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Clinical Sevoflurane Metabolism and Disposition
I1. The Role of Cytochrome P450 2E1 in Fluoride and

Hexafluoroisopropanol Formation

Evan D. Kharasch, M.D., Ph.D.,* Andrew S. Armstrong, M.B.B.S., F.AN.Z.CA. t
Kerry Gunn, M.B.Ch.B., F.A.N.Z.C.A.,1 Alan Artru, M.D.,} Kathy Cox, B.S.,§ Michael D. Karol, Ph.D. |

Background: Sevoflurane is metabolized to free fluoride and
hexafluoroisopropanol (HFIP). Cytochrome P450 2E1 is the
major isoform responsible for sevoflurane metabolism by hu-
man liver microsomes in vitro. This investigation tested the
hypothesis that P450 2E1 is predominantly responsible for
sevoflurane metabolism in vivo. Disulfiram, which is converted
in vivo to a selective inhibitor of P450 2E1, was used as a met-
abolic probe for P450 2E1.

Methods: Twenty-one patients within 30% of ideal body
weight, who provided institutional review board-approved
informed consent and were randomized to receive disulfiram
(500 mg oral, n = 11) or nothing (control, n = 10) the night
before surgery, were evaluated. All patients received sevo-
flurane (2.7% end-tidal, 1.3 MAC) in oxygen for 3 h after pro-
pofol induction. Thereafter, sevoflurane was discontinued, and
anesthesia was maintained with propofol, fentanyl, and ni-
trous oxide. Blood sevoflurane concentrations during anes-
thesia and for 8 h thereafter were measured by gas chroma-
tography. Plasma and urine fluoride and total (unconjugated
plus glucuronidated) HFIP concentrations were measured by
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an ion-selective electrode and by gas chromatography, re-
spectively, during anesthesia and for 96 h postoperatively.

Results: Patient groups were similar with respect to age,
weight, sex, case duration, and intraoperative blood loss. The
total sevoflurane dose, measured by cumulative end-tidal sev-
oflurane concentrations (3.7 + 0.1 MAC-h; mean + SE), total
pulmonary uptake, and blood sevoflurane concentrations, was
similar in both groups. In control patients, plasma fluoride
and HFIP concentrations were increased compared to baseline
values intraoperatively and postoperatively for the first 48
and 60 h, respectively. Disulfiram treatment significantly di-
minished this increase. Plasma fluoride concentrations in-
creased from 2.1 + 0.3 um (baseline) to 36.2 = 3.9 uMm (peak) in
control patients, but only from 1.7 = 0.2 to 17.0 = 1.6 puM in
disulfiram-treated patients (P < 0.05 compared with control
patients). Peak plasma HFIP concentrations were 39.8 = 2.6
and 14.4 = 1.1 um in control and disulfiram-treated patients
(P < 0.05), respectively. Areas under the plasma fluoride- and
HFIP-time curves also were diminished significantly to 22%
and 20% of control patients, respectively, by disulfiram treat-
ment. Urinary excretion of fluoride and HFIP was similarly
significantly diminished in disulfiram-treated patients. Cu-
mulative 96-h fluoride and HFIP excretion in disulfiram-treated
patients was 1,080 + 210 and 960 * 240 pumol, respectively,
compared to 3,950 + 560 and 4,300 + 540 umol in control pa-
tients (P < 0.05).

Conclusions: Disulfiram, an effective P450 2E1 inhibitor,
substantially decreased fluoride ion and HFIP production dur-
ing and after sevoflurane anesthesia. These results suggest that
P450 2E1 is a predominant P450 isoform responsible for hu-
man sevoflurane metabolism in vivo. (Key words: Anesthetics,
volatile: sevoflurane. CYP2EL. Cytochrome P450 2E1. Ions: flu-
oride. Kidney, urine. Liver, metabolism. Metabolism. Metab-
olites: fluoride; hexafluoroisopropanol. Pharmacokinetics.
Toxicity: renal.)

SEVOFLURANE, like other fluorinated anesthetics, un-
dergoes oxidative defluorination with the liberation of
free fluoride ion.'* Unlike other fluorinated anesthet-
ics, the additional major metabolites of sevoflurane have
been well characterized."*" These investigations in-
dicate that inorganic fluoride and hexafluoroisopro-
panol (HFIP) are the major products of human sevo-
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flurane metabolism. HFIP circulates in blood primarily
as the glucuronide conjugate and is excreted in urine.”

Clinical evaluations of sevofluranc have shown wide
variability in metabolism, as monitored by plasma flu-
oride concentrations. Average peak plasma fluoride
concentrations ranged from 15 to 30 um after 1-2 MAC-
h sevoflurane.">”” However there was considerable
variability in the individual values, for example, 12—
35 uM in one investigation” and 10-50 uMm in another
study.® Higher plasma fluoride concentrations have
been associated with longer sevoflurane exposures.®™""
No characteristic factors have been identified in patients
with the highest plasma fluoride concentrations in these
investigations. Higuchi ef al. reported that plasma flu-
oride concentrations and urinary fluoride excretion
were greater in obese than nonobese patients.'' Frink
et al., however, found no effect of obesity on sevoflur-
ane metabolism."?

Thus, the mechanism of variability in sevoflurane
metabolism is unknown. There is speculation that gen-
eralized enzyme induction (most commonly by drugs
such as barbiturates) could lead to increased fluoride
production." The role of enzyme induction (by drugs
such as phenobarbital, diphenylhydantoin, or isonia-
zid) in sevoflurane production in humans is unresolved.

In the absence of human data, animal investigations
on sevoflurane fluoride production have been cited in
attempts to predict the effects of hepatic enzyme ac-
tivity on sevoflurane metabolism in man. Enzyme in-
duction by treatment with phenobarbital,'*"'> phenyt-
oin,"* isoniazid,'®'” and chronic ethanol admin-
istration'®# has been shown to increase sevoflurane
defluorination in rat liver microsomes in vitro. In con-
trast, Baker et al. found no effect of phenobarbital on
sevoflurane metabolism.!” In vivo, enzyme induction
by phenobarbital pretreatment resulted in a two- tO
fivefold increase in plasma fluoride concentrations after
sevoflurane administration in rats.'”?* Animal pretreat-

ment with polycyclic aromatic hydrocarbons, which
induce different P450 isoforms than phenobarbital, had
no effect on sevoflurane defluorination in rat liver mi-
crosomes in vitro'*'> but significantly increased sev-
oflurane defluorination in rats n vivo.*’

Thus, animal data regarding sevoflurane metabolism
are contradictory. Furthermore, animal models of sev-
oflurane metabolism are not applicable to humans,?"

# Masaki E, Kondou T, Kobayashi K: Relationship between serum
F- and cytochrome P-450 after sevoflurane anesthesia in ethanol
treated rats. ANESTHESIOLOGY 73:A396, 1990.
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because some important sevoflurane defluorinating en-
zymes present in animals frequently are not present in
humans. Our laboratory has studied the defluorination
of sevoflurane by human liver microsomes in vitro.”'

We identified the isoniazid- and ethanol-inducible cy-

tochrome P450 isoform P450 2E1 as the predominant
human hepatic enzyme responsible for sevoflurane de-

fluorination in vitro. Clinical investigations are re-
quired to identify the enzyme responsible for sevo-
flurane metabolism in vivo.

The purpose of this investigation was to identify the
human enzyme responsible for anesthetic defluorina-
tion in patients undergoing sevoflurane anesthesia. We
tested the hypothesis that cytochrome P450 2E1 cat-
alyzes sevoflurane defluorination in humans in vivo.
The hypothesis was tested by administering sevoflurane
to patients in whom P450 2E1 activity was inhibited
by prior treatment with a single dose of disulfiram and
comparing sevoflurane metabolism with that in control
patients receiving no pretreatment. Single-dose disul-
firam inhibition of human P450 2E1 activity has been
demonstrated previously as an effective probe for in
vivo participation of this isoform in drug metabo-

lism.222*

Materials and Methods

Patient Selection and Clinical Protocol

Twenty-two nonsmoking ASA physical status 1 or 2
patients undergoing anesthesia for elective surgery with
anticipated duration of 3-5 h were studied. The in-
vestigational protocol was approved by the Institutional
Human Subjects Committee, and all patients provided
written informed consent. Eligibility and exclusion
criteria are described in the accompanying article.”
Most patients were evaluated and enrolled before the
day of surgery, randomized to control or disulfiram
groups at that time, and admitted to the hospital the
morning of surgery. A few subjects were inpatients.
Patients were randomized by blocks to receive 500 mg
disulfiram orally at bedtime on the evening before sur-
gery (n = 12) or nothing (control, n = 10). Patients
in the control group also are described in the accom-
panying article.® Patients in the disulfiram group werc
provided disulfiram at the time of enrollment and in-
structed to ingest the drug at 10 pM the evening before
surgery.

All patients received a standardized general anesthetic
designed to minimize potential drug interactions other
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than the desired test interaction. An indwelling venous
catheter, used for blood sampling, was placed in the
arm contralateral to the arm used for intravenous fluid
administration. Patients received midazolam (1 mg)
intravenously after completion of the disulfiram breath
test (see below). Anesthesia was induced with propofol
(1-2.5 mg/kg) and fentanyl (50-100 pg), and succi-
nylcholine was administered to facilitate tracheal in-
tubation. Immediately after the trachea was intubated,
anesthesia was maintained with sevoflurane (2.7% end-
tidal concentration) in oxygen (2-5 l/min). Inspired
and end-tidal sevoflurane concentrations were moni-
tored continuously (Capnomac, Datex Medical Instru-
mentation, Tewksbury, MA). The inspired sevoflurane
percentage was titrated to maintain the desired end-
tidal sevoflurane concentration of 2.7% (1.3 MAC).
Sevoflurane MAC (2.05 end-tidal percent**) was not
adjusted for age. Use of muscle relaxants was avoided
when possible. When muscle relaxation was necessary,
patients received atracurium. No neuraxial local an-
esthetics or opioids were used intraoperatively. Sevo-
flurane 2.7% end-tidal concentration was maintained
for 3 h, unless the duration of surgery was less than 3
h. For operations lasting longer than 3 h, the sevoflurane
was discontinued after 3 h, total gas flows were in-
creased to 6 1/min, and anesthesia was maintained with
propofol, nitrous oxide, and fentanyl. Nitrous oxide
was not started until the end-tidal sevoflurane concen-
tration had decreased to less than 0.2%. Inspired and
end-tidal sevoflurane concentrations were recorded at
15-min intervals while patients were intubated.

Venous blood samples for determination of blood
sevoflurane concentration and plasma fluoride and HFIP
concentrations were obtained at the times described
previously.” Urine for determination of fluoride con-
centration was obtained before induction and for the
following consecutive intervals beginning at the start
of sevoflurane anesthesia: 0-12, 12-24, 24-306, 36—
48, 48-72, and 72-96 h (or until the time of hospital
discharge). Urine was thoroughly mixed, the volume
was measured, and an aliquot was frozen at —20°C for
later analysis.

Clinical evaluation included intraoperative and re-
covery room hemodynamics and laboratory evaluation
(hematology, clinical chemistry, and urinalysis) per-
formed before the study, baseline before anesthesia,
24 h after sevoflurane, and 96 h after sevoflurane (or
before hospital discharge). Clinical evaluations also
included three recovery indexes: emergence, command
response, and orientation time. Emergence was defined
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as the time from the end of surgery to eye-opening in
response to verbal command. Command response was
the time from the end of surgery until the patient
squeezed the observer’s hand in response to command
or demonstrated purposeful movement. Orientation
time was recorded when the patient stated their name,
birth date, and age. Clinical recovery indexes were
judged by an independent observer who was not an
investigator.

Analytical Methods

Compliance with disulfiram ingestion was assessed
preoperatively before midazolam administration using
a breath test for exhaled carbon disulfide.?**° Disulfi-
ram is rapidly metabolized after absorption. After a sin-
gle dose, major metabolites include carbon disulfide,
diethyldithiocarbamate, and diethylamine.?’” Carbon
disulfide is detectable in plasma, urine, and exhaled
breath, and diethylamine is detected in plasma and
urine. Concentrations of these metabolites peak ap-
proximately 12 h after disulfiram administration, per-
mitting assessment of compliance 10 h after disulfiram
dosing. Patients exhaled into two gas washing bottles
connected in series. The first bottle contained phenol-
phthalein and 15 ml of 75 mm NaOH to trap carbon
dioxide, and the second bottle contained 15 ml of
modified McKees solution ((w/v) 5% diethylamine, 5%
triethanolamine, 0.002% copper (1) acetate, and 10%
isooctane in ethanol) to trap carbon disulfide. Patients
exhaled until 1.1 mEq of expired carbon dioxide had
been collected, indicated by a change in the first so-
lution from pink to colorless. An unequivocal yellow
color in the second bottle, due to copper diethyldi-
thiocarbamate, was indicative of disulfiram ingestion
and adequate absorption.

Eleven patients taking disulfiram had a positive breath
test, and one disulfiram-treated patient had a negative
breath test. Subsequent urine and blood tests for di-
sulfiram metabolites were negative in this patient, who
had severe diarrhea and, therefore, was excluded from
the data analysis. No control patient exhibited a positive
disulfiram breath test. Thus, data from 10 control and
11 disulfiram-treated patients were analyzed.

Analytical methods are described in the accompa-
nying article.” Briefly, total HFIP (unconjugated HFIP
and HFIP-glucuronide) in plasma and urine and blood
sevoflurane concentrations were determined by gas
chromatography with headspace sampling and flame
ionization detection. Plasma and urine fluoride con-
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Table 1. Patient Demographics

Control (n = 10)

Disulfiram-treated (n = 11)

48 + 4(29-67)

44 + 4(23-68)

Age (yr)

Gender (M:F) 3:7 4:7

Weight (kg) 73 + 5(55-102) 79 8 (45-118)
26 + 2(22-35) 27 1 (18-34)

Body mass index*
Duration of surgery (h)
Blood loss (ml)

Values are mean + SE (range).
* Weight (kg)/height? (m2).

centrations were measured using a fluoride-selective

electrode.

Data Analysis
Anesthetic dose was calculated as the product of end-

tidal sevoflurane concentration (expressed in MAC,
uncorrected for age, where MAC = 2.05%) and time,
determined in 2-min intervals until 10 min after inci-
sion and every 15 min thereafter, with total exposure
expressed in MAC-hours. Sevoflurane dose also was cal-
culated from total pulmonary anesthetic uptake and
expressed in millimoles.”

Patients’ demographic data, recovery indexes, and
peak plasma fluoride and HFIP concentrations were an-
alyzed by Student’s unpaired ¢ test. Blood sevoflurane
concentrations, plasma fluoride, and HFIP concentra-
tions and urine fluoride and HFIP excretion in the two
groups were compared by two-way repeated-measures
analysis of variance. Net plasma fluoride and HFIP con-
centrations were obtained by subtracting the pre-
anesthetic baseline value from all subsequent values.
Results are expressed as the mean + SE.

Table 2. Anesthetic Exposure and Dose

46+ 0.5(2.7-7.8)
320 + 140 (100-1,500) 230

. 1<
=

45+ 0.5(2.7-8.1)
+ 80 (50-1,000)

No significant differences were found between groups for any patient characteristic.

Results

Patient demographic data are provided in table 1.
Control and disulfiram-treated groups were similar with
respect to age, weight, sex, duration of surgery, and
surgical blood loss. Propofol doses were similar in both
groups (table 2). Three methods were used to deter-
mine the dose of sevoflurane delivered: end-tidal sev-
oflurane concentrations, calculated total pulmonary
uptake, and blood sevoflurane concentrations (table
2). All three methods showed that the sevoflurane dose
was similar in both groups. Total sevoflurane dose was
3.7 + 0.1 MAC-h in both control and disulfiram-treated
patients, respectively (P> 0.05). Total pulmonary up-
take was 88.8 = 9.1 mmol in control patients and 98.8
+ 8.1 mmol in disulfiram-treated patients, respectively
(P> 0.05). Blood sevoflurane concentrations in control
and disulfiram-treated patients were not significantly
different at any time, and areas under the curves were
not significantly different (fig. 1).

Disulfiram treatment significantly diminished fluoride
production, as assessed by plasma fluoride concentra-
tions and urinary fluoride excretion. Measured plasma

Control (n = 10) Disulfiram-treated (n = 11)

Sevoflurane

Exposure (min) 174 + 4(135-184) 171 + 5(136-180)

Dose (MAC-h) 3.7+ 0.1(3.0-4.2) 3.7+ 0.1(3.0-4.2)

Dose (mmol) 88.8+ 9.1(55.6-141.3) 989 + 8.1(46.7-136.2)
Propofol

Induction dose (mg) 200 =+ 30 (100-400) 202 =+ 26 (100-400)

Infusion dose (mg)* 1,353 + 286 (225-2,390) 2,220 =+ 705 (393-4,358)

Infusion duration (min)* 109 + 26 (15-240) 155 =+ 33 (45-285)

Values are mean + SE (range). No significant differences were found between groups for any variable.
* Propofol infusions were used after 3 h of sevoflurane exposure if the surgical duration exceeded 3 h (control, n = 7; disulfiram, n = 6).
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Fig. 1. Blood sevoflurane concentration (mean + SE) in control
(n = 10, open circles) and disulfiram-treated (n = 11, closed
circles) patients. Sevoflurane was administered from 0 to 3 h,
unless the surgical procedure ended before 3 h. Anesthetic
concentrations in the two groups were not significantly dif-
ferent at any time. Areas under the curves were 2,790 + 130
and 2,580 + 280 um- h, respectively, in control and disulfiram-
treated patients (P > 0.05).

fluoride concentrations increased from a baseline of
2.1 = 0.3 pm before anesthetic induction to a peak
concentration of 36.2 + 3.9 um (range 23.3-61.5) in
control patients (fig. 2). In disulfiram-treated patients,
fluoride concentrations increased from 1.7 = 0.2 um
(baseline) to a peak concentration of 17.0 = 1.6 um,
which was significantly different from control patients
(P <0.05). Net peak plasma fluoride production, mea-
sured as the difference between peak and preanesthetic
fluoride concentrations, was 34.0 + 3.9 uM in control
patients but significantly less (15.4 £ 1.5 um) in di-
sulfiram-treated patients (P < 0.05). Areas under the
net plasma fluoride concentration-time curves were
decreased to 22% of control patients by disulfiram pre-
treatment, from 1,110 = 160 to 241 = 72 um-h. The
time to peak plasma fluoride concentration was signif-
icantly shortened by disulfiram pretreatment (fig. 2).
In contrast to control patients, in whom peak plasma
fluoride concentrations occurred 2.0 £ 0.4 h after the
end of sevoflurane administration, plasma fluoride
concentrations in disulfiram-treated patients peaked

almost immediately (0.1 = 0.1 h) after cessation of

sevoflurane (P < 0.05).
Urine fluoride excretion was similarly significantly
diminished in disulfiram-treated patients. Urine fluoride

Anesthesiology, V 82, No 6, Jun 1995

excretion by disulfiram-treated patients was signifi-
cantly less than that by control patients during all four
12-h collection periods (i.e., days 1 and 2) after sev-
oflurane administration (fig. 3). There was a trend to-
ward similarly diminished urine fluoride excretion in
disulfiram-treated patients on days 3 and 4. However,
the differences were not statistically significant. Cu-
mulative 96-h fluoride excretion in disulfiram-treated
patients was 1,080 + 210 umol, compared to 3,950 +
560 pmol in control patients (P < 0.05). The mean
decrease in urinary fluoride excretion (73%) in disul-
firam-treated patients was similar to the decrease in
area under the curve of net plasma fluoride concentra-
tion versus time (78%).

Disulfiram treatment also significantly attenuated
production of HFIP, the other major metabolite of sev-
oflurane, as measured by plasma HFIP concentrations
and urinary HFIP excretion. HFIP was undetectable in
preanesthetic baseline samples in both patient groups.

Fig. 2. Measured plasma fluoride concentrations (mean + SE)
in control (n = 10, open circles) and disulfiram-treated (n =
11, closed circles) patients. Sevoflurane was administered from
0 to 3 h, unless the surgical procedure ended before 3 h. Mean
fluoride concentrations in control patients were significantly
different from preanesthetic values at all times during sevo-
flurane exposure and through 48 h after exposure (P <0.05).
Mean fluoride concentrations in disulfiram-treated patients
were significantly different from preanesthetic values at all
times during sevoflurane and through 8 h after exposure (P
< 0.05). Mean fluoride concentrations in disulfiram-treated
patients were significantly different from those of control pa-
tients at all times during sevoflurane through 24 h after the
end of anesthesia (P < 0.05). The number of patients remaining
after day 2 decreased because of hospital discharge.
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Whereas peak total plasma HFIP concentration was 39.8
+ 2.6 uM in control patients, peak plasma HFIP con-
centration was decreased to only 14.4 £ 1.1 um by
disulfiram pretreatment (fig. 4). Areas under the plasma
HFIP concentration-time curves werc decreased to 20%
of control patients by disulfiram pretreatment, from
1.370 &+ 110/t0 268 = 88 uM - h. Whereas HFIP con-
centrations peaked almost immediately (0.6 * 0.4 h)
after the end of sevoflurane anesthesia in disulfiram-
treated patients, peak HFIP concentrations occurred
5.6 + 0.8 h after sevoflurane exposurc in control pa-
tients.

Urine HFIP excretion also was markedly reduced by
disulfiram pretreatment. Urine HFIP excretion (fig. 5)
by disulfiram-treated patients was significantly different
from that by control patients for the first four 12-h col-
lection periods. There was a trend toward similarly di-
minished urine HFIP excretion in disulfiram-treated
patients on days 3 and 4, but the differences were not
statistically significant. Cumulative 96-h HFIP excretion
in disulfiram-treated patients was 960 + 240 umol
compared to 4,300 £ 540 pmol in control patients (P
< 0.05). The mean decrease in urinary HFIP excretion
(78%) in disulfiram-treated patients was similar to the
decrease in area under the curve of net plasma fluoride
concentration versus time (80%).

Clinical indexes of recovery were not affected by di-
sulfiram pretreatment. Times from the end of surgery
to eye-opening (emergence), response to command,
and orientation were not different for disulfiram-treated
patients compared with control patients (table 3). Re-
covery times were longer than those published
previously”*” because patients received sevoflurane at
1.3 MAC without decrement until the end of surgery,
or received propofol after sevoflurane.

Discussion

Patient pretreatment with a single dose of disulfiram
before anesthesia resulted in significant inhibition of
sevoflurane metabolism, evidenced by substantial (73—
80%) reductions in plasma fluoride and HFIP concen-
trations and urinary fluoride and HFIP excretion. This
effect of disulfiram could not be attributed to differ-
ences in sevoflurane dose, which was similar in both
groups, as indicated by end-tidal sevoflurane concen-
trations, total pulmonary sevoflurane uptake, and blood
sevoflurane concentrations. Rather, the data demon-
strate that differences between groups were due to di-
sulfiram inhibition of sevoflurane metabolism. Disul-
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Fig. 3. Postoperative urine fluoride excretion (mean * SE) in

control (n = 10, open bars) and disulfiram-treated (n = 11,
closed bars) patients. *Significantly different urine fluoride
excretion in disulfiram-treated patients compared to control
patients (P < 0.05). Control and disulfiram groups initially
consisted of 10 and 11 patients, respectively, but the number
of patients remaining (shown in or above the bar) after day
2 decreased because of hospital discharge.

firam inhibition of sevoflurane metabolism suggests that
cytochrome P450 2E1 is a predominant P450 isoform
catalyzing human sevoflurane metabolism in vivo.

We have shown previously that disulfiram is an ef-
fective inhibitor of human P450 2E1 activity in vivo.*
Asingle oral dose of disulfiram (500 mg) administered
10 h before ingestion of chlorzoxazone, used as a spe-
cific noninvasive probe of hepatic P450 2E1 activity,””
significantly diminished P450 2E1 activity in vivo, ev-
idenced by an 85% decrease in chlorzoxazone 6-hy-
droxylation. Single-dose disulfiram administered the
evening before surgery also significantly inhibited en-
flurane defluorination in patients receiving 3.9-4.1
MAC-h enflurane, as assessed by changes in plasma flu-
oride concentrations and urinary fluoride excretion.”’
Peak plasma fluoride concentrations were 24.3+3.8
uM in untreated patients, whereas disulfiram treatment
abolished the rise in plasma fluoride concentration.
Fluoride excretion in disulfiram-treated patients was
62 + 10 and 61 + 12 umol on days 1 and 2, respec-
tively, compared to 1.094 + 185 and 1,196 = 223
umol, respectively, in control patients.

Although the effectiveness of P450 2E1 inhibition in
vivo by single-dose disulfiram has been established®?
and the selectivity of disulfiram toward P450 2E1 has
been shown in vitro,*° the absolute specificity of single-
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Fig. 4. Plasma total hexafluoroisopropanol (HFIP; unconju-
gated HFIP and HFIP-glucuronide) HFIP concentrations (mean
+ SE) in control (n = 10, open circles) and disulfiram-treated
(n = 11, closed circles) patients. Sevoflurane was administered
from O to 3 h, unless the surgical procedure ended before 3
h. Mean total HFIP concentrations in control patients were
significantly different from preanesthetic values at all times
during sevoflurane anesthesia through 60 h after the end of
anesthesia (P < 0.05). Mean total HFIP concentrations in di-
sulfiram-treated patients were significantly different from
preanesthetic values between 2 h after the start of anesthesia
through 8 h after the end of anesthesia (P < 0.05). Mean HFIP
concentrations in disulfiram-treated patients were signifi-
cantly different from those of control patients at all times
during sevoflurane anesthesia through 48 h after the end of
sevoflurane exposure (P < 0.05). The number of patients re-
maining after day 2 decreased because of hospital discharge.

dose disulfiram toward P450 2E1 #n vivo has not been
demonstrated. Diethyldithiocarbamate, the active in-
hibitory metabolite of disulfiram, can inhibit in vitro
human liver microsomal coumarin 7-hydroxylation,
which is catalyzed by P450 2A6.*' The influence, how-
ever, of disulfiram on human coumarin 7-hydroxylation
in vivo has not been established. Furthermore, P450
2E1 is a major component of the P450s in the liver,
whereas P450 2A6 represents less than 1% of total he-
patic P450.%* Thus, disulfiram-inhibitable metabolism
is attributed predominantly but not necessarily exclu-
sively to P450 2E1. Disulfiram inhibition of sevoflurane
metabolism in vivo strongly supports a role for P450
2E1 but does not exclude the possible participation of
other P450 isoforms.

** Kharasch ED: Unpublished data. 1995
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Fig. 5. Postoperative urine total hexafluoroisopropanol (HFIP;
unconjugated HFIP and HFIP-glucuronide) excretion (mean +
SE) in control (n = 10, open bars) and disulfiram-treated (n =
11, closed bars) patients. *Significantly different urine fluoride
excretion in disulfiram-treated patients compared to control
patients (P < 0.05). Control and disulfiram groups initially
consisted of 10 and 11 patients, respectively, but the number
of patients remaining (shown in or above the bar) after day
2 decreased because of hospital discharge.

ME F T (NDUCT

Disulfiram inhibition of P450 2E1 activity diminished
but did not abolish the metabolism of sevoflurane. Di-
sulfiram-treated patients showed increases in plasma
fluoride and HFIP concentrations compared with base-
line values, and fluoride and HFIP were excreted in
urine. The fluoride production observed in disulfiram-
treated patients cannot be attributed primarily to al-
ternative pathways of sevoflurane metabolism, further
metabolism of HFIP to fluoride, or fluoride production
from sources other than sevoflurane (i.e., sevoflurane
compound A).**** This is because fluoride and HFIP
production were comparable in disulfiram-treated pa-
tients, HFIP is not metabolized to fluoride by human
liver microsomes,** HFIP elimination was not altered
significantly by disulfiram pretreatment (HFIP clear-

Table 3. Patient Recovery Data

Disulfiram-treated

Control (n = 10) (n=11)
Emergence (min) 25+6 16 £ 3
Command response (min) 25+6 19+ 4
Orientation (min) 37+8 24 + 4

Values are mean + SE. No significant differences were found between groups
for any recovery parameter.
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ance was 52.6 £ 6.1 and 71.0 £ 8.9 ml/min in control
and disulfiram-treated patients, respectively), and HFIP
is not an expected metabolite of compound A.

The degree of disulfiram inhibition of sevoflurane
metabolism (73-80%) is consistent with that of
chlorzoxazone hydroxylation (85%)°? but contrasts
with the complete inhibition of enflurane metabolism
observed prcviously.“ The reason for the difference
between clinical enflurane and sevoflurane metabo-
lism is not immediately apparent, particularly be-
cause in vitro microsomal metabolism of both agents
is apparently similar.”' One possible explanation
might be subtotal inhibition of P450 2E1 activity by
disulfiram. This incomplete inhibition would be
more manifest at the higher intrinsic rate of sevo-
flurane, compared with enflurane, metabolism '’
Alternatively, P450 isoforms other than P450 2El
that are not inhibited by disulfiram may contribute
to sevoflurane but not enflurane metabolism. Nev-
ertheless, it appears that P450 2E1 is a predominant
P450 isoform catalyzing human sevoflurane metab-
olism in vivo.

P450 2E1 participation in human sevoflurane metab-
olism #n vivo mirrors the role of P450 2E1 in human
liver microsomal sevoflurane defluorination 71 vitro.”!
These data provide validation for human microsomal
sevoflurane metabolism in vitro as a model for sevo-
flurane biotransformation in vivo.

In addition to providing in vitro-in vivo correlations
of metabolism, the current identification of P450 2E1
participation in human sevoflurane metabolism pro-
vides a mechanistic basis for several clinical observa-
tions regarding sevoflurane metabolism.”' For example,
Higuchi et al. reported that sevoflurane defluorination
was significantly greater in obese than nonobese pa-
tients,'! whereas Frink et al. found no relationship be-
tween obesity and sevoflurane metabolism.'* Higuchi
et al. suggested that the high incidence of hepatic fatty
infiltration in their obese patients may account for the
observed difference. Identification of the role of P450

2E1 in clinical sevoflurane metabolism corroborates
this contention. Hepatic P450 2E1 content and P450
2E1-dependent anesthetic metabolism are substantially
higher in livers with fatty infiltration compared to nor-
mal livers.tt The individual heterogeneity in sevoflur-

ane metabolism observed currently and previously' ™

1 Thummel KE: Unpublished observations. 1994.

% Frink E Jr: Personal communication. 1994.
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can be explained partially by the population variability
in hepatic P450 2E1 activity. Several investigations
have found a broad distribution in hepatic P450 2E1
activity exclusive of the effect of inducers or inhibi-

tors 21.36-38

In addition to the known effects of P450 2E1 inducers
such as obesity and fatty liver infiltration, other P450
2E1 inducers, including isoniazid, chronic ethanol
consumption, untreated diabetes, and prolonged fast-
ing, would be predicted to likewise stimulate clinical
sevoflurane metabolism.*” In contrast, other classic
P450 inducers, including phenobarbital and phenytoin,
which do not increase P450 2E1 activity, would be
predicted to have minimal effect on clinical sevoflurane
metabolism. Phenobarbital induction had no effect on
sevoflurane metabolism as assessed by urinary fluoride
excretion."’

Inhibition of P450 2E1 activity and sevoflurane me-
tabolism would not be of expected clinical conse-
quence. We observed that clinical indexes of recovery
were not influenced by the rate or extent of sevoflurane
metabolism. This is consistent with the small extent of
sevoflurane metabolism'* ' and demonstrates that me-
tabolism does not play a significant role in terminating
the clinical effect of sevoflurane. Furthermore, no al-
ternate pathways of sevoflurane metabolism have been
identified toward which sevoflurane might be
“switched"" if the primary P450 2E1-dependent path-
way was inactive.

Thus, even in patients with minimal or no hepatic
metabolic capacity, such as those with diminished en-
zyme activity or with intrinsic liver disease, recovery
from sevoflurane anesthesia should not be affected sig-
nificantly. This has been confirmed clinically, whereby
sevoflurane recovery was similar in healthy patients and
those with hepatic disease ##

Clinical consequences of P450 2E1 induction of sev-
oflurane metabolism and increased metabolite forma-
tion have not been fuily characterized. Obese patients
demonstrated significantly greater sevoflurane metab-
olism than normal patients, with 11 of 15 obese pa-
tients exhibiting peak serum fluoride concentrations
greater than 50 uM, but there were no abnormalities of
renal function.'' Other investigations have similarly
shown no link between sevoflurane-dependent eleva-
tions in plasma fluoride concentration and renal dys-
function.'**?

In summary, we have shown that P450 2E1 is a pre-
dominant cytochrome P450 isoform responsible for
clinical sevoflurane metabolism in humans.
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