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Effects of Halothane on Glutamate Receptor-
mediated Excitatory Postsynaptic Currents

A Patch-Clamp Study in Adult Mouse Hippocampal Slices

Misha Perouansky, M.D.,* Dimitri Baranov, M.D.,T Michael Salman, M.Sc.,t Yoel Yaari, Ph.D.§

Background: The effects of halothane on excitatory synaptic
transmission in the central nervous system of mammals have
been studied in vivo and in vitro in several investigations with
partially contradicting results. Direct measurements of the
effects of halothane on isolated glutamate receptor-mediated
(glutamatergic) excitatory postsynaptic currents (EPSCs),
however, have not been reported to date.

Methods: The effects of halothane on glutamatergic EPSCs
were studied in vitro by using tight-seal, whole-cell recordings
from CA1 pyramidal cells in thin slices from the adult mouse
hippocampus. The EPSCs were pharmacologically isolated into
their non-N-methyl-p-aspartate (non-NMDA) and NMDA re-
ceptor-mediated components by using selective antagonists.
The effects of halothane on EPSC amplitude and kinetics were
analyzed at various membrane potentials and were compared
with its effects on currents evoked by exogenously applied
glutamatergic agonists.

Results: Halothane (0.2-5.1%; 0.37-2.78 mm) reversibly
blocked non-NMDA and NMDA EPSCs. This effect was voltage
independent; concentrations producing 50% inhibition were
0.87% (0.66 mm) and 0.69% (0.57 mm), respectively. Currents
induced by bath-applied glutamatergic agonists were not af-
fected even by the high concentrations of halothane.
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Conclusions: Halothane depresses glutamatergic EPSCs ir-
respective of receptor subtype, most likely by inhibition of
glutamate release. (Key words: Anesthetics, volatile: halo-
thane. Animals: mouse. Brain: hippocampus. Central nervous
system: excitatory postsynaptic currents. Central nervous
system, receptors: glutamate; N-methyl-D-aspartate; non-N-
methyl-p-aspartate. Measurement techniques: hippocampal
slice; patch-clamp.)

GENERAL anesthetics affect synaptic transmission at
concentrations likely to be found in the brain during
surgical anesthesia.' This interaction may take place at
multiple sites and may differ from one neurotransmitter
system to another.>? The precise sites and mechanisms
of this interaction as well as their relative importance
to the anesthetic state are not yet understood.

Halothane affects the inhibitory y-aminobutyric acid
(GABA)-mediated transmitter system at various sites.
First, in cortical slices, it reduces the breakdown of
GABA, thus potentially increasing its concentration in
the synaptic cleft.” Second, it prolongs the time con-
stant of decay of spontaneous, GABA, receptor—me-
diated postsynaptic currents in hippocampal slices
through release of intracellular calcium.” These effects
may contribute to the depressant effect of halothane
on the central nervous system (CNS).

Several studies have investigated the effects of halo-
thane on excitatory synaptic transmission in a variety
of mammalian CNS preparations. The results of exper-
iments conducted 71 vivo have been contradictory.” In
the cat, halothane was found to facilitate excitatory
synaptic transmission in the cuneate nucleus® and to
depress it in the spinal cord’ but in the rat hippocampus
was found to leave it unaffected.” More consistent re-
sults were obtained in experiments in CNS preparations
in vitro. Halothane depressed excitatory synaptic
transmission in the guinea pig olfactory cortex’ and
dentate gyrus'’ as well as in the spinal cord of newborn
rats.!' Contradictory results, however, were obtained
in the rabbit olfactory bulb'? and in some pathways of
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the rat hippocampus.'* ' This inconsistency may reflect
the variety of preparations and recording techniques
or may result from multiple indirect CNS effects of
halothane, which may mask its direct action on excit-
atory synaptic transmission.

In most if not all of the above preparations, as in
many other mammalian CNS synapses, the neurotrans-
mitter mediating fast excitatory synaptic transmission
is thought to be glutamate.'” Synaptically released glu-
tamate has been shown to activate two main subtypes
of postsynaptic receptors coupled to ionic channels,
namely the a-amino-3-hydroxy-5-methylisoxazole-4-
propionic acid (AMPA)-kainate receptor and the n-
methyl-p-aspartate (NMDA) receptor, as well as a G-
protein—coupled (metabotropic) receptor.'® Whether
halothane depresses excitatory synaptic transmission
by interacting directly with any of these receptors and
whether it affects them equally or differentially are not
known.

The purposes of this study were to investigate the
effects of halothane on glutamatergic synaptic trans-
mission and to gain insight into its mechanism of action
by comparing its effects on AMPA-kainate (7.e., non-
NMDA) and on NMDA receptor—-mediated responses in
a central mammalian neuron. We obtained tight-seal,
whole-cell recordings of excitatory postsynaptic cur-
rents (EPSCs) and agonist-induced currents from adult
mouse CAl hippocampal pyramidal cells in thin
slices.'”'®

Materials and Methods

Preparation of Slices

Institutional approval for the performance of the ex-
periments was obtained. Experiments were performed
on thin hippocampal slices from adult mice (49-90
days old). Slices were prepared by the same technique
used to prepare thin slices from juvenile rat brain.'”-'®
In brief, mice were anesthetized with ether and decap-
itated with a guillotine. The brain was quickly removed
and cooled in ice-cold saline. A block of tissue con-
taining one hippocampus was glued with cyanoacrylate
to the stage of a vibratome. Transverse slices 150 um
thick (fig. 1A) were cut from the hemispheric region
containing the hippocampus, transferred to an incu-
bation chamber containing oxygenated (95% O,-5%
CO,) saline at 34°C, and used one at a time after 1 h
of incubation. In the recording chamber the slice was
continuously perfused (2.5 ml-min™') with oxygen-
ated saline at room temperature (21-23°C) (fig. 1B).
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Schaffer
collaterals

CA3

HS

Condensor

Fig. 1. Preparation and experimental setup. (4) Transverse
hippocampal slice. The Schaffer collaterals were stimulated
with an electrode (S) close to the pyramidal cell clamped by
the recording electrode (R). Arrows = direction of action po-
tential propagation within the hippocampal circuitry: from
the dentate gyrus (DG) (filled circle = granule cell) via the
mossy fibers to CA3 pyramidal cell (filled rhomboid) and fur-
ther on via the Schaffer collaterals to CA1l pyramidal cells
(filled rhomboid). Interneurons are not depicted. (B) System
for stimulation and recording in slices. A chamber containing
the hippocampal slice (HS) was mounted on the stage (S) of
an upright microscope. Stimulating (SP) and recording (RP)
pipettes were placed with visual control through a X400 mag:-
nifying immersion objective (0). Inflow (IF) and outflow (OF)
tracts for the experimental solutions were situated at opposite
sides of the chamber.

Solutions and Drugs

The standard saline used for dissection and mainte-
nance of slices consisted of (millimolar): NaCl 125,
KCI 2.5, hydroxyethylpiperazineethane sulfonic acid
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PATCH-CLAMP STUDY OF HALOTHANE AND GLUTAMATERGIC EPSCs

(HEPES) 13, NaH,PO, 1.25, glucose 12.5, CaCl, 1.5,
and MgSO, 4 at pH 7.3. The concentration of NaHCO,
was 26.7 mM in the dissection and experimental s0-
lutions and 13 mMm in the incubation solution. All ex-
perimental salines also contained bicuculline meth-
iodide (10 um) to block GABA, receptor—-mediated
chloride currents, and glycine (5 uM) to ensure satu-
ration of the glycine binding sites of NMDA receptors'’
and to increase the selectivity of 6-nitro-7-cyano-qui-
noxaline-2,3-dion (CNQX) to non-NMDA receptors.*’
In the experimental salines the concentration of CaCl,
was increased to 2.5 mm, whereas MgCl, was either
omitted completely or added at the specified concen-
trations. Saline without added MgCl, (Mg**-free saline)
contained approximately 2 um Mg*>*, as measured with
atomic absorption spectroscopy. DL-2-Aminophos-
phonovaleric acid (APV) or CNQX were added to block
NMDA or non-NMDA receptor-mediated currents, re-
spectively.”'*? In one series of experiments NMDA (5
uMm) or glutamate (10 and 20 um) was applied by bath
perfusion. In this series all salines contained also te-
trodotoxin (1 um) to block neurally evoked transmitter
release.

The intracellular (pipette) solution consisted of
(millimolar): CsF 130, NaCl 10, hydroxyethylpipera-
zineethane sulfonic acid 10, ethyleneglycol-bis-(3-
aminoethyl ether) tetraacetic acid (EGTA) 10, MgCl,,
CaCl, 1, tetracthyl ammonium 10. The pH was adjusted
to 7.2-7.3. The osmolarity was approximately 10%
lower than the measured osmolarity of the extracellular
solution (300-310 mOsm). The use of cesium and te-
traecthyl ammonium to block K* conductances and of
fluoride to reduce voltage-dependent Ca®" currents,
improved the space clamp. Drugs were purchased from
Sigma Chemical (St. Louis, MO), with the exception
of CNQX (Tocris Neuramin, Bristol, United Kingdom)
and halothane (Trofield Surgicals, Zug, Switzerland).

Application and Measurement of Halothane

The fresh O,—CO, mixture was directed by a flow-
meter through a vaporizer (Enfluratec) containing
halothane. The vaporizer was calibrated for halothane
with an IRIS Gas Analyzer (Draeger, Libeck, Germany).
The gas mixture of O,-CO,-halothane was then used
to bubble the experimental saline for at least 15 min
before it was applied to the slice with a peristaltic
pump.

Halothane concentrations in the recording chamber
were measured with a gas chromatograph (Tracor 540)
equipped with a 1.83-m X 0.3-cm glass column
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(packed with Gaschrom 220, 80/100 mesh, Alltech),
flame ionization detector, and nitrogen as the carrier
gas. The temperatures of the injector, detector, and
oven were 165°C, 165°C, and 155°C, respectively.
Aqueous test samples (10 ul) were withdrawn from
the recording chamber with a gas-tight syringe (Ham-
ilton) and injected directly into the column. Peak area
values from the test samples were compared with those
of known concentrations of halothane standards in
methanol. Column retention times for halothane and
methanol were approximately 3 min and 30 s, respec-
tively. The results of the concentration measurements
are illustrated in figure 2. Standard halothane concen-
trations of 0.2%, 0.4%, 0.9%, 2.5%, and 5.1%, as mea-
sured with a gas analyzer (IRIS) at the exit from the
vaporizer, corresponded to concentrations of 0.37 +
0.01,0.43+0.06,0.64+0.04,1.49+0.12,and 2.79
+ 0.24 mM™ in the slice-bathing solution (mean * SD
from two or three measurements).

Stimulation and Recording
Pyramidal cells in the CAl field of the hippocampal
slice were visualized at X400 magnification with a wa-

Halothane concentration (mM)

0 T T T T T
0 2 4 6

Halothane concentration (%)

Fig. 2. Relation between the concentrations of halothane in
the saline perfusing the slice chamber (millimolar) and in the
gas mixture applied to the saline (percentage). Data points
are mean + SD of measured halothane concentrations in the
saline bathing the slice at each vaporizer setting. The relation
between the two variables in the tested range was linear.
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ter immersion objective using an upright microscope
equipped with Nomarski optics (standard 14, Zeiss,
Germany) (fig. 1B). Tight-seal whole-cell recordings®’
were obtained with recording pipettes pulled from bo-
rosilicate glass (Hilgenberg, Maisfeld, Germany) on a
vertical puller (List-medical, Germany) and coated with
Sylgard resin (Dow Corning Chemical, Midland, MI).
The series resistance (5-10 MQ) was compensated to
50-70% by the patch-clamp amplifier (LM-EPC 7, List-
Electronic, Darmstadt, Germany). The pipettes used
for cleaning and stimulating were pulled from dispos-
able micropipettes (Boralex, Rochester Scientific) and
filled with saline. The EPSCs were evoked by stimulat-
ing close (20-70 uMm) to the patched cell at a frequency
of 0.1 Hz, using a bipolar electrode consisting of the
aforementioned cleaning pipette and a remote Ag—AgCl
pellet connected by a 100-um-—thick platinum wire to
an isolation unit (World Precision Instruments, Aston,
England). Stimulus strength was adjusted to evoke
maximal stable EPSCs.

Data Analysis

All currents recorded were filtered at 3 kHz, digitized
on-line at sampling rates between 0.7 and 2 kHz and
analyzed off-line with a personal computer and pClamp
software (Axon Instruments). Kinetic analysis was per-
formed on averaged recordings (usually five to ten con-
secutive traces). The rise times of synaptic currents
were measured at the 10-90% peak. Their decays were
fitted with the exponential function: y = Ae™ " for sin-
gle-exponential decay, where A = the peak current am-
plitude and 7 = the time constant of decay. The algo-
rithms used for fitting these functions to data points
minimized the least-squares error between data points
and calculated fit points by multiple least-squares
regression for amplitudes and a simplex minimization
for time constants. The decay of hippocampal NMDA
EPSCs can be fitted with one** or with the sum of two
exponentials.'®** For the current analysis of halothane
effects, all currents were fitted with a single exponential
to facilitate the comparison of decay time constants.
Measurements are given as mean *+ SD. Differences
among multiple groups were tested by one- or two-way
analysis of variance, as indicated. When significant dif-
ferences were indicated in the F ratio test (P<0.001),
the significance of differences between means of any
two of these groups was determined by the modified
Tukey method for multiple comparisons with an « of
0.05. Differences between paired sets of data were
compared by using Student’s ¢ test.
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The solid lines through the data points in current-
voltage plots were fitted as described previously.'® The
dose-response curve for halothane was obtained by fit.
ting experimental results with the Hill equation

I=1,/(1 + (ICso/[halothane])™)

in which I, = maximal inhibition; ICs, = the concen-
tration producing 50% inhibition; and n = the Hill coef-
ficient.

Results

Excitatory Postsynaptic Currents in Adult CAl

Neurons

The current results are based on recordings from 22
CA1l pyramidal cells from adult mouse hippocampi.
Stimulation of afferent fibers in the vicinity of patched
neurons reliably evoked stimulus-graded EPSCs. Peak
amplitudes of EPSCs (I,..) evoked by supramaximal
stimuli at holding voltage of —60 mV varied from tens
to hundreds of picoamperes in different cells. A rep-
resentative example is shown in figure 3A. When
evoked in standard saline (i.e., containing 1 mm Mg*")
and at holding potentials negative to —40 mV, the EPSCs
had a relatively fast time course. The EPSC decay be-
came progressively slower with depolarization (fig. 3A,
left). Changing to Mg**-free saline also prolonged the
decay of EPSCs evoked at negative holding potentials
and augmented their amplitude (fig. 3A, right). This
dependence on voltage and Mg** is characteristic of
EPSCs mediated by admixed non-NMDA and NMDA re-
ceptors.*¢

To characterize more precisely the possible contri-
bution of non-NMDA and NMDA receptors to the native
EPSC, we determined the current—voltage relations of
Ipeax and of the EPSC measured 25 ms after the peak
(I2s) (fig. 3B). Both I, and I,s reversed at holding
potentials close to 0 mV, as expected for glutamate
receptor-mediated currents in our experimental con-
ditions.'®?*2° The relation of Ipeax versus holding po-
tential in standard saline was nearly linear over a large
voltage range, consistent with its mediation by non-
NMDA receptors. By contrast, the corresponding rela-
tion of 1,5 versus holding potential displayed a region
of negative slope conductance at voltages negative t0
—30 mV, indicating the presence of a slower NMDA
receptor-mediated EPSC component. As expected, this
region in the current-voltage relation was shifted to
much more negative voltage upon perfusion with Mg*"-
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Fig. 3. Glutamatergic excitatory postsynaptic currents (EPSCs)
in adult CA1 pyramidal cells consisted of non-NMDA (non-n-
methyl-p-aspartate) and NMDA receptor-mediated compo-
nents. (4) Exemplary native EPSCs recorded at various holding
potentials (V) in standard saline (1 mm Mg*") (4, left) and in
Mg?*'-free saline (4, right). In standard saline, depolarizing Vy
recruited a slow EPSC component. This component was present
at all Vs in Mg?*-free saline. (B) Current-voltage (I-Vy) re-
lation of the EPSCs from the experiment illustrated in A. The
peak EPSC amplitude (Ip.) and the EPSC amplitude recorded
25 ms after the peak (I5) were plotted against Vy. I;5—Vy in
Mg?* saline (closed triangles) displays an area of negative slope
conductance typical for NMDA receptor-mediated currents.
The deviation from linearity of L...—Vu (open triangles) at Vys
less than —30 mV suggests that NMDA EPSCs contribute to Ica,
also in 1 mm Mg?* saline (see below). (C) Pharmacologic sep-
aration of the non-NMDA and NMDA EPSC components. (C,
left) EPSCs recorded at —60 mV in Mg?**-free saline. Application
of 100 um aminophosphonovaleric acid (APV), an NMDA re-
ceptor antagonist, blocked a slow EPSC component. The re-
maining EPSC had a fast rise time and decayed to near baseline
within 25 ms after the peak. It was blocked entirely by 5 um
6-nitro-7-cyano-quinoxaline-2,3-dion (CNQX), an a-amino-3-
hydroxy—5-me1hylisoxazole—4—propionic acid—kainate receptor
antagonist. (C, right) EPSCs from another cell, recorded at —45
mV in 1 mm Mg?" saline. Application of 5 um CNQX blocked a
fast EPSC component. The remaining EPSC was almost com-
pletely suppressed by 100 um APV. Although the rise phase of
the NMDA EPSC component is slower than that of the native
EPSC, it contributes substantially to Ipcax. All sample traces are
averages of five consecutive records. Calibration bars in the
two panels differ.

Control
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free saline (fig. 3B). Similar dual component EPSCs
were previously described in hippocampal slices from
juvenile rats.'®*&2°

The non-NMDA and the NMDA EPSC components
could be separated pharmacologically by using recep-
tor subtype-specific antagonists. Blocking NMDA re-
ceptors with 100 um APV isolated the fast non-NMDA
EPSC, which was suppressed completely by addition
of 5 uMm CNQX (fig. 3C, left). Conversely, adding 5 um
CNQX to block non-NMDA receptors isolated the slow
NMDA EPSC, which was abolished completely by ad-
dition of 100 um APV (Fig. 3C, right).

As previously shown in juvenile rat hippocampal
neurons,'®%*2° the isolated non-NMDA EPSCs in adult
mouse pyramidal cells were much faster than the NMDA
EPSCs. The rise time and decay time constant of the
former at —60 mV holding potential were 1.0 = 0.4
and 7.4 £ 0.9 ms (mean = SD; n = 0), respectively.
By contrast, the rise time and decay time constant of
the latter were 11.3 = 3.9 and 198 = 37 ms (n = 5),
respectively.

Effects of Halothane on Excitatory Postsynaptic

Currents

Having characterized the receptor subtypes mediating
EPSCs in adult mouse CA1 pyramidal neurons, we tested
the sensitivity of the native EPSC and of its two com-
ponents to halothane. Representative results are illus-
trated in figure 4. At —30 mV holding potential, 0.9%
(0.64 mm) halothane reduced both the early and the
late components of the native EPSC (fig. 4A). Likewise,
halothane reduced both the pharmacologically isolated
non-NMDA (fig. 4B) and NMDA EPSCs (fig. 4C). The
maximal depression was achieved within 8—12 min of
exposure to halothane and recovered nearly completely
within 8—12 min after terminating the exposure.

To characterize further the action of halothane, we ex-
amined its effects on the two components of the native
EPSC at different holding membrane potentials (—90-
+30 mV). A representative experiment is illustrated in
figure SA. Halothane (0.9%) blocked both EPSC com-
ponents (I, and I,s) over the whole voltage range tested
without changing their reversal potential. The pooled
results of four similar experiments (0.9% halothane) are
described in figure 5B. Both EPSC components were
equally depressed by halothane in a voltage independent
manner across the entire voltage range tested.

Dose—Response Relation

To test whether halothane preferentially affects one
subtype of glutamate receptors, we compared the de-
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pressant action of several halothane concentrations on
pharmacologically isolated non-NMDA and NMDA
EPSCs. The results obtained from 15 pyramidal cells
are summarized in figure 6. We could not detect a sig-
nificant difference in the depression of non-NMDA ver-
sus NMDA EPSCs (two-way analysis of variance). At the
lowest halothane concentration applicable with our
vaporizer (0.2%, 0.37 nm), the non-NMDA and NMDA
EPSCs were depressed by 24 + 8% and 18 *+ 6%, re-
spectively (n = 3 for for each EPSC type). Higher halo-
thane doses caused more EPSC depression, with the
highest concentration tested (5.1%, 2.79 mM) causing
almost a complete suppression of both EPSCs (97 +
4% and 97 + 5%; n = 4 and n = 5, respectively). The
1Cs, values, interpolated from the fitted dose—response
curves, were 0.69% (0.57 mm) and 0.87% (0.66 mm)
for the NMDA and non-NMDA EPSCs, respectively
(fig. 6).

Kinetics of Excitatory Postsynaptic Currents

We next examined the effects of halothane on the
time course of isolated non-NMDA and NMDA EPSCs
evoked at —60 mV holding potential. These measure-
ments were not executed on data obtained with high
halothane concentrations, because the marked depres-
sion of the EPSCs rendered them unreliable. The pooled
results are shown in figure 7. At the three concentra-
tions tested (0.4%, 0.9%, and 2.5%), halothane had no
effect on the rise times, and halothane in concentrations
t0 0.9% did not significantly affect the decay time con-
stants of isolated EPSCs.
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Wash Fig. 4. Halothane depressed the native
excitatory postsynaptic potential
(EPSC) and its two components. (g)
Native EPSCs recorded at —30 mv in
1 mm Mg®'. (b) Non-n-methyl-p-zs.
partate (non-NMDA) EPSCs recorded
in another cell at —60 mV in Mg?*free
saline containing 100 um aminophos-
phonovaleric acid (APV). (c) NMDA
EPSCs recorded in another cell at —(
mV in Mg*'-free saline containing 5
UM 6-nitr0-7—cyano-quinoxaline-z‘g.
dion (CNQX). In all three cases, ex-
changing to salines saturated with
0.9% halothane rapidly depressed the
EPSCs. A steady state was achieved
within 8-12 min. Reperfusion with
control salines reversed the halo-
thane depression within 8-15 min.
Time calibrations in the three panels
differ.

Exogenously Applied Agonists

The effects of halothane described thus far were nei-
ther specific for a glutamate receptor subtype nor in-
dicative of a specific postsynaptic depressant mecha-
nism of action. To test more directly whether halothane
may act postsynaptically at the glutamate receptor
channel complex, we examined the effects of halothane
on currents evoked by bath-applied glutamatergic ag-
onists. Representative results from a series of six ex-
periments are illustrated in figure 8. The salines con-
tained 1 um tetrodotoxin to block neurally evoked
transmitter release from nerve terminals. At —60 mV
holding potential, application of 5 um NMDA induced
a large inward current (fig. 8A). Halothane in concen-
trations to 5.1% (shown above to depress the EPSCs
almost completely) did not depress the NMDA-induced
currents (figs. 8B and 8C). These currents were entirely
depressed by 400 um APV (data not shown).

In two additional experiments we similarly tested the
effects of halothane on currents evoked by bath-applied
glutamate (10 and 20 um). Halothane (5.1%) had no
effects on these currents, which could be entirely abol-
ished by the concomitant administration of APV and
CNQX (400 and 10 um, respectively; data not shown).

Discussion

The main finding of this study is that halothane sup-
presses glutamate receptor-mediated EPSCs in adult
hippocampal pyramidal cells in a dose-dependent
manner. Both non-NMDA and NMDA EPSCs are revers-
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Fig. 5. Halothane-induced depression of excitatory postsyn-
aptic potentials (EPSCs) was independent of membrane volt-
age. (A) Relations of peak EPSC amplitude (Ipeax) and EPSC am-
plitude recorded 25 ms after the peak (I:s) of native EPSCs
versus holding potential (Vy) in 1 mM Mg?" saline before and
after equilibration with 0.9% halothane. Both current com-
ponents were depressed across the entire voltage range (—90-
+30 mV). Voltage dependence of the block was not evident.
(A, Inset) Exemplary EPSCs recorded at the indicated Vy in
control and in 0.9% halothane saline. (B) Percentage block of
I (circles; mostly non-n-methyl-D-aspartate [non-NMDA]
component) and Iz (triangles; NMDA component) by 0.9%
halothane at various Vys. Data points represent the pooled
results from four experiments (mean * SD). EPSCs close to
the reversal potential were not analyzed because of their small
amplitudes. The slopes of the linear regression lines were
—0.03 for non-NMDA and NMDA components, suggesting that
halothane blocks both EPSC components in a voltage-inde-
pendent manner.
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ibly depressed by halothane in a voltage-independent
manner, whereas agonist-induced currents are not af-
fected.

Depression of Glutamatergic Excitatory

Postsynaptic Currents

Several previous studies using extra- and intracellular
recording techniques have demonstrated that anes-
thetic doses of halothane depress fast synaptic trans-
mission in mammalian CNS preparations in vitro.”~'""*
Our data suggest that this effect of halothane can be
accounted for by a direct depression of the non-NMDA
EPSC, which constitutes the predominant EPSC com-
ponent during fast synaptic transmission in most CNS
excitatory synapses.'’

Halothane depressed the amplitudes of non-NMDA
and NMDA EPSCs equally well. In this respect halothane

100 %

v NMDA
o non-NMDA

o]
o

pressign (%)
o

EPSC de
F N
o

N
o

0.1 1 10
Halothane concentration (%)

Fig. 6. Dose-response relation of halothane-induced depres-
sion of excitatory postsynaptic currents (EPSCs). The dose-
response curves summarize the results from 15 pyramidal cells
clamped at —60 mV in Mg>*-free saline. Each cell was exposed
to several concentrations of halothane. Non-n-methyl-p-as-
partate (non-NMDA) and NMDA EPSCs were plmrmacologically
isolated with aminophosphonovaleric acid (APV) (100 p™m) and
6-nitro—7-cyuno—quinoxuline—z,ﬁ-dion (CNQX) (5 um), respec-
tively. Solid lines = lines fitted through the data points; dotted
lines = concentrations producing 50% inhibition (ICs): 0.87%
(0.66 mm) for non-NMDA EPSCs and 0.69% (0.57 mm) for NMDA
EPSCs. (Insets) Exemplary non-NMDA (inset, top lef?) and NMDA
(inset, bottom right) EPSCs exposed to the indicated halothane
concentrations. Sample records are averages of five consec-

utive traces.
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non-NMDA EPSCs B"
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(ms)20 (ms) g

NMDA-EPSCs

Fig. 7. Halothane does not signifi-
cantly affect the kinetics of n-methy].
p-aspartate (NMDA) and non-NMDA
excitatory postsynaptic currents
(EPSCs). (A) Effect of halothane opn
the rise time (rt) and decay (7) of non-
NMDA EPSCs (isolated with 100 puy
aminophosphonovalericacid [APV]),

o_.
L%, o
s @

Wash f—*

Control
HAL 0 4%
Wash
Control
HAL 0 9%
Wa:
Control
HAL 2.5%
Wash
Control
HAL 0.4%
Control

— —
HAL 0.9% HAL 0.4%

—_—
HAL 0.4%

HAL 0.9%

(4, top) Bars = means * SD (n = 6) of
EPSC rise times before (control), after
10 min of exposure (HAL), and after
10 min of wash (Wash). Three con-
centrations of halothane were tested
(0.4%, 0.9%, and 2.5%). The control,
test, and wash rise times for 0.9%
halothane were 1.49 * 0.50, 1.23 +
0.21, and 1.34 = 0.30 ms, respectively,
(4, bottom) Bars = mean * SD (n = 6)
of the EPSC decay time constant be-
fore (0), after 4 and 8 min of exposure
to 0.4% and 0.9% halothane (horizon-
tal line), and after 4 and 8 min of
wash. (B) Same as 4 for NMDA EPSCs
(n = 5; isolated with 5 um CNQX).
Scales in the ordinates differ. The
control, test, and wash rise times for

Wash
Wash

L] —

HAL 2.5%

HAL 0.9%

0.9% halothane were 9.3 + 1.9, 12.0 + 3.4, and 11.0 = 3.0 ms, respectively. In the clinically relevant range, halothane did not
significantly affect the rise times of non-NMDA or NMDA receptor-mediated EPSCs. The effect of halothane on the decay of
EPSCs was similar: in 0.9% halothane, the monoexponential decay time constant of the non-NMDA EPSCs decreased from 8.6 +
1.4 to 6.7 + 1.4 ms (n = 6) (4, bottom) and that of the NMDA EPSCs from 180 + 58 to 152 + 38 ms (n = 5) (B, bottom) without
reaching statistical significance (P > 0.05, paired Student’s ¢ test).

differs from some other general anesthetics, which af-
fect non-NMDA and NMDA receptor-mediated currents
differentially in hippocampal neurons. Ketamine pref-
erentially suppresses NMDA EPSCs.?” Likewise, ether
inhibits NMDA-induced currents in cultured hippo-
campal neurons more potently than currents induced
by AMPA, whereas pentobarbitone and phenobarbitone
preferentially inhibit AMPA-induced currents.?®

Postsynaptic Action of Halothane

The use of whole-cell tight-seal recordings with low-
resistance patch pipettes allowed us to examine with
high resolution the time course of the EPSCs under
reasonably good space-clamp conditions.?* The rise
times of non-NMDA and NMDA EPSCs were not affected
by halothane in concentrations up to 2.5%. Similarly,
the effect of halothane on the decays of both EPSCs did
not reach statistical significance even at the highest
concentration tested (0.9%). These results are in
agreement with findings in spinal motoneurons of de-
cerebrate cats, in which halothane depressed excitatory
postsynaptic potentials without changing their decay.”

Several studies have shown that the decays of non-

>

NMDA?*” and NMDA?***' EPSCs are determined predom-
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inantly by postsynaptic factors. The effect of noncom-
petitive antagonists of NMDA receptor-mediated cur-
rents is voltage dependent.”” Open-channel blocking
agents such as ketamine and MK-801 have a pro-
nounced effect on the decay of NMDA EPSCs.*' There-
fore, it is unlikely that halothane blocks the NMDA
EPSCs by interacting noncompetitively with the NMDA
receptor—channel complexes. Because halothane did
not reduce agonist-induced currents, a competitive an-
tagonism at the tested concentrations can also be ex-
cluded. In a previous study in olfactory cortical slices,
halothane in concentrations to 1% also did not affect
the depolarizing response to exogenous glutamate in
concentrations that suppressed excitatory synaptic
transmission.*? In contrast, pentobarbitone, ether, me-
thoxyflurane, alphaxalone, and isoflurane were shown
to reduce glutamate-induced currents at concentrations
blocking excitatory synaptic transmission, thus indi-
cating a postsynaptic site of action.>>3? Isoflurane also
was shown to decrease the frequency of opening and
the mean open time of single NMDA receptor channels
in cultured hippocampal neurons.?*

These data stand in contrast to the marked effects of
halothane on the kinetics of inhibitory postsynaptic
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currents described in cultured hippocampal neurons®>
and on the responses to exogenously applied GABA in
dissociated neurons from the tractus solitarius.*® In the
latter study, halothane 1 mmM was also noted to result
in mild depression of glutamate receptor agonist—in-
duced currents. The depression was most prominent
in the desensitizing component of the current response
to quisqualate, with minimal effects on the response
to kainate, the response to NMDA, and the steady-state
component of the response to glutamate. These ex-
periments are not directly comparable to ours because
of differences in preparations (immature rats vs. adult
mice) and methods of drug application (the relative
slowness of our system leads us to miss most of the
quickly desensitizing components of responses to ex-
ogenously applied drugs). However, we cannot e€X-
clude the possibility that halothane, at high concen-
trations, exhibits some postsynaptic effect on quis-
qualate-activated currents.

Presynaptic Action of Halothane

The apparent lack of postsynaptic action supports the
hypothesis that halothane depresses the EPSCs pre-
dominantly by a presynaptic action, namely, by inhi-
bition of glutamate release. The equal depression of
non-NMDA and NMDA EPSCs is consistent with this hy-
pothesis, because non-NMDA and NMDA receptors in
the hippocampus are colocalized to the same syn-
apses.®” Likewise the lack of significant changes in the
rise times and decays of the EPSCs also are consistent
with a presynaptic action.*'

The mechanism by which halothane may presynap-
tically depress the EPSCs remains to be elucidated. One
possibility is that the drug reduces neurally evoked
glutamate release by blocking presynaptic Ca®" chan-
nels. Halothane depressed Ca** currents and Ca*'-de-
pendent prolactin releasc in pituitary cells with an ICs,
of 0.8 mm*® and 0.4 mm,* respectively. Catecholamine
release in pheochromocytoma cells also was inhibited
by halothane with an ICs, 0f 0.7 mm.*? These 1Cs,, val-
ues, determined in different preparations under widely
varying experimental conditions, arc similar to the 1Cs,
values reported here (0.57-0.66 mMm) and may indicate
common mechanisms of action. In support of this no-
tion, halothane has been shown to block Ca*' currents
in cortical neurons.*' However, the relevance of these
currents to transmitter release is unclear. Isoflurane,
on the other hand, has been shown to block multiple
subtypes of voltage-gated Ca?" currents in hippocampal
pyramidal neurons,'? including the N and the P sub-
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Control

Halothane 2.5%

c d
Halothane 5.1%

100 pA

2 min
Fig. 8. Halothane did not affect currents induced by exoge-
nously applied n-methyl-p-aspartate (NMDA) in a CA1 pyra-
midal cell. The neuron was clamped at —60 mV and perfused
with Mg?**-free saline containing 1 um tetrodotoxin (TTX). Bath
application of 5 um NMDA for 2 min evoked an inward current
(a). Similar currents were evoked by repeated NMDA appli-
cations (b-d). These currents were not reduced by saturating
the saline with 2.5% (b) or 5.1% halothane (¢). These concen-
trations reduced the EPSCs by 85-100%.

types, which are implicated in transmitter release,
and to reduce Ca’'-dependent glutamate release in
hippocampal slices.”" These findings indicate neuro-
transmitter release as a potential site of anesthetic ac-
tion. In conjunction with its aforementioned effects on
NMDA receptor—operated channels,”* these observa-
tions indicate that isoflurane may act by both pre- and
postsynaptic mechanisms.

Relevance to Clinical Action of Halothane

We performed the experiments at hypothermic tem-
peratures (21-23°C) only slightly greater than those
that in higher mammals seem to reduce anesthetic re-
quirements to zero (18-20°C).*>"*® However, other
workers have shown that halothane inhibits excitatory
neurotransmission in preparations kept close to normal
body temperature”” 10.11 4t free aqueous concentrations
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comparable to ours."" Therefore it is most probable
that the effects of halothane on the EPSCs are also pres-
ent at physiologic temperatures. Hypothermia causes
reduction of Ca** entry into the presynaptic terminal,*’
leading to a reduction of transmitter release with de-
creasing temperature.’® Because hypothermia itself ex-
erts an anesthetic effect, it is possible that hypothermia
shares some mechanism of action with halothane.

We used the hippocampal excitatory synapse as a
model to show that halothane suppresses glutamatergic
EPSCs at clinically relevant concentrations. Taking to-
gether the equal depression of non-NMDA and NMDA
EPSC amplitudes, the voltage insensitivity of this effect,
and the lack of a significant action on EPSC kinetics
and on agonist-induced currents, it is most likely that
0.37-2.78 mm halothane acts predominantly at the
presynaptic glutamatergic terminals. It is tempting to
speculate that such an action accounts also for the
depression of glutamatergic excitatory neurotransmis-
sion in other CNS structures,””'"'? a possibility that
may be relevant for certain end points of anesthesia.**>°
Whatever the mechanism, the relevance of widespread
suppression of glutamatergic synapses for the mecha-
nisms of anesthesia remains to be elucidated. It is in-
teresting, however, that the anesthetic effect of halo-
thane in vivo is potentiated by drugs known to be an-
tagonists of NMDA’' and non-NMDA®? receptors.

The authors gratefully acknowledge the technical assistance of
Yonit Viner.
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