Effects of Halothane on Glutamate Receptormediated Excitatory Postsynaptic Currents

A Patch-Clamp Study in Adult Mouse Hippocampal Slices

Misha Perouansky, M.D., * Dimitri Baranov, M.D., \dagger Michael Salman, M.Sc., \ddagger Yoel Yaari, Ph.D.§

Background: The effects of halothane on excitatory synaptic transmission in the central nervous system of mammals have been studied in vivo and in vitro in several investigations with partially contradicting results. Direct measurements of the effects of halothane on isolated glutamate receptor-mediated (glutamatergic) excitatory postsynaptic currents (EPSCs), however, have not been reported to date.

Methods: The effects of halothane on glutamatergic EPSCs were studied in vitro by using tight-seal, whole-cell recordings from CA1 pyramidal cells in thin slices from the adult mouse hippocampus. The EPSCs were pharmacologically isolated into their non-N-methyl-d-aspartate (non-NMDA) and NMDA re-ceptor-mediated components by using selective antagonists. The effects of halothane on EPSC amplitude and kinetics were analyzed at various membrane potentials and were compared with its effects on currents evoked by exogenously applied glutamatergic agonists.

Results: Halothane ($0.2-5.1 \% ; 0.37-2.78 \mathrm{~mm}$) reversibly blocked non-NMDA and NMDA EPSCs. This effect was voltage independent; concentrations producing 50% inhibition were $0.87 \%(0.66 \mathrm{~mm})$ and $0.69 \%(0.57 \mathrm{~mm})$, respectively. Currents induced by bath-applied glutamatergic agonists were not affected even by the high concentrations of halothane.

[^0]Conclusions: Halothane depresses glutamatergic EPSCs irrespective of receptor subtype, most likely by inhibition of glutamate release. (Key words: Anesthetics, volatile: halothane. Animals: mouse. Brain: hippocampus. Central nervous system: excitatory postsynaptic currents. Central nervous system, receptors: glutamate; \mathbf{N}-methyl-d-aspartate; non- \mathbf{N} -methyl-d-aspartate. Measurement techniques: hippocampal slice; patch-clamp.)

GENERAL anesthetics affect synaptic transmission at concentrations likely to be found in the brain during surgical anesthesia. ${ }^{1}$ This interaction may take place at multiple sites and may differ from one neurotransmitter system to another. ${ }^{2,3}$ The precise sites and mechanisms of this interaction as well as their relative importance to the anesthetic state are not yet understood.

Halothane affects the inhibitory γ-aminobutyric acid (GABA)-mediated transmitter system at various sites. First, in cortical slices, it reduces the breakdown of GABA, thus potentially increasing its concentration in the synaptic cleft. ${ }^{4}$ Second, it prolongs the time constant of decay of spontaneous, GABA $_{A}$ receptor-mediated postsynaptic currents in hippocampal slices through release of intracellular calcium. ${ }^{4}$ These effects may contribute to the depressant effect of halothane on the central nervous system (CNS).
Several studies have investigated the effects of halothane on excitatory synaptic transmission in a variety of mammalian CNS preparations. The results of experiments conducted in vivo have been contradictory. ${ }^{5}$ In the cat, halothane was found to facilitate excitatory synaptic transmission in the cuneate nucleus ${ }^{6}$ and to depress it in the spinal cord ${ }^{7}$ but in the rat hippocampus was found to leave it unaffected. ${ }^{8}$ More consistent results were obtained in experiments in CNS preparations in vitro. Halothane depressed excitatory synaptic transmission in the guinea pig olfactory cortex ${ }^{9}$ and dentate gyrus ${ }^{10}$ as well as in the spinal cord of newborn rats. ${ }^{11}$ Contradictory results, however, were obtained in the rabbit olfactory bulb ${ }^{12}$ and in some pathways of

PEROUANSKY ET AL.
the rat hippocampus. ${ }^{13,14}$ This inconsistency may reflect the variety of preparations and recording techniques or may result from multiple indirect CNS effects of halothane, which may mask its direct action on excitatory synaptic transmission.
In most if not all of the above preparations, as in many other mammalian CNS synapses, the neurotransmitter mediating fast excitatory synaptic transmission is thought to be glutamate. ${ }^{15}$ Synaptically released glutamate has been shown to activate two main subtypes of postsynaptic receptors coupled to ionic channels, namely the α-amino-3-hydroxy-5-methylisoxazole-4propionic acid (AMPA)-kainate receptor and the n -methyl-D-aspartate (NMDA) receptor, as well as a G-protein-coupled (metabotropic) receptor. ${ }^{16}$ Whether halothane depresses excitatory synaptic transmission by interacting directly with any of these receptors and whether it affects them equally or differentially are not known.
The purposes of this study were to investigate the effects of halothane on glutamatergic synaptic transmission and to gain insight into its mechanism of action by comparing its effects on AMPA-kainate (i.e., nonNMDA) and on NMDA receptor-mediated responses in a central mammalian neuron. We obtained tight-seal, whole-cell recordings of excitatory postsynaptic currents (EPSCs) and agonist-induced currents from adult mouse CA1 hippocampal pyramidal cells in thin slices. ${ }^{17,18}$

Materials and Methods

Preparation of Slices

Institutional approval for the performance of the experiments was obtained. Experiments were performed on thin hippocampal slices from adult mice (49-90 days old). Slices were prepared by the same technique used to prepare thin slices from juvenile rat brain. ${ }^{17,18}$ In brief, mice were anesthetized with ether and decapitated with a guillotine. The brain was quickly removed and cooled in ice-cold saline. A block of tissue containing one hippocampus was glued with cyanoacrylate to the stage of a vibratome. Transverse slices $150 \mu \mathrm{~m}$ thick (fig. 1A) were cut from the hemispheric region containing the hippocampus, transferred to an incubation chamber containing oxygenated ($95 \% \mathrm{O}_{2}-5 \%$ CO_{2}) saline at $34^{\circ} \mathrm{C}$, and used one at a time after 1 h of incubation. In the recording chamber the slice was continuously perfused $\left(2.5 \mathrm{ml} \cdot \mathrm{min}^{-1}\right)$ with oxygenated saline at room temperature $\left(21-23^{\circ} \mathrm{C}\right)$ (fig. 1B).

Fig. 1. Preparation and experimental setup. (A) Transverse hippocampal slice. The Schaffer collaterals were stimulated with an electrode (S) close to the pyramidal cell clamped by the recording electrode (R). Arrows = direction of action potential propagation within the hippocampal circuitry: from the dentate gyrus (DG) (filled circle = granule cell) via the mossy fibers to CA3 pyramidal cell (filled rhomboid) and further on via the Schaffer collaterals to CA1 pyramidal cells (filled rhomboid). Interneurons are not depicted. (B) System for stimulation and recording in slices. A chamber containing the hippocampal slice (HS) was mounted on the stage (S) of an upright microscope. Stimulating (SP) and recording (RP) pipettes were placed with visual control through a $\times 400 \mathrm{mag}-$ nifying immersion objective (O). Inflow (IF) and outflow (OF) tracts for the experimental solutions were situated at opposite sides of the chamber.

Solutions and Drugs

The standard saline used for dissection and maintenance of slices consisted of (millimolar): NaCl 125 , KCl 2.5 , hydroxyethylpiperazineethane sulfonic acid

PATCH-CLAMP STUDY OF HALOTHANE AND GLUTAMATERGIC EPSCs
(HEPES) 13, $\mathrm{NaH}_{2} \mathrm{PO}_{4} 1.25$, glucose 12.5, $\mathrm{CaCl}_{2} 1.5$, and $\mathrm{MgSO}_{4} 4$ at $p \mathrm{H} 7.3$. The concentration of NaHCO_{3} was 26.7 mm in the dissection and experimental solutions and 13 mm in the incubation solution. All experimental salines also contained bicuculline methiodide $(10 \mu \mathrm{M})$ to block $\mathrm{GABA}_{\mathrm{A}}$ receptor-mediated chloride currents, and glycine ($5 \mu \mathrm{M}$) to ensure saturation of the glycine binding sites of NMDA receptors ${ }^{19}$ and to increase the selectivity of 6 -nitro- 7 -cyano-qui-noxaline-2,3-dion (CNQX) to non-NMDA receptors. ${ }^{20}$ In the experimental salines the concentration of CaCl_{2} was increased to 2.5 mm , whereas MgCl_{2} was either omitted completely or added at the specified concentrations. Saline without added $\mathrm{MgCl}_{2}\left(\mathrm{Mg}^{2+}\right.$-free saline $)$ contained approximately $2 \mu \mathrm{M} \mathrm{Mg}^{2+}$, as measured with atomic absorption spectroscopy. Dl-2-Aminophosphonovaleric acid (APV) or CNQX were added to block NMDA or non-NMDA receptor-mediated currents, respectively. ${ }^{21,22}$ In one series of experiments NMDA (5 $\mu \mathrm{M}$) or glutamate (10 and $20 \mu \mathrm{~m}$) was applied by bath perfusion. In this series all salines contained also tetrodotoxin ($1 \mu \mathrm{M}$) to block neurally evoked transmitter release
The intracellular (pipette) solution consisted of (millimolar): CsF 130, NaCl 10, hydroxyethylpiperazineethane sulfonic acid 10, ethyleneglycol-bis-(β aminoethyl ether) tetraacetic acid (EGTA) $10, \mathbf{M g C l}_{2}$, $\mathrm{CaCl}_{2} 1$, tetraethyl ammonium 10 . The $p \mathrm{H}$ was adjusted to $7.2-7.3$. The osmolarity was approximately 10% lower than the measured osmolarity of the extracellular solution (300-310 mOsm). The use of cesium and tetraethyl ammonium to block K^{+}conductances and of fluoride to reduce voltage-dependent Ca^{2+} currents, improved the space clamp. Drugs were purchased from Sigma Chemical (St. Louis, MO), with the exception of CNQX (Tocris Neuramin, Bristol, United Kingdom) and halothane (Trofield Surgicals, Zug, Switzerland).

Application and Measurement of Halothane

The fresh $\mathrm{O}_{2}-\mathrm{CO}_{2}$ mixture was directed by a flowmeter through a vaporizer (Enfluratec) containing halothane. The vaporizer was calibrated for halothane with an IRIS Gas Analyzer (Draeger, Lübeck, Germany). The gas mixture of $\mathrm{O}_{2}-\mathrm{CO}_{2}$-halothane was then used to bubble the experimental saline for at least 15 min before it was applied to the slice with a peristaltic pump.

Halothane concentrations in the recording chamber were measured with a gas chromatograph (Tracor 540) equipped with a $1.83-\mathrm{m} \times 0.3-\mathrm{cm}$ glass column
(packed with Gaschrom 220, 80/100 mesh, Alltech), flame ionization detector, and nitrogen as the carrier gas. The temperatures of the injector, detector, and oven were $165^{\circ} \mathrm{C}, 165^{\circ} \mathrm{C}$, and $155^{\circ} \mathrm{C}$, respectively. Aqueous test samples ($10 \mu \mathrm{l}$) were withdrawn from the recording chamber with a gas-tight syringe (Hamilton) and injected directly into the column. Peak area values from the test samples were compared with those of known concentrations of halothane standards in methanol. Column retention times for halothane and methanol were approximately 3 min and 30 s , respectively. The results of the concentration measurements are illustrated in figure 2 . Standard halothane concentrations of $0.2 \%, 0.4 \%, 0.9 \%, 2.5 \%$, and 5.1%, as measured with a gas analyzer (IRIS) at the exit from the vaporizer, corresponded to concentrations of $0.37 \pm$ $0.01,0.43 \pm 0.06,0.64 \pm 0.04,1.49 \pm 0.12$, and 2.79 $\pm 0.24 \mathrm{~mm}$ in the slice-bathing solution (mean $\pm \mathrm{SD}$ from two or three measurements).

Stimulation and Recording

Pyramidal cells in the CA1 field of the hippocampal slice were visualized at $\times 400$ magnification with a wa-

Fig. 2. Relation between the concentrations of halothane in the saline perfusing the slice chamber (millimolar) and in the gas mixture applied to the saline (percentage). Data points are mean $\pm S D$ of measured halothane concentrations in the saline bathing the slice at each vaporizer setting. The relation between the two variables in the tested range was linear.
ter immersion objective using an upright microscope equipped with Nomarski optics (standard 14, Zeiss, Germany) (fig. 1B). Tight-seal whole-cell recordings ${ }^{23}$ were obtained with recording pipettes pulled from borosilicate glass (Hilgenberg, Maisfeld, Germany) on a vertical puller (List-medical, Germany) and coated with Sylgard resin (Dow Corning Chemical, Midland, MI). The series resistance ($5-10 \mathrm{M} \Omega$) was compensated to $50-70 \%$ by the patch-clamp amplifier (LM-EPC 7, ListElectronic, Darmstadt, Germany). The pipettes used for cleaning and stimulating were pulled from disposable micropipettes (Boralex, Rochester Scientific) and filled with saline. The EPSCs were evoked by stimulating close ($20-70 \mu \mathrm{~m}$) to the patched cell at a frequency of 0.1 Hz , using a bipolar electrode consisting of the aforementioned cleaning pipette and a remote $\mathrm{Ag}-\mathrm{AgCl}$ pellet connected by a $100-\mu$ m-thick platinum wire to an isolation unit (World Precision Instruments, Aston, England). Stimulus strength was adjusted to evoke maximal stable EPSCs.

Data Analysis

All currents recorded were filtered at 3 kHz , digitized on-line at sampling rates between 0.7 and 2 kHz and analyzed off-line with a personal computer and pClamp software (Axon Instruments). Kinetic analysis was performed on averaged recordings (usually five to ten consecutive traces). The rise times of synaptic currents were measured at the $10-90 \%$ peak. Their decays were fitted with the exponential function: $y=A e^{-t / \tau}$ for sin-gle-exponential decay, where $A=$ the peak current amplitude and $\tau=$ the time constant of decay. The algorithms used for fitting these functions to data points minimized the least-squares error between data points and calculated fit points by multiple least-squares regression for amplitudes and a simplex minimization for time constants. The decay of hippocampal NMDA EPSCs can be fitted with one ${ }^{24}$ or with the sum of two exponentials. ${ }^{18,25}$ For the current analysis of halothane effects, all currents were fitted with a single exponential to facilitate the comparison of decay time constants. Measurements are given as mean $\pm \mathrm{SD}$. Differences among multiple groups were tested by one- or two-way analysis of variance, as indicated. When significant differences were indicated in the F ratio test ($P<0.001$), the significance of differences between means of any two of these groups was determined by the modified Tukey method for multiple comparisons with an α of 0.05 . Differences between paired sets of data were compared by using Student's t test.

The solid lines through the data points in current voltage plots were fitted as described previously. ${ }^{18}$ The dose-response curve for halothane was obtained by fitting experimental results with the Hill equation

$$
\mathrm{I}=\mathrm{I}_{\mathrm{m}} /\left(1+\left(\mathrm{IC}_{50} /[\text { halothane }]\right)^{\mathrm{n}}\right)
$$

in which $\mathrm{I}_{\mathrm{m}}=$ maximal inhibition; $\mathrm{IC}_{50}=$ the concen. tration producing 50% inhibition; and $n=$ the Hill coefficient.

Results

Excitatory Postsynaptic Currents in Adult CA1

 NeuronsThe current results are based on recordings from 22 CA1 pyramidal cells from adult mouse hippocampi. Stimulation of afferent fibers in the vicinity of patched neurons reliably evoked stimulus-graded EPSCs. Peak amplitudes of EPSCs ($I_{\text {peak }}$) evoked by supramaximal stimuli at holding voltage of -60 mV varied from tens to hundreds of picoamperes in different cells. A representative example is shown in figure 3 A . When evoked in standard saline (i.e., containing $1 \mathrm{~mm} \mathrm{Mg}^{2+}$) and at holding potentials negative to -40 mV , the EPSCs had a relatively fast time course. The EPSC decay be came progressively slower with depolarization (fig. 3A, left). Changing to Mg^{2+}-free saline also prolonged the decay of EPSCs evoked at negative holding potentials and augmented their amplitude (fig. 3A, right). This dependence on voltage and $\mathbf{M g}^{2+}$ is characteristic of EPSCs mediated by admixed non-NMDA and NMDA receptors. ${ }^{26}$

To characterize more precisely the possible contribution of non-NMDA and NMDA receptors to the native EPSC, we determined the current-voltage relations of $I_{\text {peak }}$ and of the EPSC measured 25 ms after the peak (I_{25}) (fig. 3B). Both $\mathrm{I}_{\text {peak }}$ and I_{25} reversed at holding potentials close to 0 mV , as expected for glutamate receptor-mediated currents in our experimental conditions. ${ }^{18,24,26}$ The relation of $\mathrm{I}_{\text {peak }}$ versus holding potential in standard saline was nearly linear over a large voltage range, consistent with its mediation by nonNMDA receptors. By contrast, the corresponding relation of I_{25} versus holding potential displayed a region of negative slope conductance at voltages negative to -30 mV , indicating the presence of a slower NMDA receptor-mediated EPSC component. As expected, this region in the current-voltage relation was shifted to much more negative voltage upon perfusion with Mg^{2+}.

Fig. 3. Glutamatergic excitatory postsynaptic currents (EPSCs) in adult CA1 pyramidal cells consisted of non-NMDA (non-n-methyl-D-aspartate) and NMDA receptor-mediated components. (A) Exemplary native EPSCs recorded at various holding potentials $\left(V_{H}\right)$ in standard saline ($1 \mathrm{~mm} \mathrm{Mg}^{2+}$) (A, left) and in $\mathbf{M g}^{2+}$-free saline (A, right). In standard saline, depolarizing $\mathbf{V}_{\mathbf{H}}$ recruited a slow EPSC component. This component was present at all $\mathrm{V}_{\mathrm{H}} \mathrm{s}$ in $\mathbf{M g}^{2+}$-free saline. (B) Current-voltage ($I-\mathrm{V}_{\mathrm{H}}$) relation of the EPSCs from the experiment illustrated in A. The peak EPSC amplitude ($I_{\text {peak }}$) and the EPSC amplitude recorded 25 ms after the peak $\left(\mathrm{I}_{25}\right)$ were plotted against $\mathrm{V}_{\mathrm{H}} \cdot \mathrm{I}_{25}-\mathbf{V}_{\mathrm{H}}$ in $\mathbf{M g}^{\mathbf{2 +}}$ saline (closed triangles) displays an area of negative slope conductance typical for NMDA receptor-mediated currents. The deviation from linearity of $I_{\text {peak }}-V_{H}$ (open triangles) at $V_{H} S$ less than -30 mV suggests that NMDA EPSCs contribute to $I_{\text {peak }}$, also in $1 \mathrm{~mm} \mathrm{Mg}{ }^{2+}$ saline (see below). (C) Pharmacologic separation of the non-NMDA and NMDA EPSC components. (C, left) EPSCs recorded at -60 mV in $\mathbf{M g}^{\mathbf{2 +}}$-free saline. Application of $100 \mu \mathrm{M}$ aminophosphonovaleric acid (APV), an NMDA receptor antagonist, blocked a slow EPSC component. The remaining EPSC had a fast rise time and decayed to near baseline within 25 ms after the peak. It was blocked entirely by $5 \mu \mathrm{~m}$ 6-nitro-7-cyano-quinoxaline-2,3-dion (CNQX), an α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-kainate receptor antagonist. (C, right) EPSCs from another cell, recorded at -45 mV in $1 \mathrm{~mm} \mathrm{Mg}{ }^{2+}$ saline. Application of $5 \mu \mathrm{~m} C N Q X$ blocked a fast EPSC component. The remaining EPSC was almost com pletely suppressed by $100 \mu \mathrm{~m}$ APV. Although the rise phase of the NMDA EPSC component is slower than that of the native EPSC, it contributes substantially to $I_{\text {peak }}$. All sample traces are averages of five consecutive records. Calibration bars in the two panels differ.
free saline (fig. 3B). Similar dual component EPSCs were previously described in hippocampal slices from juvenile rats. ${ }^{18,24,26}$
The non-NMDA and the NMDA EPSC components could be separated pharmacologically by using receptor subtype-specific antagonists. Blocking NMDA receptors with $100 \mu \mathrm{~m}$ APV isolated the fast non-NMDA EPSC, which was suppressed completely by addition of $5 \mu \mathrm{M}$ CNQX (fig. 3C, left). Conversely, adding $5 \mu \mathrm{M}$ CNQX to block non-NMDA receptors isolated the slow NMDA EPSC, which was abolished completely by addition of $100 \mu \mathrm{MAPV}$ (Fig. 3C, right).
As previously shown in juvenile rat hippocampal neurons, ${ }^{18,24,26}$ the isolated non-NMDA EPSCs in adult mouse pyramidal cells were much faster than the NMDA EPSCs. The rise time and decay time constant of the former at -60 mV holding potential were 1.0 ± 0.4 and $7.4 \pm 0.9 \mathrm{~ms}$ (mean $\pm \mathrm{SD} ; \mathrm{n}=6$), respectively. By contrast, the rise time and decay time constant of the latter were 11.3 ± 3.9 and $198 \pm 37 \mathrm{~ms}(\mathrm{n}=5)$, respectively.

Effects of Halothane on Excitatory Postsynaptic Currents

Having characterized the receptor subtypes mediating EPSCs in adult mouse CA1 pyramidal neurons, we tested the sensitivity of the native EPSC and of its two components to halothane. Representative results are illustrated in figure 4 . At -30 mV holding potential, 0.9% $(0.64 \mathrm{~mm})$ halothane reduced both the early and the late components of the native EPSC (fig. 4A). Likewise, halothane reduced both the pharmacologically isolated non-NMDA (fig. 4B) and NMDA EPSCs (fig. 4C). The maximal depression was achieved within 8-12 min of exposure to halothane and recovered nearly completely within 8-12 min after terminating the exposure.

To characterize further the action of halothane, we examined its effects on the two components of the native EPSC at different holding membrane potentials ($-90-$ +30 mV). A representative experiment is illustrated in figure 5A. Halothane (0.9%) blocked both EPSC components ($\mathrm{I}_{\mathrm{peak}}$ and I_{25}) over the whole voltage range tested without changing their reversal potential. The pooled results of four similar experiments (0.9% halothane) are described in figure 5B. Both EPSC components were equally depressed by halothane in a voltage independent manner across the entire voltage range tested.

Dose-Response Relation

To test whether halothane preferentially affects one subtype of glutamate receptors, we compared the de-

Fig. 4. Halothane depressed the native excitatory postsynaptic potential (EPSC) and its two components. (a) Native EPSCs recorded at -30 mV in $1 \mathrm{~mm} \mathrm{Mg}{ }^{2+}$. (b) Non-n-methyl-D-aspartate (non-NMDA) EPSCs recorded in another cell at $\mathbf{- 6 0 ~ m V}$ in $\mathbf{M g}^{2+}$-free saline containing $100 \mu \mathrm{M}$ aminophosphonovaleric acid (APV). (c) NMDA EPSCs recorded in another cell at -60 mV in $\mathbf{M g}^{\mathbf{2 +}}$-free saline containing 5 $\mu \mathrm{M}$ 6-nitro-7-cyano-quinoxaline-2,3dion (CNQX). In all three cases, exchanging to salines saturated with 0.9% halothane rapidly depressed the EPSCs. A steady state was achieved within $8-12 \mathrm{~min}$. Reperfusion with control salines reversed the halothane depression within $8-15 \mathrm{~min}$. Time calibrations in the three panels differ.
pressant action of several halothane concentrations on pharmacologically isolated non-NMDA and NMDA EPSCs. The results obtained from 15 pyramidal cells are summarized in figure 6 . We could not detect a significant difference in the depression of non-NMDA versus NMDA EPSCs (two-way analysis of variance). At the lowest halothane concentration applicable with our vaporizer $(0.2 \%, 0.37 \mathrm{~nm})$, the non-NMDA and NMDA EPSCs were depressed by $24 \pm 8 \%$ and $18 \pm 6 \%$, respectively ($\mathrm{n}=3$ for for each EPSC type). Higher halothane doses caused more EPSC depression, with the highest concentration tested ($5.1 \%, 2.79 \mathrm{~mm}$) causing almost a complete suppression of both EPSCs ($97 \pm$ 4% and $97 \pm 5 \% ; n=4$ and $n=5$, respectively). The IC_{50} values, interpolated from the fitted dose-response curves, were $0.69 \%(0.57 \mathrm{~mm})$ and 0.87% (0.66 mm) for the NMDA and non-NMDA EPSCs, respectively (fig. 6).

Kinetics of Excitatory Postsynaptic Currents

We next examined the effects of halothane on the time course of isolated non-NMDA and NMDA EPSCs evoked at -60 mV holding potential. These measurements were not executed on data obtained with high halothane concentrations, because the marked depression of the EPSCs rendered them unreliable. The pooled results are shown in figure 7 . At the three concentrations tested $(0.4 \%, 0.9 \%$, and 2.5%), halothane had no effect on the rise times, and halothane in concentrations to 0.9% did not significantly affect the decay time constants of isolated EPSCs.

Exogenously Applied Agonists

The effects of halothane described thus far were neither specific for a glutamate receptor subtype nor indicative of a specific postsynaptic depressant mechanism of action. To test more directly whether halothane may act postsynaptically at the glutamate receptor channel complex, we examined the effects of halothane on currents evoked by bath-applied glutamatergic ag. onists. Representative results from a series of six experiments are illustrated in figure 8 . The salines contained $1 \mu \mathrm{M}$ tetrodotoxin to block neurally evoked transmitter release from nerve terminals. At -60 mV holding potential, application of $5 \mu \mathrm{M}$ NMDA induced a large inward current (fig. 8A). Halothane in concentrations to 5.1% (shown above to depress the EPSCs almost completely) did not depress the NMDA-induced currents (figs. 8B and 8C). These currents were entirely depressed by $400 \mu \mathrm{M}$ APV (data not shown).
In two additional experiments we similarly tested the effects of halothane on currents evoked by bath-applied glutamate (10 and $20 \mu \mathrm{M}$). Halothane (5.1%) had no effects on these currents, which could be entirely abolished by the concomitant administration of APV and CNQX (400 and $10 \mu \mathrm{~m}$, respectively; data not shown).

Discussion

The main finding of this study is that halothane suppresses glutamate receptor-mediated EPSCs in adult hippocampal pyramidal cells in a dose-dependent manner. Both non-NMDA and NMDA EPSCs are revers-
A

$$
\begin{aligned}
& \text { - } I_{\text {peak }} \text { Control } \\
& \text { - } I_{\text {peak }} \text { Halothane } 0.9 \% \\
& \nabla I_{25} \text { Control } \\
& -I_{25} \text { Halothane 0.9\% }
\end{aligned}
$$

B

Fig. 5. Halothane-induced depression of excitatory postsynaptic potentials (EPSCs) was independent of membrane voltage. (A) Relations of peak EPSC amplitude ($I_{\text {peak }}$) and EPSC amplitude recorded 25 ms after the peak $\left(I_{25}\right)$ of native EPSCs versus holding potential $\left(V_{H}\right)$ in $1 \mathrm{~mm} \mathrm{Mg}{ }^{2+}$ saline before and after equilibration with 0.9% halothane. Both current components were depressed across the entire voltage range $(-90-$ $+30 \mathrm{mV})$. Voltage dependence of the block was not evident. (A, Inset) Exemplary EPSCs recorded at the indicated V_{H} in control and in 0.9% halothane saline. (B) Percentage block of $I_{\text {peak }}$ (circles; mostly non-n-methyl-D-aspartate [non-NMDA] component) and I_{25} (triangles; NMDA component) by 0.9% halothane at various $V_{H} s$. Data points represent the pooled results from four experiments (mean \pm SD). EPSCs close to the reversal potential were not analyzed because of their small amplitudes. The slopes of the linear regression lines were -0.03 for non-NMDA and NMDA components, suggesting that halothane blocks both EPSC components in a voltage-independent manner.
ibly depressed by halothane in a voltage-independent manner, whereas agonist-induced currents are not affected.

Depression of Glutamatergic Excitatory
 Postsynaptic Currents

Several previous studies using extra- and intracellular recording techniques have demonstrated that anesthetic doses of halothane depress fast synaptic transmission in mammalian CNS preparations in vitro. ${ }^{9-11,14}$ Our data suggest that this effect of halothane can be accounted for by a direct depression of the non-NMDA EPSC, which constitutes the predominant EPSC component during fast synaptic transmission in most CNS excitatory synapses. ${ }^{15}$
Halothane depressed the amplitudes of non-NMDA and NMDA EPSCs equally well. In this respect halothane

Fig. 6. Dose-response relation of halothane-induced depression of excitatory postsynaptic currents (EPSCs). The doseresponse curves summarize the results from 15 pyramidal cells clamped at -60 mV in $\mathbf{M g}^{2+}$-free saline. Each cell was exposed to several concentrations of halothane. Non-n-methyl-d-aspartate (non-NMDA) and NMDA EPSCs were pharmacologically isolated with aminophosphonovaleric acid (APV) $(100 \mu \mathrm{M})$ and 6-nitro-7-cyano-quinoxaline-2,3-dion (CNQX) ($5 \mu \mathrm{M}$), respectively. Solid lines = lines fitted through the data points; dotted lines $=$ concentrations producing 50% inhibition (IC $_{50}$): 0.87% $(0.66 \mathrm{~mm})$ for non-NMDA EPSCs and $0.69 \%(0.57 \mathrm{~mm})$ for NMDA EPSCs. (Insets) Exemplary non-NMDA (inset, top left) and NMDA (inset, bottom right) EPSCs exposed to the indicated halothane concentrations. Sample records are averages of five consecutive traces.

Fig. 7. Halothane does not significantly affect the kinetics of n-methyl-d-aspartate (NMDA) and non-NMDA excitatory postsynaptic currents (EPSCs). (A) Effect of halothane on the rise time (rt) and decay (τ) of nonNMDA EPSCs (isolated with $100 \mu \mathrm{M}$ aminophosphonovaleric acid [APV]). ($A, t O P$) Bars $=$ means $\pm S D(n=6)$ of EPSC rise times before (control), after 10 min of exposure (HAL), and after 10 min of wash (Wash). Three concentrations of halothane were tested ($0.4 \%, 0.9 \%$, and 2.5%). The control, test, and wash rise times for 0.9% halothane were $1.49 \pm 0.50,1.23 \pm$ 0.21 , and $1.34 \pm 0.30 \mathrm{~ms}$, respectively. (A, bottom) Bars $=$ mean \pm SD $(\mathrm{n}=6)$ of the EPSC decay time constant before (0), after 4 and 8 min of exposure to 0.4% and 0.9% halothane (horizontal line), and after 4 and 8 min of wash. (B) Same as A for NMDA EPSCs ($\mathrm{n}=5$; isolated with $5 \mu \mathrm{~m}$ CNQX). Scales in the ordinates differ. The control, test, and wash rise times for 0.9% halothane were $9.3 \pm 1.9,12.0 \pm 3.4$, and $11.0 \pm 3.0 \mathrm{~ms}$, respectively. In the clinically relevant range, halothane did not significantly affect the rise times of non-NMDA or NMDA receptor-mediated EPSCs. The effect of halothane on the decay of EPSCs was similar: in 0.9% halothane, the monoexponential decay time constant of the non-NMDA EPSCs decreased from $8.6 \pm$ 1.4 to $6.7 \pm 1.4 \mathrm{~ms}(\mathrm{n}=6)(A$, bottom $)$ and that of the NMDA EPSCs from 180 ± 58 to $152 \pm 38 \mathrm{~ms}(\mathrm{n}=5)(B$, bottom $)$ without reaching statistical significance ($P>0.05$, paired Student's t test).
differs from some other general anesthetics, which affect non-NMDA and NMDA receptor-mediated currents differentially in hippocampal neurons. Ketamine preferentially suppresses NMDA EPSCs. ${ }^{27}$ Likewise, ether inhibits NMDA-induced currents in cultured hippocampal neurons more potently than currents induced by AMPA, whereas pentobarbitone and phenobarbitone preferentially inhibit AMPA-induced currents. ${ }^{28}$

Postsynaptic Action of Halothane

The use of whole-cell tight-seal recordings with lowresistance patch pipettes allowed us to examine with high resolution the time course of the EPSCs under reasonably good space-clamp conditions. ${ }^{24}$ The rise times of non-NMDA and NMDA EPSCs were not affected by halothane in concentrations up to 2.5%. Similarly, the effect of halothane on the decays of both EPSCs did not reach statistical significance even at the highest concentration tested (0.9%). These results are in agreement with findings in spinal motoneurons of decerebrate cats, in which halothane depressed excitatory postsynaptic potentials without changing their decay. ${ }^{7}$
Several studies have shown that the decays of nonNMDA 29 and NMDA ${ }^{30,31}$ EPSCs are determined predom-
inantly by postsynaptic factors. The effect of noncompetitive antagonists of NMDA receptor-mediated currents is voltage dependent. ${ }^{27}$ Open-channel blocking agents such as ketamine and MK-801 have a pronounced effect on the decay of NMDA EPSCs. ${ }^{31}$ Therefore, it is unlikely that halothane blocks the NMDA EPSCs by interacting noncompetitively with the NMDA receptor-channel complexes. Because halothane did not reduce agonist-induced currents, a competitive antagonism at the tested concentrations can also be excluded. In a previous study in olfactory cortical slices, halothane in concentrations to 1% also did not affect the depolarizing response to exogenous glutamate in concentrations that suppressed excitatory synaptic transmission. ${ }^{32}$ In contrast, pentobarbitone, ether, methoxyflurane, alphaxalone, and isoflurane were shown to reduce glutamate-induced currents at concentrations blocking excitatory synaptic transmission, thus indicating a postsynaptic site of action. ${ }^{32,33}$ Isoflurane also was shown to decrease the frequency of opening and the mean open time of single NMDA receptor channels in cultured hippocampal neurons. ${ }^{34}$
These data stand in contrast to the marked effects of halothane on the kinetics of inhibitory postsynaptic

PATCH-CLAMP STUDY OF HALOTHANE AND GLUTAMATERGIC EPSCs

currents described in cultured hippocampal neurons ${ }^{35}$ and on the responses to exogenously applied GABA in dissociated neurons from the tractus solitarius. ${ }^{36}$ In the latter study, halothane 1 mm was also noted to result in mild depression of glutamate receptor agonist-induced currents. The depression was most prominent in the desensitizing component of the current response to quisqualate, with minimal effects on the response to kainate, the response to NMDA, and the steady-state component of the response to glutamate. These experiments are not directly comparable to ours because of differences in preparations (immature rats $v s$. adult mice) and methods of drug application (the relative slowness of our system leads us to miss most of the quickly desensitizing components of responses to exogenously applied drugs). However, we cannot exclude the possibility that halothane, at high concentrations, exhibits some postsynaptic effect on quis-qualate-activated currents.

Presynaptic Action of Halothane

The apparent lack of postsynaptic action supports the hypothesis that halothane depresses the EPSCs predominantly by a presynaptic action, namely, by inhibition of glutamate release. The equal depression of non-NMDA and NMDA EPSCs is consistent with this hypothesis, because non-NMDA and NMDA receptors in the hippocampus are colocalized to the same synapses. ${ }^{37}$ Likewise the lack of significant changes in the rise times and decays of the EPSCs also are consistent with a presynaptic action. ${ }^{31}$

The mechanism by which halothane may presynaptically depress the EPSCs remains to be elucidated. One possibility is that the drug reduces neurally evoked glutamate release by blocking presynaptic Ca^{2+} channels. Halothane depressed Ca^{2+} currents and Ca^{2+}-dependent prolactin release in pituitary cells with an IC_{50} of $0.8 \mathrm{~mm}^{38}$ and $0.4 \mathrm{~mm},{ }^{39}$ respectively. Catecholamine release in pheochromocytoma cells also was inhibited by halothane with an IC_{50} of $0.7 \mathrm{~mm} .{ }^{40}$ These IC_{50} values, determined in different preparations under widely varying experimental conditions, are similar to the IC_{50} values reported here ($0.57-0.66 \mathrm{~mm}$) and may indicate common mechanisms of action. In support of this notion, halothane has been shown to block Ca^{2+} currents in cortical neurons. ${ }^{41}$ However, the relevance of these currents to transmitter release is unclear. Isoflurane, on the other hand, has been shown to block multiple subtypes of voltage-gated Ca^{2+} currents in hippocampal pyramidal neurons, ${ }^{42}$ including the N and the P sub-

Fig. 8. Halothane did not affect currents induced by exogenously applied n-methyl-D-aspartate (NMDA) in a CA1 pyramidal cell. The neuron was clamped at -60 mV and perfused with $\mathbf{M g}^{2+}$-free saline containing $1 \mu \mathrm{M}$ tetrodotoxin (TTX). Bath application of $5 \mu \mathrm{M}$ NMDA for 2 min evoked an inward current (a). Similar currents were evoked by repeated NMDA applications ($b-d$). These currents were not reduced by saturating the saline with 2.5% (b) or 5.1% halothane (c). These concentrations reduced the EPSCs by $85-100 \%$.
types, which are implicated in transmitter release, ${ }^{43}$ and to reduce Ca^{2+}-dependent glutamate release in hippocampal slices. ${ }^{44}$ These findings indicate neurotransmitter release as a potential site of anesthetic action. In conjunction with its aforementioned effects on NMDA receptor-operated channels, ${ }^{34}$ these observations indicate that isoflurane may act by both pre- and postsynaptic mechanisms.

Relevance to Clinical Action of Halothane

We performed the experiments at hypothermic temperatures $\left(21-23^{\circ} \mathrm{C}\right)$ only slightly greater than those that in higher mammals seem to reduce anesthetic requirements to zero $\left(18-20^{\circ} \mathrm{C}\right) .{ }^{45,46}$ However, other workers have shown that halothane inhibits excitatory neurotransmission in preparations kept close to normal body temperature ${ }^{7,9,10,14}$ at free aqueous concentrations
comparable to ours．${ }^{14}$ Therefore it is most probable that the effects of halothane on the EPSCs are also pres－ ent at physiologic temperatures．Hypothermia causes reduction of Ca^{2+} entry into the presynaptic terminal，${ }^{47}$ leading to a reduction of transmitter release with de－ creasing temperature．${ }^{48}$ Because hypothermia itself ex－ erts an anesthetic effect，it is possible that hypothermia shares some mechanism of action with halothane．
We used the hippocampal excitatory synapse as a model to show that halothane suppresses glutamatergic EPSCs at clinically relevant concentrations．Taking to－ gether the equal depression of non－NMDA and NMDA EPSC amplitudes，the voltage insensitivity of this effect， and the lack of a significant action on EPSC kinetics and on agonist－induced currents，it is most likely that $0.37-2.78 \mathrm{~mm}$ halothane acts predominantly at the presynaptic glutamatergic terminals．It is tempting to speculate that such an action accounts also for the depression of glutamatergic excitatory neurotransmis－ sion in other CNS structures，${ }^{7.9 .11,13}$ a possibility that may be relevant for certain end points of anesthesia．${ }^{49,50}$ Whatever the mechanism，the relevance of widespread suppression of glutamatergic synapses for the mecha－ nisms of anesthesia remains to be elucidated．It is in－ teresting，however，that the anesthetic effect of halo－ thane in vivo is potentiated by drugs known to be an－ tagonists of NMDA^{51} and non－NMDA ${ }^{52}$ receptors．

The authors gratefully acknowledge the technical assistance of Yonit Viner．

References

1．Pocock G，Richards CD：Excitatory and inhibitory synaptic mechanisms in anaesthesia．Br J Anaesth 71：134－147， 1993
2．Franks NP，Lieb WR：Selective actions of volatile general an－ aesthetics at molecular and cellular levels．Br J Anaesth 71：65－76， 1993
3．Franks NP，Lieb WR：Molecular and cellular mechanisms of general anaesthesia．Nature 367：607－614， 1994
4．Tanelian DL，Kosek P，Mody I，Maclver MB：The role of GABA receptor／chloride channel complex in anesthesia．Anesthesiology 78：757－776， 1993
5．Kress HG，Tas PWL：Effects of volatile anaesthetics on second messenger Ca^{2+} in neurones and non－muscular cells．BrJ Anaesth 71 ： 47－58， 1993
6．Morris ME：Facilitation of synaptic transmission by general an－ aesthetics．J Physiol（Lond）284：307－325， 1978
7．Kullman DM，Martin RL，Redman SJ：Reduction by general an－ aesthetics of group 1a excitatory postsynaptic potentials and currents in the cat spinal cord．J Physiol（Lond）412：277－296， 1989
8．Pearce RA，Stringer JL，Lothman EW：Effect of volatile anesthetics on synaptic transmission in the rat hippocampus．Anesthesiology 71 ： 591－598， 1989

9．Richards CD：On the mechanism of halothane anaesthesia．J Physiol（Lond）233：439－456， 1973

10．Richards CD，White AE：The actions of volatile anaesthetics on synaptic transmission in the dentate gyrus．J Physiol（Lond）252： 241－257， 1975

11．Takenoshita M，Takahashi T：Mechanisms of halothane action on synaptic transmission in motoneurons of the newborn rat spinal cord in vitro．Brain Res 402：303－310， 1987

12．Nicoll RA：The effects of anaesthetics on synaptic excitation and inhibition in the olfactory bulb．J Physiol（Lond）223：803－814， 1972

13．Yoshimura M，Higashi H，Fujita S，Shimoji K：Selective depres－ sion of hippocampal inhibitory postsynaptic potentials and sponta－ neous firing by volatile anesthetics．Brain Res 340：363－368， 1985

14．MacIver MB，Roth SH：Inhalation anaesthetics exhibit pathway－ specific and differential actions on hippocampal synaptic responses in vitro．Br J Anaesth 60：680－691， 1988

15．Collingridge GL，Lester RAJ：Excitatory amino acid receptors in the vertebrate central nervous system．Pharmacol Rev 40：143－ 210， 1989

16．Miller RJ：Metabotropic glutamate excitatory amino acid re－ ceptors reveal their true colors．Trends Pharmacol Sci 12：365－367， 1991

17．Edwards FA，Konnerth A，Sakmann B，Takahashi T：A thin slice preparation for patch clamp recordings from neurones of the mam－ malian central nervous system．Pflugers Arch 414：600－612， 1989

18．Perouansky M，Yaari Y：Kinetic properties of NMDA receptor－ mediated synaptic currents in rat hippocampal pyramidal cells versus interneurones．J Physiol（Lond）465：223－244， 1993

19．Thomson AM，Walker VE，Flynn DM：Glycine enhances NMDA receptor－mediated synaptic potentials in neocortical slices．Nature 338：422－424， 1989

20．Birch PJ，Grossmann CJ，Hayes AG：6，7－Dinitro－quinoxaline－ 2，3－dion and 6 －nitro， 7 －cyano－quinoxaline－2，3－dion antagonise re－ sponses to NMDA in the rat spinal cord via an action at the strychnine－ insensitive glycine receptor．Eur J Pharmacol 56：177－180， 1988

21．Blake JF，Brown MW，Collingridge GL：CNQX blocks acidic amino acid induced depolarizations and synaptic components me－ diated by non－NMDA receptors in rat hippocampal slices．Neurosci Lett 89：182－186， 1988
22．Honore T，Davies SN，Drejer J，Fletcher EJ，Jacobsen P，Lodge D，Nielsen FE：Quinoxalinediones：Potent competitive non－NMDA glutamate receptor antagonists．Science 241：701－703， 1988

23．Hamill OP，Marty A，Neher E，Sakmann B，Sigworth FJ：Im－ proved patch－clamp techniques for high－resolution current recording from cells and cell－free membrane patches．Pflugers Arch 391：85－ 100， 1981
24．Hestrin S，Nicoll RA，Perkel DJ，Sah P：Analysis of excitatory synaptic action in pyramidal cells using whole－cell recording from rat hippocampal slices．J Physiol（Lond）422：203－225， 1990

25．Konnerth A，Keller BU，Ballanyi K，Yaari Y：Voltage sensitivity of NMDA－receptor mediated postsynaptic currents．Exp Brain Res 81： 209－212， 1990

26．Keller BU，Konnerth A，Yaari Y：Patch clamp analysis of ex－ citatory synaptic currents in granule cells of rat hippocampus．J Phys－ iol（Lond）435：275－293， 1991
27．Kemp JA，Foster AC，Wong EHF：Non－competitive antagonists of excitatory amino acid receptors．Trends Neurosci 10：294－298， 1987

30．Wakamori M，Ikemoto
nesthetics and a volatile convul $\stackrel{\substack{3}}{\overline{3}}$ ant on ansthetics and a volatile convo responses in dissocighted Cl mphrsiol 66：2014－2021， 1991 气
37．Bekkers JM，Stevens CF：$\underset{\stackrel{\sim}{\phi}}{\otimes} \mathrm{MDA}$ coloalized at individual excit⿳⺈⿴囗十丌 pampus．Nature 341：230－23 38．Herrington J，Stern RC，Evers AS， no components of calcium curgent in Jeurosci 11：2226－2240，199
39．Stern RC，Herrington J，Liষ्षु）le CJ thane on stimulus－secretion cour⿷⿸\zh14⿰⿺乚一匕⿱㇒日⿱一土寸亍ing in Neurosci 11：2217－2225，199 $\stackrel{\text { T }}{\text { T }}$
40．Kress HG，Müller J，Eise ${ }_{8}^{\circ}$ O A，G Efects of volatile anaesthetics on cyt
28. Weight FF, Lovinger DM, White G, Peoples RW: Alcohol and anesthetic actions on excitatory amino acid-activated ion channels. Ann N Y Acad Sci 625:97-107, 1991
29. Colquhoun D, Jonas P, Sakmann B: Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. J Physiol (Lond) 458:261-287, 1992
30. Lester RAJ, Clements JD, Westbrook GL, Jahr CE: Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346:565-567, 1990
31. Hestrin S, Sah P, Nicoll RA: Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron 5:247-253, 1990
32. Richards CD, Smaje JC: Anaesthetics depress the sensitivity of cortical neurones to glutamate. Br J Pharmacol 58:347-357, 1976
33. Puil E, El Beheiry H: Anaesthetic suppression of transmitter actions in neocortex. Br J Pharmacol 101:61-66, 1990
34. Yang J, Zorumski CF: Effects of isoflurane on N-methyl-D-aspartate gated ion channels in cultured rat hippocampal neurons. Ann N Y Acad Sci 625:287-289, 1991
35. Jones MV, Harrison NL: Effects of volatile anaesthetics on the kinetics of inhibitory postsynaptic currents in cultured rat hippocampal neurons. J Neurophysiol 70:1339-1349, 1993
36. Wakamori M, Ikemoto Y, Akaike N: Effects of two volatile anesthetics and a volatile convulsant on the excitatory and inhibitory amino acid responses in dissociated CNS neurons of the rat. J Neurophysiol 66:2014-2021, 1991
37. Bekkers JM, Stevens CF: NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 341:230-233, 1989
38. Herrington J, Stern RC, Evers AS, Lingle CJ: Halothane inhibits two components of calcium current in clonal $\left(\mathrm{GH}_{3}\right)$ pituitary cells. J Neurosci 11:2226-2240, 1991
39. Stern RC, Herrington J, Lingle CJ, Evers AS: The action of halothane on stimulus-secretion coupling in clonal $\left(\mathrm{GH}_{3}\right)$ pituitary cells J Neurosci 11:2217-2225, 1991
40. Kress HG, Müller J, Eisert A, Gilge U, Tas PW, Koschel K: Effects of volatile anaesthetics on cytoplasmic Ca^{2+} signaling and
transmitter release in a neural cell line. Anesthesiology 74:309319, 1991
41. Krnjevic K, Puil E: Halothane suppresses slow inward currents in hippocampal slices. Can J Physiol Pharmacol 66:15701575, 1988
42. Study RE: Isoflurane inhibits multiple voltage-gated calcium currents in hippocampal pyramidal neurons. Avesthesiology 81:104116, 1994
43. Takahashi T, Momiyama A: Different types of calcium channels mediate central synaptic transmission. Nature 366:156-158, 1993
44. Larsen M, Grondahl TO, Haugstad TS, Langmoen IA: The effect of the volatile anesthetic isoflurane on $\mathrm{Ca} 2+$-dependent glutamate release from rat cerebral cortex. Brain Res 663:335-337, 1994
45. Regan MJ, Eger EI II: Effect of hypothermia in dogs on anesthetizing and apneic doses of inhalation agents. Anesthesiology 28: 689-700, 1967
46. Antognini JF: Hypothermia eliminates isoflurane requirements at $20^{\circ} \mathrm{C}$. Anesthesiology 78:1152-1156, 1993
47. Charlton MP, Atwood HL: Synaptic transmission: Temperaturesensitivity of calcium entry in presynaptic terminals. Brain Res 170: 543-546, 1979
48. Augustine GJ, Charlton MP, Smith SS: Calcium action in synaptic transmitter release. Annu Rev Neurosci 10:633-693, 1987
49. Rampil IJ, Mason P, Singh H: Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 78 : 707-712, 1993
50. Antognini JF, Schwartz K: Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology 79:12441249, 1993
51. Scheller M, Zornow M, Fleischer J, Shearman G, Greber T: The non-competitive N -methyl-D-aspartate receptor antagonist, MK 801 profoundly reduces volatile anesthetic requirements in rabbits. Neuropharmacology 28:677-681, 1989
52. McFarlane C, Warner DS, Todd MM, Nordholm L: AMPA receptor competitive antagonism reduces halothane MAC in rats. Anes. thesiology 77:1165-1170, 1992

[^0]: - Resident Physician, Department of Anesthesiology and Critical Care, Hadassah University Hospital-Hebrew University
 † Attending Physician, Department of Anesthesiology and Critical Care, Hadassah University Hospital-Hebrew University
 \ddagger Graduate Student, Department of Membrane and Ultrastructure Research, Hebrew University School of Medicine.
 \$ Associate Professor of Physiology, Hebrew University School of Medicine.

 Received from the Department of Anesthesiology and Critical Care, Hadassah University Hospital-Hebrew University, and the Department of Physiology, Hebrew University School of Medicine, Jerusalem, Israel. Submitted for publication August 30, 1994. Accepted for publication March 13, 1995. Supported in part by the German Israeli Foundation for Scientific Research and Development, by the Bernard Katz Minerva Center in Cell Biophysics (Dr. Yaari), and by a Foulkes Fellowship (Dr. Perouansky).
 Address reprint requests to Dr. Perouansky: Department of Anesthesiology and Critical Care, Hadassah University Hospital-Hebrew University, P.O. Box 12000 Jerusalem, 91120 Israel.

