A Subtype of α_{1} Adrenoceptor Mediates Depression of Conduction in Purkinje Fibers Exposed to Halothane

Lawrence A．Turner，M．D．，＊Sanja Vodanovic，M．D．，\dagger Raymond G．Hoffmann，Ph．D．，\ddagger John P．Kampine，M．D．，Ph．D．，§ Zeljko J．Bosnjak，Ph．D．｜｜

Background：An action of epinephrine at α adrenoceptors has been reported to slow conduction in Purkinje fibers ex－ posed to halothane．In Purkinje fibers one pharmacologically distinguishable α_{1}－adrenoceptor subtype（ $\alpha_{1 \mathrm{~B}}$ ）sensitive to the noncompetitive antagonist chloroethylclonidine mediates decreases in automaticity．Another α_{1} subtype（ $\alpha_{1 \Lambda}$ ），sensitive to the competitive antagonist WB4101，increases spontaneous rate and action potential duration by a mechanism thought to involve hydrolysis of membrane phosphoinositides by phospholipase C．This study examined the dose－response re－ lation and receptor－effector mechanisms underlying depres－ sion of conduction in canine Purkinje fibers by epinephrine with halothane．
Methods：Conduction velocity was determined in vitro by measuring the conduction time between action potentials re－ corded from two Purkinje fibers located about 6 mm apart along the length of free running portions of the ventricular conduction system，the false tendons．Velocity was evaluated at $1-\mathrm{min}$ intervals during trials of rapid exposure to different agonists in groups of 6－12 preparations．

Results：Epinephrine（ $0.2-5.0 \mu \mathrm{~m}$ ）transiently decreased Pur－ kinje conduction velocity in a dose－related manner by as much as 33%（at 5μ m epinephrine with 0.86 mm （ 2.8% ）halothane）．

[^0]Velocity decreased by $5 \%(P \leq 0.01)$ at an epinephrine con－ centration similar to＂just－threshold＂dysrhythmogenic plasma epinephrine concentrations（ $0.2 \mu \mathrm{~m}$ epinephrine with 0.46 mm halothane）reported in halothane－anesthetized dogs． The decreases of conduction velocity were blocked by prazosin but not by metoprolol，were produced by phenylephrine but not by clonidine，and were antagonized by equimolar（ $0.5 \mu \mathrm{~m}$ ） concentrations of WB4101 more so $(P \leq 0.01)$ than by chlo－ roethylclonidine．WB4101（ $0.1 \mu \mathrm{~m}$ ）produced 87% inhibition of the response to $0.2 \mu \mathrm{~m}$ epinephrine after chloroethylclon－ idine pretreatment，indicating mediation by the $\alpha_{1 A}$ subtype． Other agonists linked to cardiac phospholipase C activation， including endothelin 1 （ 40 nm ）and the muscarinic agonist carbamylcholine（ 1 mm ），also decreased conduction velocity in fibers exposed to halothane．
Conclusions：Clinically relevant concentrations of epineph－ rine transiently depress conduction in Purkinje fibers exposed to halothane by activating cardiac α_{1} adrenoceptors，largely but not exclusively the WB4101－sensitive $\alpha_{1 A}$ subtype，report－ edly coupled to stimulation of phospholipase C and generation of the second messengers diacylglycerol and inositol tris－ phosphate．Anesthetic potentiation of cardiac α_{1}－adrenoceptor effects may contribute to the generation of halothane－epi－ nephrine dysrhythmias by abnormally slowing conduction and facilitating reentry．（Key words：Anesthetics，volatile： halothane．Heart：conduction．Heart，dysrhythmias：Purkinje fibers．Pharmacology：endothelin．Sympathetic nervous sys－ tem：α－adrenergic agonists．Sympathetic nervous system，cat－ echolamines：epinephrine．）

STUDIES of the receptor mechanisms mediating induc－ tion of ventricular dysrhythmias by epinephrine during halothane anesthesia indicate that activation of both α_{1} and β_{1} adrenoceptors contribute importantly to the process of dysrhythmogenesis．${ }^{1-3}$ Although several studies have demonstrated antidysrhythmic effects of halothane on β_{1}－mediated dysrhythmogenic responses in cardiac tissues，${ }^{4-6}$ little is known about the potential contribution of α_{1} adrenoceptor－mediated actions on the heart to halothane－epinephrine dysrhythmias．Pur－ kinje fiber α_{1} adrenoceptors are known to modulate automaticity and prolong repolarization．${ }^{7-9}$ Low con－ centrations of catecholamines（ $<10^{-6} \mathrm{~m}$ ）decrease Pur－
kinje fibe receptor roethylcl $\mathrm{Na}^{+}-\mathrm{K}^{+} \mathrm{e}$ of catech pranolol） potential ceptor

 of 憲rco sues ？${ }^{\text {？}}$ ． $13-1$ on 咅urki Chi资19 mar duc鱼d b blocied Studĕ es fi
 dep高ss velo⿳亠口𧘇口ity that ${ }^{2}$ his curstito a anestheti

 withלి̀hal In aḍditi mod ${ }^{\text {Gै }} 1$ lati renocept othe a ag kno effector lysiseivin c
$\underline{\alpha_{1}-A D R E N E R G I C ~ D E P R E S S I O N ~ O F ~ C O N D U C T I O N ~ B Y ~ E P I N E P H R I N E ~}$
rephrine conhythmogenic ephrine with thetized dogs. ed by prazosin ylephrine but nolar ($0.5 \mu \mathrm{M}$) than by chlo7% inhibition oroethylclon$\alpha_{1 \mathrm{~A}}$ subtype. C activation, rinic agonist tion velocity
s of epinephbers exposed tors, largely type, reportd generation inositol trisadrenoceptor alothane-epiconduction ics, volatile: ias: Purkinje nervous syssystem, catrine during on of both antly to the gh several c effects of c responses e potential actions on hmias. Purmodulate ${ }^{9}$ Low concrease Pur-
fusate contained the following (millimolar): NaCl 137 , $\mathrm{KCl} 4.0, \mathrm{CaCl}_{2} 1.8, \mathrm{MgCl}_{2} 0.5, \mathrm{NaH}_{2} \mathrm{PO}_{4} 0.9, \mathrm{NaHCO}_{3}$ 16 , and dextrose 5.5 and $50 \mu \mathrm{M} \mathrm{Na}$ ethylenediamine tetraacetic acid to limit catecholamine oxidation. All preparations were stimulated orthodromically at 150 beats/min with bipolar platinum wire electrodes and twice-threshold square-wave pulses 2 ms in duration. Action potentials were obtained from two fibers $3-8$ mm apart and at least 2 mm from the stimulation site by using glass microelectrodes and intracellular amplifiers. Only drug trials in which both cell impalements were maintained for $10-20 \mathrm{~min}$ were accepted. Every effort was made to maintain continuous impalements throughout each sequence of experimental interventions without rezeroing the amplifiers by withdrawal into the superfusate. The action potential signals were monitored on oscilloscopes, sampled by ana-logue-to-digital conversion, stored, and analyzed with a computer by standard methods for this laboratory. ${ }^{20}$ The rate of phase 0 depolarization was measured by electronic differentiation and a peak and hold detector. Conduction velocity was calculated from the time between the phase 0 upstrokes of the action potentials measured at rapid sweep with a digital oscilloscope and conduction distance measured at the end of each experiment with calibrated dividers.

The dose-response relation for the actions of epinephrine on conduction velocity of fibers exposed to halothane was determined at two anesthetic concentrations within a group of ten preparations in a balanced randomized sequence of trials. Solutions with and without L -epinephrine HCl , added as fractions of 1 ml stock solution ($1 \mathrm{mg} / \mathrm{ml}$, Adrenalin Chloride, ParkeDavis, Morris Plains, NJ) to measured volumes of superfusate, were preequilibrated with halothane from a single vaporizer. The tissues were first exposed to halothane ${ }^{22}$ for at least 20 min to obtain equilibrium. The anesthetic concentrations in the tissue bath were sampled before and after the drug trials, measured by gas chromatography and are reported with each group. The drug trials were conducted by rapidly switching between solutions and timing the trial from entry of the solution into the tissue chamber. Our preliminary studies under these conditions ${ }^{20}$ indicated that epinephrine transiently decreased velocity, reaching minimum values within $3-5 \mathrm{~min}$ and dissipating by $10-$ 12 min , despite continuing exposure to both halothane and epinephrine. Therefore the conduction velocities and action potential characteristics were measured at $1-\mathrm{min}$ intervals during $5-\mathrm{min}$ trials of epinephrine ex-
posure and at least 15 min of epinephrine－free super－ fusion was used for return to baseline between trials． The preparations were exposed，in randomized order， to trials of $0.2,1,2$ ，and $5 \mu \mathrm{~m}$ epinephrine at each of two anesthetic concentrations．These epinephrine concentrations correspond approximately to reported plasma values associated with＂just－threshold＂epi－ nephrine doses in halothane（ $0.2 \mu \mathrm{M}, 40-50 \mathrm{ng} / \mathrm{ml}$ ） and pentobarbital（ $1.5 \mu \mathrm{M}$ ，about $300 \mathrm{ng} / \mathrm{ml}$ ）－anes－ thetized dogs ${ }^{23-25}$ and to about three times that which might occur（ $5 \mu \mathrm{~m}, 1 \mathrm{mg} / \mathrm{l}$ ）at equilibrium in the plasma after intravenous injection of 1 mg epinephrine in the perioperative setting．
Receptor mechanisms modulating Purkinje fiber conduction in the presence of halothane were studied in groups of 6－12 preparations．The changes in con－ duction velocity in response to $5 \mu \mathrm{~m}$ epinephrine with halothane were first determined before and then after 30 min exposure to $1 \mu \mathrm{~m}$ dL－metoprolol（Sigma，St． Louis，MO）or $1 \mu \mathrm{M}$ prazosin HCl （Pfizer，New York， NY ）．The responses to $5 \mu \mathrm{M}$ l－phenylephrine HCl （Sigma）and $5 \mu \mathrm{M}$ clonidine HCl （Sigma）were evalu－ ated in the absence and presence of halothane in two groups to investigate the potentiation of α_{1}－adrenergic effects by halothane and to exclude a possible effect of α_{2}－adrenergic activation．${ }^{26}$ The roles of the two pharmacologically distinguishable α_{1}－adrenoceptor subtypes in modulating conduction with halothane were evaluated by establishing control responses to trials of $0.2,1.0$ and $5 \mu \mathrm{~m}$ epinephrine，in randomized order，in the presence of $0.2 \mu \mathrm{M}$ DL propranolol HCl （Sigma）．One half of this group was then exposed for 30 min to $0.5 \mu \mathrm{M}$ WB4 101 （Research Biochemicals， Natick，MA），and the others were exposed to $0.5 \mu \mathrm{M}$ CEC（Research Biochemicals）．The epinephrine trials were then repeated in the presence of the antagonists to compare their effects on conduction depression at equimolar concentrations．Additional preparations were pretreated for 30 min with CEC $(0.5 \mu \mathrm{~m})$ to at－ tenuate responses $\left(\alpha_{1 \mathrm{~B}}\right)$ sensitive to the alkylating agent and washed for 1 h to reduce the potential ${ }^{7}$ for com－ petition by CEC at the $\alpha_{1 A}$－receptor．These preparations were thereafter studied to determine the degree of in－ hibition of conduction changes by a lower＂more se－ lective＂concentration（ $0.1 \mu \mathrm{M}$ ）of the $\alpha_{1 \mathrm{~A}}$ antagonist WB4101 as used by others in this model．.$^{7.8}$ The actions of epinephrine，angiotensin II，carbamylcholine，and endothelin 1 （Sigma）on conduction in fibers exposed to halothane were determined in two other groups of false tendons．

The findings are reported as values of the mean \pm SEM．All values obtained within an experimental group were evaluated by repeated－measures analysis of vari－ ance and means at specific times were compared using Waller－Duncan＇s least significant difference method．${ }^{27}$ A probability level of 0.05 or less was considered sig． nificant．

Results

Figure 1 illustrates the dose－response relation for the conduction velocity at the time（ 3 min ）of maximum epinephrine effect at two halothane concentrations． Halothane alone decreased conduction velocity（ $P \leq$ 0.05 ）from a mean drug free control value of $2.21 \pm$ $0.10 \mathrm{~m} / \mathrm{s}$ by 5% and 11% at the low（ 0.46 mm ）and high（ 0.86 mm ）concentrations，respectively． $5 \mu \mathrm{~m}$ epinephrine with 0.86 mm halothane decreased veloc－ ity by 33%（to $1.31 \pm 0.05 \mathrm{~m} / \mathrm{s}$ ）of the value with halothane（ $1.97 \pm 0.08 \mathrm{~m} / \mathrm{s}$ ）alone．Significant depres－ sion of conduction（ -5% relative to halothane alone， $P \leq 0.01$ ）was observed even at the lowest（ $0.2 \mu \mathrm{~m}$ ） epinephrine and halothane（ 0.46 mm ）doses．The depression of conduction was larger $(P \leq 0.05)$ at high

Fig．1．Dose－related effects of epinephrine（EPI）on conduction velocity（mean \pm SEM，eight preparations）in Purkinje fibers exposed to $0.46 \mathrm{~mm}(1.5 \%)$ and $0.86 \mathrm{~mm}(2.8 \%)$ halothane （HAL）．Values at 0 EPI represent controls with halothane alone； values at each epinephrine concentration represent those at the time（ 3 min ）of maximum effect of epinephrine on velocity． ${ }^{*} P \leq 0.01$ versus halothane alone（at 0 epinephrine）．$\dagger P \leq 0.01$ versus epinephrine at lower halothane concentration．
compare concentr to lower dose．Th epinephr tions of potential Figure on e⿳亠口冋彡 than⿳ prazeg̉sin by e e ine ishe愈 by of $1 \frac{\omega}{c} \mu \mathrm{M}$ adresuoce eval biatec eph丞ne phe ${ }_{3}^{3}$ ylep slig奥ly $\xrightarrow[3]{5}$

Fig．2．Time 0.45 mm ha preparation α_{1}－and $\beta_{1}-a$ toprolol．${ }^{*} I$
α_{1}-ADRENERGIC DEPRESSION OF CONDUCTION BY EPINEPHRINE
of the mean \pm
rimental group nalysis of vari. ompared using nce method. ${ }^{27}$ considered sig.
elation for the of maximum oncentrations. velocity ($P \leq$ lue of $2.21 \pm$ $.46 \mathrm{~mm})$ and ctively. $5 \mu \mathrm{~m}$ reased veloce value with ficant depres. thane alone, est ($0.2 \mu \mathrm{~m}$) doses. The 0.05) at high
0.86 mM HAL

* \dagger

Fig. 2. Time-dependent effects of $5 \mu \mathrm{~m}$ epinephrine (EPI) with 0.45 mm halothane (HAL) on conduction velocity before (ten preparations) (top) and after (five preparations each) (bottom) α_{1} - and β_{1}-adrenergic blockade. PRAZ $=$ prazosin; MET $=$ me toprolol. ${ }^{*} P \leq 0.01$ versus halothane alone (at time 0)
compared to low epinephrine doses at each halothane concentration and larger ($P \leq 0.05$) at high compared to lower halothane concentration at each epinephrine dose. The depression of conduction on exposure to epinephrine was not associated with significant reductions of the rate of phase 0 depolarization or action potential amplitude (data not shown)
Figure 2 shows the changes of conduction velocity on exposure to $5 \mu \mathrm{~m}$ epinephrine with 0.45 mm halothane before (top) and after (bottom) treatment with prazosin and metoprolol. The depression of conduction by epinephrine with halothane was completely abolished by $1 \mu \mathrm{M}$ prazosin but remained in the presence of $1 \mu \mathrm{~m}$ metoprolol. The relative roles of α_{1} and α_{2} adrenoceptors in the interaction on conduction was evaluated in two groups with the α-agonists phenylephrine and clonidine. As shown in figure 3 (top), phenylephrine ($5 \mu \mathrm{~m}$) in the absence of halothane slightly decreased (-2%) conduction velocity at 4-5 min of exposure ($P \leq 0.05$) relative to the preceding
 rkinje fibers 6) halothane othane alone; sent those at e on velocity. (e). $\boldsymbol{+} \boldsymbol{P} \leq 0.01$ ation.

Fig. 3. Time-dependent effects of α_{1} - (12 preparations) (top) and $\alpha_{2^{-}}$(8 preparations) (bottom) adrenergic agonists alone and with 0.4 mm halothane (HAL) on conduction velocity. PHEN $=5 \mu \mathrm{~m}$ phenylephrine; $\mathbf{C L O N}=5 \mu \mathrm{~m}$ clonidine; EPI $=5$ μ м epinephrine. ${ }^{*} P \leq 0.05$ versus value at time 0 (without or with HAL) just before agonist exposure.
drug free control value (time 0). Halothane alone (0.4 mm) decreased velocity ($P \leq 0.01$) to $2.06 \pm 0.07 \mathrm{~m} /$ s (at time 0) from a preceding control value of $2.14 \pm$ $0.08 \mathrm{~m} / \mathrm{s}$. The actions of phenylephrine were potentiated in the presence of halothane. The α_{1} agonist produced a larger ($P \leq 0.01$) decrease of velocity at maximum effect with halothane $(-0.25 \pm 0.04 \mathrm{~m} / \mathrm{s}$ at 4 min of exposure, about $-12 \% \mathrm{vs}$. halothane at time 0) than in the absence of halothane $(-0.05 \pm 0.01 \mathrm{~m} / \mathrm{s}$ at $4 \mathrm{~min},-2 \% v$ s. time 0). The mean velocity was significantly less at 4 min of phenylephrine exposure with halothane ($1.81 \pm 0.07 \mathrm{~m} / \mathrm{s}$) than without halothane $(2.11 \pm 0.08 \mathrm{~m} / \mathrm{s})$ largely because of the accentuated transient effect of α_{1} activation in the presence of anesthetic. In contrast, the α_{2} agonist clonidine, as shown in figure 3 (bottom), did not depress conduction velocity without or with halothane in a different group
of preparations that exhibited depression of conduction by epinephrine with halothane．

Figure 4 （top）illustrates the control conduction ve－ locities obtained over time in 12 preparations on ex－ posure to three doses of epinephrine with 0.7 mm halothane and $0.2 \mu \mathrm{~m}$ propranolol before treatment with α_{1}－subtype antagonists．Figure 4 （bottom）shows the averaged control velocities at the times of maximum epinephrine effect for each dose and those found after treatment with equimolar $(0.5 \mu \mathrm{~m})$ WB4101 or CEC． The four values at $2-5 \mathrm{~min}$ of epinephrine exposure were averaged to increase the power of the comparison between the groups of 6 preparations treated with the two drugs．Both antagonists shifted the dose－response curve to higher epinephrine concentrations．Between antagonists，WB4101 attenuated the depression of

（
Fig．4．（Top）Control dose－related depression of conduction velocity（mean \pm SEM， 12 preparations）by epinephrine with 0.7 mm halothane（HAL）in the presence of $0.2 \mu \mathrm{~m}$ propranolol before treatment（ 6 preparations each）with α_{1}－subtype an－ tagonists WB4 101 （WB）and chloroethylclonidine（CEC）．（Bot－ tom）Dose－response curves for the velocities（mean \pm SEM of 2nd－5th－min epinephrine［EPI］values）found before（control ［CONT］）and in the presence of $0.5 \mu \mathrm{~m}$ WB4101 or CEC．${ }^{*} P \leq$ 0.05 versus HAL alone．$\dagger \boldsymbol{P} \leq 0.01$ between groups treated with WB or CEC．
conduction at each epinephrine dose to a greater de－ gree（ $P \leq 0.01$ ）than CEC，which antagonized the de－ creases of conduction velocity by only about 40% ．Ta－ ble 1 shows the averaged conduction velocities found at maximum epinephrine effect with halothane in the absence and presence of $0.1 \mu \mathrm{~m}$ WB4101 after CEC treatment and washing．Compared to the control group illustrated in figure $4(\mathrm{n}=12)$ ，pretreatment with CEC also attenuated $(P \leq 0.05)$ the response to $5 \mu \mathrm{~m}$ epi－ nephrine（table $1, \mathrm{n}=10$ ）with halothane by about 40% ．In these preparations after washout of CEC， WB4 $101(0.1 \mu \mathrm{M})$ produced 87% inhibition of the re－ maining velocity decrease resulting from $0.2 \mu \mathrm{~m}$ epi－ nephrine and proportionately less inhibition at higher agonist concentrations in a manner consistent with competitive antagonism of an action on conduction mediated by the $\alpha_{1 \mathrm{~A}}$－adrenoceptor subtype．

Figure 5 （top）illustrates the conduction responses to epinephrine，angiotensin and carbamylcholine with halothane in one group of preparations．Both epineph－ rine and the muscarinic receptor agonist depressed conduction velocity with halothane，whereas angio－ tensin did not affect conduction．Figure 5 （bottom） shows the responses to epinephrine and endothelin in another group of preparations．Endothelin with halo－ thane depressed conduction with a slower onset than epinephrine with halothane，and there was a marked delay in washout（data not shown）of the endothelin effect such that return to the value with halothane alone required $30-40 \mathrm{~min}$ ．

Discussion

The results of this study indicate that epinephrine， at submicromolar concentrations（ $0.2 \mu \mathrm{~m}$ ）comparable to just－threshold dysrhythmogenic plasma epinephrine concentrations with halothane in vivo，${ }^{23-25}$ transiently slows conduction in canine Purkinje fibers exposed to halothane．These actions are mediated largely by the WB4101－sensitive subtype of α_{1} adrenoceptor，which has been reported to lead to phosphoinositide hydro－ lysis by PLC in cardiac tissues ${ }^{7}$ and similar depression of conduction was found on activation of other G－pro－ tein－linked receptors（endothelin and muscarinic） known to stimulate PLC．${ }^{21}$ The results demonstrate a direct prodysrhythmic α_{1}－mediated interaction be－ tween catecholamines and halothane and support the hypothesis ${ }^{19}$ that the mechanism generating halothane－ epinephrine dysrhythmias may involve abnormal con－ duction leading to reentry．
nephrine by haloth rine alon duction depressio In the pr by haloth prodedicec susp長ct tl agon $\frac{\square}{3}$ sts t of peĝten
 frome slie thre ingold vol\％鱏 hat high 2.8% do the h⿳亠口冋⿱㐅⿸⿻口丿乚厶⺝刂 1 loth doub⿳亠口冋冖⺝⿱⺈⿸⿻口丿乚厶⺝刂ing prox as a tive－
 serve巽 in com， slow is no premsigh poten ials fractog y p ometrasi no the detegre to $-2 \frac{2}{2} \%$ ） this seady fibers intravęntri plexestas或

Table 1．Inhi Antagonist

α_{1}-ADRENERGIC DEPRESSION OF CONDUCTION BY EPINEPHRINE

to a greater de igonized the de about 40%. Ta. velocities found nalothane in the $\ddagger 101$ after CEC e control group tment with CEC se to $5 \mu \mathrm{M}$ epi. thane by about shout of CEC, pition of the rem $0.2 \mu \mathrm{M}$ epi. sition at higher onsistent with on conduction pe.
tion responses ylcholine with Both epineph. nist depressed vhereas angiore 5 (bottom) endothelin in lin with halover onset than was a marked he endothelin alothane alone
epinephrine) comparable a epinephrine ${ }^{-25}$ transiently rs exposed to argely by the eptor, which ositide hydroar depression f other G-promuscarinic) lemonstrate a teraction bed support the ig halothanebnormal con-

Reynolds and Chiz ${ }^{19}$ originally reported that epinephrine markedly potentiated the conduction slowing by halothane. We previously found that $5 \mu \mathrm{~m}$ epinephrine alone produces no or minimal decreases of conduction velocity, but significantly greater transient depression in Purkinje fibers exposed to halothane. ${ }^{20.22}$ In the present study we observed marked potentiation by halothane of a small transient decrease of velocity produced by $5 \mu \mathrm{~m}$ phenylephrine alone (fig. 3) and suspect that larger pharmacologic concentrations of α_{1} agonists transiently depress conduction in the absence of potentiating anesthetic agent. The actions of epinephrine with halothane on conduction (fig. 1) varied from slight transient depression (-5%) with justthreshold concentrations $(0.2 \mu \mathrm{~m})$ and $0.46 \mathrm{~mm}(1.5$ vol\%) halothane to substantial depression (-33%) at high epinephrine $(5 \mu \mathrm{~m})$ and halothane $(0.86 \mathrm{~mm}$, 2.8%) doses. The interaction was more dependent on the halothane than epinephrine concentrations because doubling the halothane concentration produced approximately the same transient depression of velocity as a five- to tenfold increase of epinephrine dose. The relation between the degree of conduction delay observed in isolated Purkinje fiber models and the more complicated phenomena of unidirectional block and slow conduction leading to ventricular reentry in situ is not known. The latter may involve propagation of premature or postmature responses at lower membrane potentials and intrinsic spatial inhomogeneities in refractory periods, membrane excitability and fiber geometry not present in isolated false tendons. ${ }^{28}$ However the degree of transient conduction impairment $(-10$ to -20%) produced by epinephrine with halothane in this study is similar in magnitude to that in Purkinje fibers cross-superfused with blood from dogs exhibiting intraventricular conduction delay and wide QRS complexes as a result of administration of toxic doses of

Fig. 5. (Top) Depression of Purkinje fiber conduction velocity in six preparations exposed to 0.6 mm halothane (HAL) by epinephrine (EPI) and carbamylcholine (CBC) but not by angiotensin II (AT). (Bottom) Depression of velocity (mean \pm SEM) by endothelin 1 (ET) and EPI in another six preparations exposed to HAL. *P ≤ 0.05 versus HAL alone (at time 0).
quinidine. ${ }^{29}$ Proof that the observed slowing of conduction by epinephrine with halothane is sufficient to facilitate reentry would require mapping activation in the reentrant circuit during onset of the dysrhythmia, localization of the site of unidirectional block and demonstration of sufficient conduction delay to permit reexcitation proximal to the site of block on recovery of excitability.

The findings that the depression of conduction by epinephrine with halothane is not altered by β_{1}-adren-

Table 1. Inhibition (\%) of Conduction Depression due to Epinephrine with 0.6 mm Halothane by the Competitive α_{1}-Subtype Antagonist WB4101 ($0.1 \mu \mathrm{~m})$ in 10 Preparations

		$\mu \mathrm{MEPI}$	
	0.2	1.0	5.0
Control	$-0.135 \pm 0.031^{*}$	$-0.203 \pm 0.040^{*}$	$-0.305 \pm 0.044^{*}$
$+0.1 \mu \mathrm{MWB}$	-0.017 ± 0.009	$-0.052 \pm 0.008^{*}$	$-0.104 \pm 0.019^{*}$
$\%$	87	75	66

Values are mean \pm SEM and represent averaged difference from preceding control at the times (4 th -7 th min) of maximum EPI effect with halothane in the absence and presence of WB4101. All preparations were pretreated with $0.5 \mu \mathrm{M}$ CEC and washed before study in the presence of $0.2 \mu \mathrm{M}$ propranolol.

- $P \leq 0.01$ versus halothane before EPI.
with condu impalemen precludes a astolic pote rate（ 150 halothane－ tends to mi ration and tively 隺號 potentigul ju ＂take－बgft＂ of repeglari tion（aston crease cholin裔 or epine velociey in taneous de amplitionde terminìints of cha⿳亠口冋彡⿱亠䒑口阝 with natarke
 ing cô̄̆duc

 reduction conceesitrat rine（ ${ }^{\text {to }} \mathrm{H} \mu$ cells，新｜tho been | ⿳亠丷厂犬 |
| :--- | chang茊 w would slowing re dependent increaşied Howewer， mechatism creaseš in in release fro $\mathrm{Na}^{+}-\mathrm{Ca}^{2+}$ evidence ${ }^{44}$ tions is rela nexin prote iologically phate－dep C．An inter ceptor－me tional resis conduction propagation

α_{1}-ADRENERGIC DEPRESSION OF CONDUCTION BY EPINEPHRINE

40\% inhibition nephrine with d and washed esence of CEC of a moderate by the $\alpha_{1 \mathrm{~B}}$ sub. 1 (87\%) inhi. $\mu \mathrm{M})$ concenh CEC suggest y largely me. -adrenoceptor omaticity and bers. ${ }^{7.8}$ These clude actions eptors, which types in the e densities of ibers, the perproteins and ${ }^{36}$ will be re-ptor-effector his tissue. role of actiction in Purinvestigated otein-linked de hydrolysis compared the ion of IP_{3} in rted that ened by activahereas angiodings that enangiotensin, locity in Pury that the α_{1}. epression of nvolves stimdrenoceptor dings suggest of hormonal fibers related C and as yet cond messenm hydrolysis onduction in ot known. Alimultaneously
with conduction times, the requirement to maintain impalements in two fibers over long periods of time precludes accuracy in measurements of maximum diastolic potential. In addition, we used a rapid pacing rate (150 beats $/ \mathrm{min}$) similar to that at the onset of halothane-epinephrine dysrhythmias in vivo, which tends to minimize drug effects on action potential duration and phase 4 diastolic depolarization. Qualitatively we did not observe any decrease of membrane potential just before the action potential upstroke (the "take-off' potential), as might occur with marked delay of repolarization or spontaneous diastolic depolarization (automaticity), that might explain the velocity decreases during the trials with epinephrine, carbamylcholine or endothelin. As previously reported with epinephrine, ${ }^{20}$ the transient decreases of conduction velocity in this study were not accompanied by simultaneous decreases (data not shown) in action potential amplitude or rate of phase 0 depolarization, major determinants of conduction velocity. This relative lack of change in rate of phase 0 depolarization associated with marked depression of conduction by epinephrine with halothane suggests that the mechanism modulating conduction probably involves an action on cell-tocell coupling, ${ }^{20,37}$ rather than or in addition to possible reduction of the peak inward Na^{+}current. Both high concentrations (2-3\%) of halothane ${ }^{38}$ and phenylephrine $(10 \mu \mathrm{M})$ have been reported to uncouple cardiac cells, although the latter preliminary report ${ }^{26}$ has not been confirmed. The finding that the conduction changes were not sensitive to β_{1}-adrenergic blockade would appear to exclude mechanisms of conduction slowing related to cyclic adenosine monophosphatedependent depression of $\mathrm{Na}^{+39,40}$ channel current or increased Ca^{2+} influx through L-type Ca^{2+} channels. However, this finding does not exclude potential mechanisms of cellular uncoupling resulting from increases in intracellular Ca^{2+41} caused by enhanced Ca^{2+} release from the sarcoplasmic reticulum or effects on $\mathrm{Na}^{+}-\mathrm{Ca}^{2+}$ exchange. ${ }^{9,42,43}$ Finally, there is increasing evidence ${ }^{44,45}$ that the conductance of cardiac gap junctions is related to the phosphorylation state of the connexin proteins forming the channels and may be physiologically modulated by cyclic adenosine monophos-phate-dependent protein kinases and protein kinase C. An interaction between halothane and α_{1} adreno-ceptor-mediated effects on processes regulating junctional resistance between Purkinje fibers could slow conduction by increasing the current required for propagation or altering threshold without substantial
changes of membrane potential ${ }^{37}$ as observed in this model.
In conclusion, our studies demonstrate a dose-related negative dromotropic interaction between epinephrine and halothane that transiently slows conduction in canine Purkinje fibers at epinephrine concentrations similar to dysrhythmogenic plasma concentrations of epinephrine in halothane-anesthetized dogs in vivo. The depression of conduction is largely but not exclusively mediated by the WB4101-sensitive $\alpha_{1 A}$-adrenoceptor subtype reportedly coupled to activation of PLC in this model and may also be produced by activation of other hormone receptors (endothelin and muscarinic) known to activate PLC. The modulation of Purkinje fiber conduction velocity appears to involve an adverse potentiation by anesthetics of an α_{1} adrenoceptor-mediated effect on cell-to-cell coupling. The results may explain progressive increase of the epinephrine dysrhythmia threshold dose by α_{1}-antagonists in vivo ${ }^{46}$ and support the hypothesis that the mechanism underlying generation of ventricular dysrhythmias by epinephrine during halothane anesthesia may involve abnormal conduction and reentry.

References

1. Maze M, Smith CM: Identification of receptor mechanism mediating epinephrine-induced arrhythmias during halothane anesthesia in the dog. Anesthesiology 59:322-326, 1983
2. Spiss CK, Maze M, Smith CM: α-Adrenergic responsiveness correlates with epinephrine dose for arrhythmias during halothane anesthesia in dogs. Anesth Analg 63:297-300, 1984
3. Hayashi Y, Sumikawa K, Tashiro C, Yoshiya I: Synergistic interaction of α_{1} - and β-adrenoceptor agonists on induction arrhythmias during halothane anesthesia in dogs. Anesthesiology 68:902-907, 1988
4. Luk HN, Lin CI, Wei J, Chang CL: Depressant effects of isoflurane and halothane on isolated human atrial fibers. Anesthesiology 69: 667-676, 1988
5. Freeman LC, Li Q: Effects of halothane on delayed afterdepolarization and calcium transients in dog ventricular myocytes exposed to isoproterenol. ANesthesiology 74:146-154, 1991
6. Zuckerman RL, Wheeler DM: Effect of halothane on arrhythmogenic responses induced by sympathomimetic agents in single rat heart cells. Anesth Analg 72:596-603, 1991
7. Del Balzo U, Rosen MR, Malfatto G, Kaplan LM, Steinberg SF: Specific alpha 1 -adrenergic receptor subtypes modulate catechol-amine-induced increases and decreases in ventricular automaticity. Circ Res 67:1535-1551, 1990
8. Lee JH, Steinberg SF, Rosen MR: A WB 4101 -sensitive alpha-1 adrenergic receptor subtype modulates repolarization in canine Purkinje fibers. J Pharmacol Exp Ther 258:681-687, 1991
9. Terzic A, Puceat M, Vassort G, Vogel SM: Cardiac alpha 1-adrenoceptors: An overview. Pharmacol Rev 45:147-175, 1993
10. Shah A, Cohen IS, Rosen MR: Stimulation of cardiac alpha receptors increases Na / K pump current and decreases g_{k} via a pertussis toxin-sensitive pathway. Biophys J 54:219-225, 1988
11. Zaza A, Kline RP, Rosen MR: Effects of α-adrenergic stimulation on intracellular sodium activity and automaticity in canine Purkinje fibers. Circ Res 66:416-426, 1990
12. Williamson AP, Kennedy RH, Seifen E, Lindemann JP, Stimers JR: α_{18}-Adrenoceptor-mediated stimulation of Na -K pump current in adult rat ventricular myocytes. Am J Physiol 264:H1315-H1318 1993
13. Robinson RB: α Adrenergic receptor-effector coupling, Cardiac Electrophysiology: A Textbook. Edited by Rosen MR, Janse MJ, Wit AL. Mount Kisco, Futura Publishing, 1990, pp 819-829
14. Molina-Viamonte V, Steinberg SF, Chow YK, Legato MJ, Robinson RB, Rosen MR: Phospholipase C modulates automaticity of canine Purkinje fibers. J Pharmacol Exp Ther 252:886-893, 1990
15. Kaku T, Lakatta E, Filburn C: α-Adrenergic regulation of phosphoinositide metabolism and protein kinase C in isolated cardiac myocytes. Am J Physiol 260:C635-C642, 1991
16. Rosen MR: Membrane effects of α-adrenergic catecholamines, Cardiac Electrophysiology: A Textbook. Edited by Rosen MR, Janse MJ, Wit AL. Mount Kisco, Futura Publishing, 1990, pp 847-856
17. Otani H, Otani H, Das DK: α_{1}-Adrenoceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscles. Circ Res 62:8-17, 1988
18. Lazou A, Fuller SJ, Bogoyevitch MA, Orfali KA, Sugden PH: Characterization of stimulation of phosphoinisitide hydrolysis by α_{1}. adrenergic agonists in adult rat hearts. Am J Physiol 267:H970-H978, 1994
19. Reynolds AK, Chiz JF: Epinephrine-potentiated slowing of conduction in Purkinje fibers. Res Commun Chem Pathol Pharmacol 9:633-645, 1974
20. Vodanovic S, Turner LA, Hoffmann RG, Kampine JP, Bosnjak ZJ: Transient negative dromotropic effects of catecholamines on canine Purkinje fibers exposed to halothane and isoflurane. Anesth Analg 76:592-597, 1993
21. Hilal-Dandan R, Urasawa K, Brunton LL: Endothelin inhibits adenylate cyclase and stimulates phosphoinositide hydrolysis in adult cardiac myocytes. J Biol Chem 267:10620-10624, 1992
22. Turner LA, Vodanovic S, Kampine JP, Bosnjak ZJ: Effects of the order of administration of epinephrine and halothane on Purkinje fiber conduction (abstract). ANESTHESIOLOGY 79:A688, 1993
23. Sumikawa K, Ishizaka N, Suzaki M: Arrhythmogenic plasma levels of epinephrine during halothane, enflurane, and pentobarbital anesthesia in the dog. anesthesiology 58:322-325, 1983
24. Hayashi Y, Sumikawa K, Yamatodani A, Tashiro C, Wada H, Yoshiya I: Myocardial sensitization by thiopental to arrhythmogenic action of epinephrine in dogs. Anesthesiology 71:929-935, 1989
25. Hayashi Y, Sumikawa K, Yamatodani A, Kamibayashi T, Kuro M, Yoshiya I: Myocardial epinephrine sensitization with subanesthetic concentrations of halothane in dogs. Anesthesiology 74:134-137, 1991
26. Burt JM, Spray DC: Adrenergic control of gap junctional conductance in cardiac myocytes (abstract). Circulation 78(suppl II): 258, 1988
27. Miller RG: Simultaneous statistical inference. New York, Springer Verlag, 1981, pp 253-256
28. Quan W, Rudy Y: Unidirectional block and reentry of cardiac excitation: A model study. Circ Res 66:367-382, 1990
29. Gallagher JD: Effects of halothane and quinidine on intracardiac conduction and QTc interval in pentobarbital-anesthetized dogs. Anesth Analg 75:688-695, 1992
30. Han C, Abel PW, Minneman KP: α_{1}-Adrenoceptor subtypes linked to different mechanisms for increasing intracellular Ca^{2+} in smooth muscle. Nature 329:333-335, 1987
31. Minneman KP: α_{1}-Adrenergic receptor subtypes, inositol phosphates and sources of cell Ca^{2+}. Pharmacol Rev 40:87-119, 1988
32. Schwinn DA, Page SO, Middleton JP, Lorenz W, Liggett SB, Yamamoto K, Lapetina EG, Caron MG, Lefkowitz RJ, Cotecchia S: The $\alpha_{1 \mathrm{c}}$-adrenergic receptor: Characterization of signal transduction pathways and mammalian tissue heterogeneity. Mol Pharmacol 40: 619-626, 1991
33. Perez DM, Piascik MT, Graham RM: Solution-phase library screening for the identification of rare clones: Isolation of an $\alpha_{1 D^{-}}$ adrenergic receptor cDNA. Mol Pharmacol 40:876-883, 1991
34. Anyukhovsky EP, Rybin VO, Nikashin AV, Budanova OP, Rosen MR: Positive chronotropic resporses induced by alpha 1 -adrenergic stimulation of normal and 'ischemic' Purkinje fibers have different receptor-effector coupling mechanisms. Circ Res 71:526-534, 1992
35. Perez DM, Chen JL, Malik N, Graham RM: Is the $\alpha_{1 C}$-adrenergic receptor the $\alpha_{1 A}$-subtype? (abstract). FASEB J 8(4):A353, 1994
36. Exton JH: Phosphoinositide phospholipases and G proteins in hormone action. Annu Rev Physiol 56:349-369, 1994
37. Gettes LS: Effects of ionic changes on impulse propagation, Cardiac Electrophysiology: A Textbook. Edited by Rosen MR, Janse MJ, Wit AL. Mount Kisco, Futura Publishing, 1990, pp 459-479
38. Burt JM, Spray DC: Volatile anesthetics block intracellular communication between neonatal rat myocardial cells. Circ Res 65: 829-837, 1989
39. Ono K, Kiyosue T, Arita M: Isoproterenol, DBcAMP, and foskolin inhibit cardiac sodium current. Am J Physiol 256:C1131C1137, 1989
40. Munger TM, Johnson SB, Packer DL: Voltage dependence of β-adrenergic modulation of conduction in the canine Purkinje fiber. Circ Res 75:511-519, 1994
41. Noma A, Tsuboi N: Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea-pig. J Physiol (Lond) 382:193-211, 1987
42. Iwakura K, Hori M, Watanabe Y, Kitabatake A, Cragoe E Jr, Yoshida H, Kamada T: α_{1}-Adrenoceptor stimulation increases intracellular pH and Ca^{2+} in cardiomyocytes through $\mathrm{Na}^{+} / \mathrm{H}^{+}$and $\mathrm{Na}^{+} /$ Ca^{2+} exchange. Eur J Pharmacol 186:29-40, 1990 (published erratum appears in Eur J Pharmacol 192:448, 1991)
43. Gilbert JC, Shirayama T, Pappano AJ: Inositol trisphosphate promotes $\mathrm{Na}-\mathrm{Ca}$ exchange current by releasing calcium from sarcoplasmic reticulum in cardiac myocytes. Circ Res 69:1632-1639, 1991
44. Burt JM, Spray DM: Inotropic agents modulate gap junctional conductance between cardiac myocytes. Am J Physiol 254:H1 206H1210, 1988
45. Moreno AP, Saez JC, Fishman GI, Spray DC: Human connexin 43 gap junction channels: Regulation of unitary conductances by phosphorylation. Circ Res 74:1050-1057, 1994
46. Maze M, Hayward E, Gaba DM: Alpha 1_{1}-adrenergic blockade raises epinephrine-arrhythmia threshold in halothane-anesthetized dogs in a dose-dependent fashion. Anesthesiology 63:611-615, 1985

Anesthesiology 82: 1447-145 (C) 1995 Ameri J. B. Lippincot

> Anest and Instr
\ddagger Clinical
Medicine.
§ Professo
|| Profess
Receivedt of Wisconsin tober 18,19 in part by th Atlee) and A

Address re consin, MEB waukee, Wis

[^0]: －Associate Clinical Professor，Department of Anesthesiology
 \dagger Research Associate，Department of Anesthesiology
 \ddagger Associate Professor，Division of Biostatistics．
 \mathbb{S} Professor and Chair，Department of Anesthesiology；Professor， Department of Physiology
 ｜｜Professor，Department of Anesthesiology and and Department of Physiology．
 Received from the Department of Anesthesiology and the Division of Biostatistics，The Medical College of Wisconsin，Milwaukee，Wis－ consin．Submitted for publication July 16，1994．Accepted for pub－ lication March 1，1995．Supported in part by a grant from the National Heart，Lung，and Blood Institute（HL39776）and by an Anesthesiology Research Training grant（GM08377）from the National Institute of General Medical Sciences．Presented in part at the annual meeting of the American Society of Anesthesiologists，New Orleans，Louisiana， October 17－21， 1992.

 Address reprint requests to Dr．Turner：Department of Anesthe－ siology，MEB 462C，The Medical College of Wisconsin， 8701 West Watertown Plank Road，Milwaukee，Wisconsin 53226.

