure step decrease. The dROR, with its corresponding set of parameters, that gave the least RMSe was assigned to this test. Typical differences between measurement and model predictions are illustrated in figure 2. In most cases, this model predicted Vmca accurately (RMSe $<$ $2.5 \%)$.
The effect of the cerebral autoregulation on mean velocity (mV) was approximated by a second-order linear differential equation set

Fig. 5. Responses of the mathematical model of the cerebral autoregulation to an ideal step in arterial blood pressure at time 0 . Ten parameter sets (Appendix) were selected to give responses with rates of regulation from 0 to 80 , with 20 being the "normal" response.
with state variables x_{1} and x_{2}, which were assumed to be equal to zero during the control period. After the step change in MABP, these equations were solved by the computer in time interval steps of 100 ms (corresponding to a sampling rate $\mathrm{f}=10 \mathrm{~Hz}$) by the following algorithm:

$$
\begin{aligned}
\mathrm{dP} & =(\mathrm{MABP}-\mathrm{cABP}) /(\mathrm{cABP}-\mathrm{CCP}) \\
\mathrm{x}_{2} & =\mathrm{x}_{2} \div\left(\mathrm{x}_{1} \cdot 2 \mathrm{D} \cdot \mathrm{x}_{2}\right) /(\mathrm{f} \cdot \mathrm{~T}) \\
\mathrm{x}_{1} & =\mathrm{x}_{1} \div\left(\mathrm{dP}-\mathrm{x}_{2}\right) /(\mathrm{f} \cdot \mathrm{~T}) \\
\mathrm{mV} & =\text { cVmca } \cdot\left(1 \div \mathrm{dP}-\mathrm{K} \cdot \mathrm{x}_{2}\right)
\end{aligned}
$$

dP is the normalized change in MABP from its control value (CABP) including the effect of the critical closing pressure (CCP), which was assumed to be constant at 12 mmHg in the current study. This parameter later can be estimated individually. MABP was obtained by filtering the pulsatile MABP at 0.5 Hz . cVmca was control velocity in the MCA. The control values were obtained as explained in the Methods section. This mathematical model was characterized by three
parameters: T, the time constant; D, the damping factor; and K, the autoregulatory dynamic gain. These parameters were related to dROR as in the following table:

ROR	$T(\mathrm{~s})$	D	K
0.0	-	-	0.00^{*}
2.5	2.00	1.60	0.20
5.0	2.00	1.50	0.40
10.0	2.00	1.15	0.60
15.0	2.00	0.90	0.80
20.0	1.90	0.75	$0.90 \dagger$
30.0	1.60	0.65	0.94
40.0	1.20	0.55	0.96
60.0	0.87	0.52	0.97
80.0	0.65	0.50	$0.98 \ddagger$

*No autoregulation.
† 'Normal" autoregulation.
\ddagger Fastest autoregulation. ispas) American Socien Publishers

babground: Anesthesiologist adedfurane based on the magnitudes wobler general anesthetics. The goa dimate the mean decrease in times t tradesfurane was being usedginste pol. The mean decrease in time to h mbulatory surgery when desflưrane prol also was examined.
Uetbods: Published studies that met keted up to November 1994. Ingelude pients mere randomly assigneẹd to pmed at the end of surgery, iduced with an intravenous age nt. v metanalysis to calculate confide ${\underset{\omega}{e}}_{6}^{2}$ ce in diffences.
Rexult: Six studies (with 229 क्⿶凵atien frane to propofol met the incousion |rith 316 patients) compared deds ivially significant difference iop the mads after discontinuation obegid mand difference 0.7 min (propolofol I mabdence interval - 0.2 to 1.7 Ginin) tho received propofol were disechary $1 \min (\$-30 \mathrm{~min})$ more quickl ${ }^{\text {en }}$ than keflurane. Patients who received de:
mandsa mean of $4.4 \mathrm{~min}(3.3-5.5 \mathrm{~F}$. milints who received isofle 4.3 min
Conclusions: There are only mi .
ltances between desflurane an min
ripect to time to following comenand
lify words: Anesthesia recovery per

[^3]
[^0]: －Visiting Professor of Anesthesiology．Current position：Department of Anesthesia，University Hospital，Basel，Switzerland．
 \dagger Professor of Anesthesiology and Neurological Surgery．
 \ddagger Acting Assistant Professor of Anesthesiology
 \＄Assistant Professor of Anesthesiology and Neurological Surgery
 ｜｜Research Professor of Neurological Surgery．
 \＃Associate Professor of Neurological Surgery
 Received from the Departments of Anesthesiology and Neurological Surgery，University of Washington，Seattle，Washington．Submitted for publication April 4，1994．Accepted for publication March 28， 1995．Supported in part by Stuart Pharmaceuticals，Wilmington， Delaware．
 Address correspondence to Dr．Lam：Department of Anesthesiology， ZA－14，Harborview Medical Center， 325 Ninth Avenue，Seattle， Washington 98104.

[^1]: ＂bslid R，Bondar RL，Kassam MS，Stei maralalion Bondar RL，Kassam MS，Stei
 aino，224： 227,1991

[^2]: -• Aaslid R, Bondar RL, Kassam MS, Stein F, Dunphy P: Cerebral autoregulation in microgravity. Proceedings, Spacebound 91, Ottawa, Ontario, 224:227, 1991.

[^3]: Assistant Professor.
 Itrofesor; Head.
 Profecsored Head.
 Feceived from the Department of Anest
 Whlse of Medicine, Iowa City
 Homen Ftrany 13, 1995, Iowa City, Iowa. S
 Whtress correspondence to Dr publicat amesily of Iowa, College Dr. Dexter: I Gi, lowa 52242.1079 . Efinans will 1079 .
 Eftints will not be available.

