loaded into the headspace epared by adding known internal standard to blank . intrument described K RTX $1701(30 \mathrm{~m} \times 0.53$ strument parameters were sis of sevoflurane in blood was $100^{\circ} \mathrm{C}$ and the helium tention times for HFIP and in, respectively. No interands was observed. Quan. ak areas. Standard curves FIP with correlation coef. cation was $2.5 \mu \mathrm{~m}$. Values ion were taken as zero for eterminations.
re determined by GC-FID HFIP after deconjugation. bove for plasma, and unig the deconjugation step. c used for HFIP in plasma. 80 and $5-80 \mu \mathrm{~m}$ for unh correlation coefficients
mined by headspace GC. - conjugate, was measured is. To a $22 \cdot \mathrm{ml}$ headspace sulfuric acid, and $25 \mu \mathrm{l}$ as immediately capped, tosampler. Samples were h glucuronide hydrolysis showed that glucuronide ht) or sulfuric acid (30 latter method was used ach day by adding known ternal standard to blank

D instrument described EK Stabilwax.DA (15 m -r instrument parameters alysis of HFIP in plasma. Ientical to that used for etention times for HFIP d 2.1 min , respectively. FnP) versus HFIP added ards and used to quantify was linear over the range cients of 0.999, and the FIP concentrations were excretion expressed in

Anesthesiology
82:1379-1388, 1995
(C) 1995 American Society of Anesthesiologists, Inc.
J. B. Lippincott Company, Philadelphia

Clinical Sevoflurane Metabolism and Disposition

II. The Role of Cytochrome P450 2E1 in Fluoride and Hexafluoroisopropanol Formation

Evan D. Kharasch, M.D., Ph.D.,* Andrew S. Armstrong, M.B.B.S., F.A.N.Z.C.A., \dagger Kerry Gunn, M.B.Ch.B., F.A.N.Z.C.A., \dagger Alan Artru, M.D., \ddagger Kathy Cox, B.S.,§ Michael D. Karol, Ph.D.\|

Background: Sevoflurane is metabolized to free fluoride and hexafluoroisopropanol (HFIP). Cytochrome P450 2E1 is the major isoform responsible for sevoflurane metabolism by human liver microsomes in vitro. This investigation tested the hypothesis that P450 2E1 is predominantly responsible for sevoflurane metabolism in vivo. Disulfiram, which is converted in vivo to a selective inhibitor of $P 4502 \mathrm{E}$, was used as a metabolic probe for P450 2E1.

Methods: Twenty-one patients within 30\% of ideal body weight, who provided institutional review board-approved informed consent and were randomized to receive disulfiram (500 mg oral, $\mathrm{n}=11$) or nothing (control, $\mathrm{n}=10$) the night before surgery, were evaluated. All patients received sevoflurane ($\mathbf{2 . 7 \%}$ end-tidal, $\mathbf{1 . 3} \mathrm{MAC}$) in oxygen for 3 h after propofol induction. Thereafter, sevoflurane was discontinued, and anesthesia was maintained with propofol, fentanyl, and nitrous oxide. Blood sevoflurane concentrations during anesthesia and for 8 h thereafter were measured by gas chromatography. Plasma and urine fluoride and total (unconjugated plus glucuronidated) HFIP concentrations were measured by

- Associate Professor of Anesthesiology and Medicinal Chemistry (Adjunct), University of Washington.
† Acting Instructor, Department of Anesthesiology, University of Washington.
\# Professor, Department of Anesthesiology, University of Washing. ton.
$\$$ Clinical Research Coordinator, University of Washington.
|| Pharmacokinetics/Biopharmaceutics Department, Abbott Laboratories.

Received from the Departments of Anesthesiology and Medicinal Chemistry, University of Washington, Seattle, Washington, and Abbott Laboratories, Abbott Park, Illinois. Submitted for publication November 23, 1994. Accepted for publication March 2, 1995. Supported by grants from the National Institutes of Health (RO1 GM48712) and Abbott Laboratories and by a Pharmaceutical Research and Manufacturers of America Foundation Faculty Development Award (to Dr. Kharasch). Presented in part at the annual meeting of the American Society of Anesthesiologists, San Francisco, California, October 15-19, 1994

Address correspondence to Dr. Kharasch: Department of Anesthesiology, RN-10, University of Washington, Seattle, Washington 98195.
an ion-selective electrode and by gas chromatography, respectively, during anesthesia and for 96 h postoperatively.
Results: Patient groups were similar with respect to age, weight, sex, case duration, and intraoperative blood loss. The total sevoflurane dose, measured by cumulative end-tidal sevoflurane concentrations ($3.7 \pm 0.1 \mathrm{MAC}-\mathrm{h}$; mean \pm SE), total pulmonary uptake, and blood sevoflurane concentrations, was similar in both groups. In control patients, plasma fluoride and HFIP concentrations were increased compared to baseline values intraoperatively and postoperatively for the first 48 and 60 h , respectively. Disulfiram treatment significantly diminished this increase. Plasma fluoride concentrations increased from $2.1 \pm 0.3 \mu \mathrm{M}$ (baseline) to $36.2 \pm 3.9 \mu \mathrm{M}$ (peak) in control patients, but only from 1.7 ± 0.2 to $17.0 \pm 1.6 \mu \mathrm{M}$ in disulfiram-treated patients ($P<0.05$ compared with control patients). Peak plasma HFIP concentrations were 39.8 ± 2.6 and $14.4 \pm 1.1 \mu \mathrm{~m}$ in control and disulfiram-treated patients ($P<0.05$), respectively. Areas under the plasma fluoride- and HFIP-time curves also were diminished significantly to 22% and 20% of control patients, respectively, by disulfiram treatment. Urinary excretion of fluoride and HFIP was similarly significantly diminished in disulfiram-treated patients. $\mathbf{C u}$ mulative $96-\mathrm{h}$ fluoride and HFIP excretion in disulfiram-treated patients was $1,080 \pm 210$ and $960 \pm 240 \mu \mathrm{~mol}$, respectively, compared to $3,950 \pm 560$ and $4,300 \pm 540 \mu \mathrm{~mol}$ in control patients ($P<0.05$).

Conclusions: Disulfiram, an effective P450 2E1 inhibitor, substantially decreased fluoride ion and HFIP production during and after sevoflurane anesthesia. These results suggest that P450 2E1 is a predominant P450 isoform responsible for human sevoflurane metabolism in vivo. (Key words: Anesthetics, volatile: sevoflurane. CYP2E1. Cytochrome P450 2E1. Ions: fluoride. Kidney, urine. Liver, metabolism. Metabolism. Metabolites: fluoride; hexafluoroisopropanol. Pharmacokinetics. Toxicity: renal.)

SEVOFLURANE, like other fluorinated anesthetics, undergoes oxidative defluorination with the liberation of free fluoride ion. ${ }^{1,2}$ Unlike other fluorinated anesthetics, the additional major metabolites of sevoflurane have been well characterized. ${ }^{1,3,4}$ These investigations indicate that inorganic fluoride and hexafluoroisopropanol (HFIP) are the major products of human sevo-
flurane metabolism．HFIP circulates in blood primarily as the glucuronide conjugate and is excreted in urine．${ }^{4}$
Clinical evaluations of sevoflurane have shown wide variability in metabolism，as monitored by plasma flu－ oride concentrations．Average peak plasma fluoride concentrations ranged from 15 to $30 \mu \mathrm{M}$ after 1－2 MAC h sevoflurane．${ }^{1,5-7}$ However there was considerable variability in the individual values，for example，12－ $35 \mu \mathrm{M}$ in one investigation ${ }^{7}$ and $10-50 \mu \mathrm{M}$ in another study．${ }^{6}$ Higher plasma fluoride concentrations have been associated with longer sevoflurane exposures．${ }^{6-10}$ No characteristic factors have been identified in patients with the highest plasma fluoride concentrations in these investigations．Higuchi et al．reported that plasma flu－ oride concentrations and urinary fluoride excretion were greater in obese than nonobese patients．${ }^{11}$ Frink et al．，however，found no effect of obesity on sevoflur－ ane metabolism．${ }^{12}$
Thus，the mechanism of variability in sevoflurane metabolism is unknown．There is speculation that gen－ eralized enzyme induction（most commonly by drugs such as barbiturates）could lead to increased fluoride production．${ }^{6}$ The role of enzyme induction（by drugs such as phenobarbital，diphenylhydantoin，or isonia－ zid）in sevoflurane production in humans is unresolved．
In the absence of human data，animal investigations on sevoflurane fluoride production have been cited in attempts to predict the effects of hepatic enzyme ac－ tivity on sevoflurane metabolism in man．Enzyme in－ duction by treatment with phenobarbital，${ }^{13-15}$ phenyt－ oin，${ }^{14}$ isoniazid，${ }^{16,17}$ and chronic ethanol admin－ istration ${ }^{18}$ ． has been shown to increase sevoflurane defluorination in rat liver microsomes in vitro．In con－ trast，Baker et al．found no effect of phenobarbital on sevoflurane metabolism．${ }^{17}$ In vivo，enzyme induction by phenobarbital pretreatment resulted in a two－to fivefold increase in plasma fluoride concentrations after sevoflurane administration in rats．${ }^{19,20}$ Animal pretreat－ ment with polycyclic aromatic hydrocarbons，which induce different P450 isoforms than phenobarbital，had no effect on sevoflurane defluorination in rat liver mi－ crosomes in vitro ${ }^{13,15}$ but significantly increased sev－ oflurane defluorination in rats in vivo．${ }^{20}$
Thus，animal data regarding sevoflurane metabolism are contradictory．Furthermore，animal models of sev－ oflurane metabolism are not applicable to humans，${ }^{21}$

[^0]because some important sevoflurane defluorinating en－ zymes present in animals frequently are not present in humans．Our laboratory has studied the defluorination of sevoflurane by human liver microsomes in vitro．${ }^{21}$ We identified the isoniazid－and ethanol－inducible cy－ tochrome P450 isoform P450 2E1 as the predominant human hepatic enzyme responsible for sevoflurane de－ fluorination in vitro．Clinical investigations are re－ quired to identify the enzyme responsible for sevo－ flurane metabolism in vivo．

The purpose of this investigation was to identify the human enzyme responsible for anesthetic defluorina－ tion in patients undergoing sevoflurane anesthesia．We tested the hypothesis that cytochrome P450 2E1 cat－ alyzes sevoflurane defluorination in humans in vivo． The hypothesis was tested by administering sevoflurane to patients in whom P450 2E1 activity was inhibited by prior treatment with a single dose of disulfiram and comparing sevoflurane metabolism with that in control patients receiving no pretreatment．Single－dose disul－ firam inhibition of human P450 2E1 activity has been demonstrated previously as an effective probe for in vivo participation of this isoform in drug metabo－ lism．${ }^{22,23}$

Materials and Methods

Patient Selection and Clinical Protocol

Twenty－two nonsmoking ASA physical status 1 or 2 patients undergoing anesthesia for elective surgery with anticipated duration of $3-5 \mathrm{~h}$ were studied．The in－ vestigational protocol was approved by the Institutional Human Subjects Committee，and all patients provided written informed consent．Eligibility and exclusion criteria are described in the accompanying article．${ }^{4}$ Most patients were evaluated and enrolled before the day of surgery，randomized to control or disulfiram groups at that time，and admitted to the hospital the morning of surgery．A few subjects were inpatients． Patients were randomized by blocks to receive 500 mg disulfiram orally at bedtime on the evening before sur－ gery（ $\mathrm{n}=12$ ）or nothing（control， $\mathrm{n}=10$ ）．Patients in the control group also are described in the accom－ panying article．${ }^{4}$ Patients in the disulfiram group were provided disulfiram at the time of enrollment and in－ structed to ingest the drug at 10 Pm the evening before surgery．

All patients received a standardized general anesthetic designed to minimize potential drug interactions other
than the des catheter，us arm contral administrati intravenous test（see bel （1－2．5 mg／ nylcholine tubatio ${ }^{\circ}$ ．In anesth夢ia tidal cênce and endi－tic tored conti mentater percentage tidal se Sevofleirane adjuste when 鹿ossi patien发 re esthet flurane 2.7 for 3 閊 un h．For ब्बper： was dixicon crease to propo was not sta trationtion end－ti唡al 15 －mig int
Vene̊ius sevoflurane conce合trat previoüsly centration followêng of sevốflur
48，48－72 discharge） was measu later analys Clinical

covery roo

（hematolos
formed bet
24 h after
before hos included th
response，a

CLINICAL SEVOFLURANE METABOLISM BY P450 2E1
the defluorinating en tly are not present in ed the defluorination crosomes in vitro. ${ }^{21}$ thanol-inducible cy. 1 as the predominant le for sevoflurane de. ivestigations are re esponsible for sevo.
n was to identify the resthetic defluorina. urane anesthesia. We rome P450 2E1 cat. in humans in vivo. nistering sevoflurane tivity was inhibited se of disulfiram and with that in control t. Single-dose disulE1 activity has been ective probe for in n in drug metabo.

rotocol

ysical status 1 or 2 lective surgery with re studied. The in1 by the Institutional 11 patients provided lity and exclusion mpanying article. ${ }^{4}$ enrolled before the ntrol or disulfiram to the hospital the ts were inpatients. s to receive 500 mg evening before sur, $\mathrm{n}=10$). Patients ibed in the accomulfiram group were enrollment and inthe evening before
d general anesthetic g interactions other
than the desired test interaction. An indwelling venous catheter, used for blood sampling, was placed in the arm contralateral to the arm used for intravenous fluid administration. Patients received midazolam (1 mg) intravenously after completion of the disulfiram breath test (see below). Anesthesia was induced with propofol ($1-2.5 \mathrm{mg} / \mathrm{kg}$) and fentanyl ($50-100 \mu \mathrm{~g}$), and succinylcholine was administered to facilitate tracheal intubation. Immediately after the trachea was intubated, anesthesia was maintained with sevoflurane (2.7% endtidal concentration) in oxygen ($2-51 / \mathrm{min}$). Inspired and end-tidal sevoflurane concentrations were monitored continuously (Capnomac, Datex Medical Instrumentation, Tewksbury, MA). The inspired sevoflurane percentage was titrated to maintain the desired endtidal sevoflurane concentration of 2.7% (1.3 MAC). Sevoflurane MAC (2.05 end-tidal percent ${ }^{24}$) was not adjusted for age. Use of muscle relaxants was avoided when possible. When muscle relaxation was necessary, patients received atracurium. No neuraxial local anesthetics or opioids were used intraoperatively. Sevoflurane 2.7% end-tidal concentration was maintained for 3 h , unless the duration of surgery was less than 3 h. For operations lasting longer than 3 h , the sevoflurane was discontinued after 3 h , total gas flows were increased to $61 / \mathrm{min}$, and anesthesia was maintained with propofol, nitrous oxide, and fentanyl. Nitrous oxide was not started until the end-tidal sevoflurane concentration had decreased to less than 0.2%. Inspired and end-tidal sevoflurane concentrations were recorded at $15-\mathrm{min}$ intervals while patients were intubated.
Venous blood samples for determination of blood sevoflurane concentration and plasma fluoride and HFIP concentrations were obtained at the times described previously. ${ }^{4}$ Urine for determination of fluoride concentration was obtained before induction and for the following consecutive intervals beginning at the start of sevoflurane anesthesia: $0-12,12-24,24-36,36-$ $48,48-72$, and $72-96 \mathrm{~h}$ (or until the time of hospital discharge). Urine was thoroughly mixed, the volume was measured, and an aliquot was frozen at $-20^{\circ} \mathrm{C}$ for later analysis.
Clinical evaluation included intraoperative and recovery room hemodynamics and laboratory evaluation (hematology, clinical chemistry, and urinalysis) performed before the study, baseline before anesthesia, 24 h after sevoflurane, and 96 h after sevoflurane (or before hospital discharge). Clinical evaluations also included three recovery indexes: emergence, command response, and orientation time. Emergence was defined
as the time from the end of surgery to eye-opening in response to verbal command. Command response was the time from the end of surgery until the patient squeezed the observer's hand in response to command or demonstrated purposeful movement. Orientation time was recorded when the patient stated their name, birth date, and age. Clinical recovery indexes were judged by an independent observer who was not an investigator.

Analytical Methods

Compliance with disulfiram ingestion was assessed preoperatively before midazolam administration using a breath test for exhaled carbon disulfide. ${ }^{25,26}$ Disulfiram is rapidly metabolized after absorption. After a single dose, major metabolites include carbon disulfide, diethyldithiocarbamate, and diethylamine. ${ }^{27}$ Carbon disulfide is detectable in plasma, urine, and exhaled breath, and diethylamine is detected in plasma and urine. Concentrations of these metabolites peak approximately 12 h after disulfiram administration, permitting assessment of compliance 10 h after disulfiram dosing. Patients exhaled into two gas washing bottles connected in series. The first bottle contained phenolphthalein and 15 ml of 75 mm NaOH to trap carbon dioxide, and the second bottle contained 15 ml of modified McKees solution ((w/v) 5\% diethylamine, 5\% triethanolamine, 0.002% copper (II) acetate, and 10% isooctane in ethanol) to trap carbon disulfide. Patients exhaled until 1.1 mEq of expired carbon dioxide had been collected, indicated by a change in the first solution from pink to colorless. An unequivocal yellow color in the second bottle, due to copper diethyldithiocarbamate, was indicative of disulfiram ingestion and adequate absorption.

Eleven patients taking disulfiram had a positive breath test, and one disulfiram-treated patient had a negative breath test. Subsequent urine and blood tests for disulfiram metabolites were negative in this patient, who had severe diarrhea and, therefore, was excluded from the data analysis. No control patient exhibited a positive disulfiram breath test. Thus, data from 10 control and 11 disulfiram-treated patients were analyzed.

Analytical methods are described in the accompanying article. ${ }^{4}$ Briefly, total HFIP (unconjugated HFIP and HFIP-glucuronide) in plasma and urine and blood sevoflurane concentrations were determined by gas chromatography with headspace sampling and flame ionization detection. Plasma and urine fluoride con-

Table 1．Patient Demographics

	Control（ $n=10$ ）		Disulfiram－treated（ $\mathrm{n}=11$ ）	
		4 （23－68）		$\pm 4(29-67)$ 4.7
Age（yr）		3：7		$4: 7$ $+\quad 8(45-118)$
Gender（M：F）		5 （55－102）	79	$\pm 8(45-118)$ $+\quad 1(18-34)$
Weight（kg）${ }^{\text {a }}$		$2(22-35)$	27	$\pm 1(18-34)$
Body mass index ${ }^{\text {Duration of surgery（h）}}$		$0.5(2.7-7.8)$	230	$\begin{aligned} & \pm \quad 0.5(2.7-8.1) \\ & \pm 80(50-1,000) \end{aligned}$
Blood loss（ml）	320	40 （100－1，500）		± 80（50－1，000）

Values are mean + SE（range）．No significant differences were found between groups for any patient characteristic
－Weight（kg）／height ${ }^{2}\left(\mathrm{~m}^{2}\right)$ ．
centrations were measured using a fluoride－selective electrode．

Data Analysis

Anesthetic dose was calculated as the product of end－ tidal sevoflurane concentration（expressed in MAC， uncorrected for age，where $\mathrm{MAC}=2.05 \%$ ）and time， determined in 2 －min intervals until 10 min after inci－ sion and every 15 min thereafter，with total exposure expressed in MAC－hours．Sevoflurane dose also was cal－ culated from total pulmonary anesthetic uptake and expressed in millimoles．${ }^{4}$
Patients＇demographic data，recovery indexes，and peak plasma fluoride and HFIP concentrations were an－ alyzed by Student＇s unpaired t test．Blood sevoflurane concentrations，plasma fluoride，and HFIP concentra－ tions and urine fluoride and HFIP excretion in the two groups were compared by two－way repeated－measures analysis of variance．Net plasma fluoride and HFIP con－ centrations were obtained by subtracting the pre－ anesthetic baseline value from all subsequent values． Results are expressed as the mean $\pm \mathrm{SE}$ ．

Results

Patient demographic data are provided in table 1 Control and disulfiram－treated groups were similar with respect to age，weight，sex，duration of surgery，and surgical blood loss．Propofol doses were similar in both groups（table 2）．Three methods were used to deter－ mine the dose of sevoflurane delivered：end－tidal sev－ oflurane concentrations，calculated total pulmonary uptake，and blood sevoflurane concentrations（table 2）．All three methods showed that the sevoflurane dose was similar in both groups．Total sevoflurane dose was 3.7 ± 0.1 MAC－h in both control and disulfiram－treated patients，respectively $(P>0.05)$ ．Total pulmonary up－ take was $88.8 \pm 9.1 \mathrm{mmol}$ in control patients and 98.8 $\pm 8.1 \mathrm{mmol}$ in disulfiram－treated patients，respectively （ $P>0.05$ ）．Blood sevoflurane concentrations in control and disulfiram－treated patients were not significantly different at any time，and areas under the curves were not significantly different（fig．1）．
Disulfiram treatment significantly diminished fluoride production，as assessed by plasma fluoride concentra－ tions and urinary fluoride excretion．Measured plasma

Table 2．Anesthetic Exposure and Dose

Table 2．Anesthetic Exposure and Dose	Control $(\mathrm{n}=10)$	Disulfiram－treated $(\mathrm{n}=11)$				
Sevoflurane	174	\pm	$4(135-184)$	171	\pm	$5(136-180)$
Exposure (min)	$3.7 \pm$	$0.1(3.0-4.2)$	$3.7 \pm$	$0.1(3.0-4.2)$		
Dose $(\mathrm{MAC}-\mathrm{h})$	$88.8 \pm$	$9.1(55.6-141.3)$	$98.9 \pm$	$8.1(46.7-136.2)$		
Dose (mmol)						
Propofol	200	$\pm 30(100-400)$	202	$\pm 26(100-400)$		
Induction dose (mg)	1,353	$\pm 286(225-2,390)$	2,220	$\pm 705(393-4,358)$		
Infusion dose $(\mathrm{mg})^{*}$	109	$\pm 26(15-240)$	155	$\pm 33(45-285)$		
Infusion duration $(\mathrm{min})^{*}$						

[^1] （ $\mathrm{n}=10$ ，©̊ pen circles）pagitien unless thee sur concentrẩtion ferent at ⿳亠丷冖⿱丶万⿱⿰㇒一乂⿹\zh26灬yyy and 2,58 treated paaktien
 $2.1 \pm$ क्षे $_{6} 3 \mu$ concentratio control $\stackrel{\rightharpoonup}{g}_{\text {g．ati }}$ fluoride ${ }^{\circ}$ con （baselitge）t which tas s （ $P<0.95$ ）． sured asie the fluoride patient ${ }_{\text {º }}^{3}$ but sulfiran效trea net plas̃ma decreased to treatment，f time to peal icantly shor In contrast fluoride con end of sev concentrati almost imm sevoflurane
Urine fluc diminished

Fig. 1. Blood sevoflurane concentration (mean $\pm \mathbf{S E}$) in control ($\mathbf{n}=10$, open circles) and disulfiram-treated ($\mathrm{n}=11$, closed circles) patients. Sevoflurane was administered from 0 to 3 h , unless the surgical procedure ended before 3 h . Anesthetic concentrations in the two groups were not significantly different at any time. Areas under the curves were $2,790 \pm 130$ and $2,580 \pm 280 \mu \mathrm{M} \cdot \mathrm{h}$, respectively, in control and disulfiramtreated patients $(P>0.05)$.
fluoride concentrations increased from a baseline of $2.1 \pm 0.3 \mu \mathrm{~m}$ before anesthetic induction to a peak concentration of $36.2 \pm 3.9 \mu \mathrm{M}$ (range 23.3-61.5) in control patients (fig. 2). In disulfiram-treated patients, fluoride concentrations increased from $1.7 \pm 0.2 \mu \mathrm{M}$ (baseline) to a peak concentration of $17.0 \pm 1.6 \mu \mathrm{M}$, which was significantly different from control patients ($P<0.05$). Net peak plasma fluoride production, measured as the difference between peak and preanesthetic fluoride concentrations, was $34.0 \pm 3.9 \mu \mathrm{~m}$ in control patients but significantly less ($15.4 \pm 1.5 \mu \mathrm{~m}$) in di-sulfiram-treated patients ($P<0.05$). Areas under the net plasma fluoride concentration-time curves were decreased to 22% of control patients by disulfiram pretreatment, from $1,110 \pm 160$ to $241 \pm 72 \mu \mathrm{M} \cdot \mathrm{h}$. The time to peak plasma fluoride concentration was signif icantly shortened by disulfiram pretreatment (fig. 2). In contrast to control patients, in whom peak plasma fluoride concentrations occurred $2.0 \pm 0.4 \mathrm{~h}$ after the end of sevoflurane administration, plasma fluoride concentrations in disulfiram-treated patients peaked almost immediately ($0.1 \pm 0.1 \mathrm{~h}$) after cessation of sevoflurane ($P<0.05$).
Urine fluoride excretion was similarly significantly diminished in disulfiram-treated patients. Urine fluoride
excretion by disulfiram-treated patients was significantly less than that by control patients during all four $12-\mathrm{h}$ collection periods (i.e., days 1 and 2) after sevoflurane administration (fig. 3). There was a trend toward similarly diminished urine fluoride excretion in disulfiram-treated patients on days 3 and 4. However, the differences were not statistically significant. Cumulative 96 -h fluoride excretion in disulfiram-treated patients was $1,080 \pm 210 \mu \mathrm{~mol}$, compared to $3,950 \pm$ $560 \mu \mathrm{~mol}$ in control patients $(P<0.05)$. The mean decrease in urinary fluoride excretion (73%) in disul-firam-treated patients was similar to the decrease in area under the curve of net plasma fluoride concentration versus time (78%).
Disulfiram treatment also significantly attenuated production of HFIP, the other major metabolite of sevoflurane, as measured by plasma HFIP concentrations and urinary HFIP excretion. HFIP was undetectable in preanesthetic baseline samples in both patient groups.

Fig. 2. Measured plasma fluoride concentrations (mean $\pm \mathbf{S E}$) in control $(\mathrm{n}=10$, open circles) and disulfiram-treated $(\mathrm{n}=$ 11, closed circles) patients. Sevoflurane was administered from 0 to 3 h , unless the surgical procedure ended before 3 h . Mean fluoride concentrations in control patients were significantly different from preanesthetic values at all times during sevoflurane exposure and through 48 h after exposure $(P<0.05)$. Mean fluoride concentrations in disulfiram-treated patients were significantly different from preanesthetic values at all times during sevoflurane and through 8 h after exposure (P $<\mathbf{0 . 0 5}$). Mean fluoride concentrations in disulfiram-treated patients were significantly different from those of control patients at all times during sevoflurane through 24 h after the end of anesthesia ($P<0.05$). The number of patients remaining after day 2 decreased because of hospital discharge.

Whereas peak total plasma HFIP concentration was 39.8 $\pm 2.6 \mu \mathrm{~m}$ in control patients, peak plasma HFIP concentration was decreased to only $14.4 \pm 1.1 \mu \mathrm{M}$ by disulfiram pretreatment (fig. 4). Areas under the plasma HFIP concentration-time curves were decreased to 20% of control patients by disulfiram pretreatment, from $1,370 \pm 110$ to $268 \pm 88 \mu \mathrm{~m} \cdot \mathrm{~h}$. Whereas HFIP concentrations peaked almost immediately ($0.6 \pm 0.4 \mathrm{~h}$) after the end of sevoflurane anesthesia in disulfiramtreated patients, peak HFIP concentrations occurred $5.6 \pm 0.8 \mathrm{~h}$ after sevoflurane exposure in control patients.
Urine HFIP excretion also was markedly reduced by disulfiram pretreatment. Urine HFIP excretion (fig. 5) by disulfiram-treated patients was significantly different from that by control patients for the first four $12-\mathrm{h} \mathrm{col}-$ lection periods. There was a trend toward similarly diminished urine HFIP excretion in disulfiram-treated patients on days 3 and 4, but the differences were not statistically significant. Cumulative 96 -h HFIP excretion in disulfiram-treated patients was $960 \pm 240 \mu \mathrm{~mol}$ compared to $4,300 \pm 540 \mu \mathrm{~mol}$ in control patients (P <0.05). The mean decrease in urinary HFIP excretion (78%) in disulfiram-treated patients was similar to the decrease in area under the curve of net plasma fluoride concentration versus time (80%).
Clinical indexes of recovery were not affected by disulfiram pretreatment. Times from the end of surgery to eye-opening (emergence), response to command, and orientation were not different for disulfiram-treated patients compared with control patients (table 3). Recovery times were longer than those published previously ${ }^{7,28}$ because patients received sevoflurane at 1.3 MAC without decrement until the end of surgery, or received propofol after sevoflurane.

Discussion

Patient pretreatment with a single dose of disulfiram before anesthesia resulted in significant inhibition of sevoflurane metabolism, evidenced by substantial (73$80 \%$) reductions in plasma fluoride and HFIP concentrations and urinary fluoride and HFIP excretion. This effect of disulfiram could not be attributed to differences in sevoflurane dose, which was similar in both groups, as indicated by end-tidal sevoflurane concentrations, total pulmonary sevoflurane uptake, and blood sevoflurane concentrations. Rather, the data demonstrate that differences between groups were due to disulfiram inhibition of sevoflurane metabolism. Disul-

Fig. 3. Postoperative urine fluoride excretion (mean $\pm \mathbf{S E}$) in control ($n=10$, open bars) and disulfiram-treated ($n=11$, closed bars) patients. *Significantly different urine fluoride excretion in disulfiram-treated patients compared to control patients ($P<\mathbf{0 . 0 5}$). Control and disulfiram groups initially consisted of 10 and 11 patients, respectively, but the number of patients remaining (shown in or above the bar) after day 2 decreased because of hospital discharge.
firam inhibition of sevoflurane metabolism suggests that cytochrome P450 2E1 is a predominant P450 isoform catalyzing human sevoflurane metabolism in vivo.
We have shown previously that disulfiram is an effective inhibitor of human P450 2E1 activity in vivo. ${ }^{22}$ A single oral dose of disulfiram (500 mg) administered 10 h before ingestion of chlorzoxazone, used as a specific noninvasive probe of hepatic P450 2E1 activity, ${ }^{29}$ significantly diminished P450 2E1 activity in vivo, evidenced by an 85% decrease in chlorzoxazone 6 -hydroxylation. Single-dose disulfiram administered the evening before surgery also significantly inhibited enflurane defluorination in patients receiving 3.9-4.1 MAC-h enflurane, as assessed by changes in plasma fluoride concentrations and urinary fluoride excretion. ${ }^{23}$ Peak plasma fluoride concentrations were 24.3 ± 3.8 μ_{M} in untreated patients, whereas disulfiram treatment abolished the rise in plasma fluoride concentration. Fluoride excretion in disulfiram-treated patients was 62 ± 10 and $61 \pm 12 \mu \mathrm{~mol}$ on days 1 and 2 , respectively, compared to $1,094 \pm 185$ and $1,196 \pm 223$ $\mu \mathrm{mol}$, respectively, in control patients.
Although the effectiveness of P450 2E1 inhibition in vivo by single-dose disulfiram has been established ${ }^{22}$ and the selectivity of disulfiram toward P450 2E1 has been shown in vitro, ${ }^{30}$ the absolute specificity of single-

Fig. 4. P Pasma gated HFPP an \pm SE) in contr ($\mathrm{n}=11$, from 0 tive 3 h h. Mean zotal significaị̂tly a during sêvofl anesthesida (P sulfiramgigreat preanes ${ }^{\circ} \mathrm{Hetic}$ through ${ }^{8} \mathrm{~h}$ a concent ${ }^{\text {datation }}$ cantly differe during seivofl sevoflurặ̆ e e maining ${ }^{\text {affter }}$
 ulfiram-treated ($\mathrm{n}=11$, different urine fluoride nts compared to control ulfiram groups initially ectively, but the number above the bar) after day large.
tabolism suggests that minant P450 isoform tabolism in vivo. at disulfiram is an ef2E1 activity in vivo. ${ }^{22}$ 00 mg) administered kazone, used as a speC 450 2E1 activity, ${ }^{29}$ 1 activity in vivo, evchlorzoxazone 6 -hyam administered the ficantly inhibited ents receiving 3.9-4.1 hanges in plasma flufluoride excretion. ${ }^{23}$ ons were 24.3 ± 3.8 disulfiram treatment oride concentration. -treated patients was days 1 and 2 , respec35 and $1,196 \pm 223$ tients.
4502 E 1 inhibition in as been established ${ }^{22}$ toward P450 2E1 has e specificity of single-

Fig. 4. Plasma total hexafluoroisopropanol (HFIP; unconjugated HFIP and HFIP-glucuronide) HFIP concentrations (mean $\pm \mathbf{S E}$) in control ($n=10$, open circles) and disulfiram-treated ($\mathrm{n}=11$, closed circles) patients. Sevoflurane was administered from 0 to 3 h , unless the surgical procedure ended before 3 h. Mean total HFIP concentrations in control patients were significantly different from preanesthetic values at all times during sevoflurane anesthesia through 60 h after the end of anesthesia ($P<0.05$). Mean total HFIP concentrations in di-sulfiram-treated patients were significantly different from preanesthetic values between 2 h after the start of anesthesia through 8 h after the end of anesthesia ($P<0.05$). Mean HFIP concentrations in disulfiram-treated patients were significantly different from those of control patients at all times during sevoflurane anesthesia through 48 h after the end of sevoflurane exposure ($P<0.05$). The number of patients remaining after day 2 decreased because of hospital discharge.
dose disulfiram toward P450 2E1 in vivo has not been demonstrated. Diethyldithiocarbamate, the active inhibitory metabolite of disulfiram, can inhibit in vitro human liver microsomal coumarin 7 -hydroxylation, which is catalyzed by P450 $2 \mathrm{~A} 6 .{ }^{31}$ The influence, however, of disulfiram on human coumarin 7 -hydroxylation in vivo has not been established. Furthermore, P450 2 E 1 is a major component of the P450s in the liver, whereas P450 2A6 represents less than 1% of total hepatic P450. ${ }^{32}$ Thus, disulfiram-inhibitable metabolism is attributed predominantly but not necessarily exclusively to P450 2E1. Disulfiram inhibition of sevoflurane metabolism in vivo strongly supports a role for P 450 2 E 1 but does not exclude the possible participation of other P450 isoforms.

[^2]

Fig. 5. Postoperative urine total hexafluoroisopropanol (HFIP; unconjugated HFIP and HFIP-glucuronide) excretion (mean \pm SE) in control ($n=10$, open bars) and disulfiram-treated ($n=$ 11, closed bars) patients. *Significantly different urine fluoride excretion in disulfiram-treated patients compared to control patients ($P<0.05$). Control and disulfiram groups initially consisted of 10 and 11 patients, respectively, but the number of patients remaining (shown in or above the bar) after day 2 decreased because of hospital discharge.

Disulfiram inhibition of P450 2E1 activity diminished but did not abolish the metabolism of sevoflurane. Di-sulfiram-treated patients showed increases in plasma fluoride and HFIP concentrations compared with baseline values, and fluoride and HFIP were excreted in urine. The fluoride production observed in disulfiramtreated patients cannot be attributed primarily to alternative pathways of sevoflurane metabolism, further metabolism of HFIP to fluoride, or fluoride production from sources other than sevoflurane (i.e., sevoflurane compound A). ${ }^{33,34}$ This is because fluoride and HFIP production were comparable in disulfiram-treated patients, HFIP is not metabolized to fluoride by human liver microsomes, * HFIP elimination was not altered significantly by disulfiram pretreatment (HFIP clear-

Table 3. Patient Recovery Data

	Control $(\mathrm{n}=10)$	Disulfiram-treated $(\mathrm{n}=11)$
Emergence (min)	25 ± 6	16 ± 3
Command response (min)	25 ± 6	19 ± 4
Orientation (min)	37 ± 8	24 ± 4

Values are mean \pm SE. No significant differences were found between groups for any recovery parameter.
ance was 52.6 ± 6.1 and $71.0 \pm 8.9 \mathrm{ml} / \mathrm{min}$ in control and disulfiram－treated patients，respectively），and HFIP is not an expected metabolite of compound A ．
The degree of disulfiram inhibition of sevoflurane metabolism（ $73-80 \%$ ）is consistent with that of chlorzoxazone hydroxylation（ $85 \%)^{22}$ but contrasts with the complete inhibition of enflurane metabolism observed previously．${ }^{23}$ The reason for the difference between clinical enflurane and sevoflurane metabo－ lism is not immediately apparent，particularly be－ cause in vitro microsomal metabolism of both agents is apparently similar．${ }^{21}$ One possible explanation might be subtotal inhibition of P450 2E1 activity by disulfiram．This incomplete inhibition would be more manifest at the higher intrinsic rate of sevo－ flurane，compared with enflurane，metabolism．${ }^{21,35}$ Alternatively，P450 isoforms other than P450 2E1 that are not inhibited by disulfiram may contribute to sevoflurane but not enflurane metabolism．Nev－ ertheless，it appears that P450 2E1 is a predominant P450 isoform catalyzing human sevoflurane metab－ olism in vivo．
P450 2E1 participation in human sevoflurane metab－ olism in vivo mirrors the role of P 4502 E 1 in human liver microsomal sevoflurane defluorination in vitro．${ }^{21}$ These data provide validation for human microsomal sevoflurane metabolism in vitro as a model for sevo－ flurane biotransformation in vivo．
In addition to providing in vitro－in vivo correlations of metabolism，the current identification of P450 2E1 participation in human sevoflurane metabolism pro－ vides a mechanistic basis for several clinical observa－ tions regarding sevoflurane metabolism．${ }^{21}$ For example， Higuchi et al．reported that sevoflurane defluorination was significantly greater in obese than nonobese pa－ tients，${ }^{11}$ whereas Frink et al．found no relationship be－ tween obesity and sevoflurane metabolism．${ }^{12}$ Higuchi et al．suggested that the high incidence of hepatic fatty infiltration in their obese patients may account for the observed difference．Identification of the role of P450 2E1 in clinical sevoflurane metabolism corroborates this contention．Hepatic P450 2E1 content and P450 2E1－dependent anesthetic metabolism are substantially higher in livers with fatty infiltration compared to nor－ mal livers．$\dagger \dagger$ The individual heterogeneity in sevoflur－ ane metabolism observed currently and previously ${ }^{1,5-10}$

[^3]can be explained partially by the population variability in hepatic P450 2E1 activity．Several investigations have found a broad distribution in hepatic P450 2E1 activity exclusive of the effect of inducers or inhibi－ tors．${ }^{21,30-38}$
In addition to the known effects of P450 2E1 inducers such as obesity and fatty liver infiltration，other P450 2E1 inducers，including isoniazid，chronic ethanol consumption，untreated diabetes，and prolonged fast－ ing，would be predicted to likewise stimulate clinical sevoflurane metabolism．${ }^{39}$ In contrast，other classic P450 inducers，including phenobarbital and phenytoin， which do not increase P450 2E1 activity，would be predicted to have minimal effect on clinical sevoflurane metabolism．Phenobarbital induction had no effect on sevoflurane metabolism as assessed by urinary fluoride excretion．${ }^{40}$
Inhibition of P450 2E1 activity and sevoflurane me－ tabolism would not be of expected clinical conse－ quence．We observed that clinical indexes of recovery were not influenced by the rate or extent of sevoflurane metabolism．This is consistent with the small extent of sevoflurane metabolism ${ }^{1,4,41}$ and demonstrates that me－ tabolism does not play a significant role in terminating the clinical effect of sevoflurane．Furthermore，no al－ ternate pathways of sevoflurane metabolism have been identified toward which sevoflurane might be ＂switched＂if the primary P450 2E1－dependent path－ way was inactive．

Thus，even in patients with minimal or no hepatic metabolic capacity，such as those with diminished en－ zyme activity or with intrinsic liver disease，recovery from sevoflurane anesthesia should not be affected sig－ nificantly．This has been confirmed clinically，whereby sevoflurane recovery was similar in healthy patients and those with hepatic disease．$\ddagger \ddagger$
Clinical consequences of P450 2E1 induction of sev－ oflurane metabolism and increased metabolite forma－ tion have not been fuily characterized．Obese patients demonstrated significantly greater sevoflurane metab－ olism than normal patients，with 11 of 15 obese pa－ tients exhibiting peak serum fluoride concentrations greater than $50 \mu \mathrm{M}$ ，but there were no abnormalities of renal function．${ }^{11}$ Other investigations have similarly shown no link between sevoflurane－dependent eleva－ tions in plasma fluoride concentration and renal dys－ function．${ }^{10,42}$
In summary，we have shown that P450 2E1 is a pre－ dominant cytochrome P450 isoform responsible for clinical sevoflurane metabolism in humans．

The authors thank 1 the disulfiram breath t residents and nurses

References

Holaday DA，Sm mation of sevoflurane $54: 100-106,18 / 81$ 2．Kikuchi 旁，Mor II，Kawachi S，誉to N in patients．Hiresshim 3．Jiaxiang $\frac{3}{5}$ Satc afluoroisopropå끈ol g
 4．Kharasch ${ }_{\frac{i}{c}} E D$, flurane metabogism pharmacokine 5．Fujii K，Iorio wahara M：Phafinaco
 1987
6．Frink EJ 層，Gh dolfi AJ，Brow anesthesia：Co Anesth Analg $\mathbb{N a}_{\substack{2}}^{231}$
7．Smith I，Eing nance，and receivery sevoflurane－ $\left.\mathrm{N}_{2}{ }^{\infty}{ }_{\mathrm{C}}^{2}\right) ~ w i$ Analg 74：253 ${ }^{\mathbf{3}} 259$ ，

8．Kazama 畺 Ike sevoflurane ons stract）．ANESTH $\stackrel{\rightharpoonup}{6}_{5}^{5}$ IOLO
9．Kobayasiơ Y， Serum and urithagry in inhalation of stoglur
10．Frink E E Jr，M BR Jr：Renal cबncen enflurane anessinhesia 1994
11．Higuch巛̛ H, s inorganic fluoside l sevoflurane an $\overline{\widetilde{\aleph}}_{\text {sth }}$
12．Frink EJJr，Ma
inorganic fluoride 1
obese and nonobese
13．Mazze RI，H cholanthrene on ane Metab Disp 6：680－
14．Caughey GH，
treatment on metho
Ther 210：180－185，
15．Rice SA，Talc hepatic mixed－func 1979
16．Rice SA，Sbo
nicrosomes of fluor
ministration．ANESTH

The authors thank Douglas Hankins, for technical assistance with the disulfiram breath test. They also thank the various anesthesiology residents and nurses who participated in this investigation.

References

1. Holaday DA, Smith FR: Clinical characteristics and biotransformation of sevoflurane in healthy human volunteers. Anesthesiology 54:100-106, 1981
2. Kikuchi H, Morio M, Fujii K, Mukaida J, Horibe M, Davidkova TI, Kawachi S, Sato N: Clinical evaluation and metabolism sevoflurane in patients. Hiroshima J Med Sci 36:93-97, 1987
3. Jiaxiang N, Sato N, Fujii K, Yuge O: Urinary excretion of hexafluoroisopropanol glucuronide and fluoride in patients after sevoflurane anaesthesia. J Pharm Pharmacol 45:67-69, 1993
4. Kharasch ED, Karol MD, Lanni C, Sawchuk R: Clinical sevoflurane metabolism and disposition: I. Sevoflurane and metabolite pharmacokinetics. Anesthesiology 82:1369-1378, 1995
5. Fujii K, Morio M, Kikuchi H, Mukaida K, Sato N, Yuge O, Kawahara M: Pharmacokinetic study on excretion of inorganic fluoride ion, a metabolite of sevoflurane. Hiroshima J Med Sci 36:89-92, 1987
6. Frink EJ Jr, Ghantous H, Malan TP, Morgan S, Fernando J, Gandolfi AJ, Brown BR Jr: Plasma inorganic fluoride with sevoflurane anesthesia: Correlation with indices of hepatic and renal function. Anesth Analg 74:231-235, 1992
7. Smith I, Ding Y, White PF: Comparison of induction, maintenance, and recovery characteristics of sevoflurane- $\mathrm{N}_{2} \mathrm{O}$ and propofolsevoflurane $-\mathrm{N}_{2} \mathrm{O}$ with propofol-isoflurane- $\mathrm{N}_{2} \mathrm{O}$ anesthesia. Anesth Analg 74:253-259, 1992
8. Kazama T, Ikeda K: The effect of prolonged administration of sevoflurane on serum concentration of fluoride ion in patients (abstract). ANESTHESIOLOGY 75:A346, 1991
9. Kobayashi Y, Ochiai R, Takeda J, Sekiguchi H, Fukushima K: Serum and urinary inorganic fluoride concentrations after prolonged inhalation of sevoflurane in humans. Anesth Analg 74:753-757, 1992
10. Frink EJ Jr, Malan TP Jr, Isner J, Brown EA, Morgan S, Brown BR Jr: Renal concentrating function with prolonged sevoflurane or enflurane anesthesia in volunteers. Anesthesiology 80:1019-1025, 1994
11. Higuchi H, Satoh T, Arimura S, Kanno M, Endoh R: Serum inorganic fluoride levels in mildly obese patients during and after sevoflurane anesthesia. Anesth Analg 77:1018-1021, 1993
12. Frink EJ Jr, Malan TP, Brown EA, Morgan S, Brown BR Jr: Plasma inorganic fluoride levels with sevoflurane anesthesia in morbidly obese and nonobese patients. Anesth Analg 76:1333-1337, 1993
13. Mazze RI, Hitt BA: Effects of phenobarbital and 3-methylcholanthrene on anesthetic defluorination in Fischer 344 rats. Drug Metab Disp 6:680-681, 1978
14. Caughey GH, Rice SA, Kosek JC, Mazze RI: Effect of phenytoin treatment on methoxyflurane metabolism in rats. J Pharmacol Exp Ther 210:180-185, 1979
15. Rice SA, Talcott RE: Effects of isoniazid treatment on selected hepatic mixed-function oxidases. Drug Metab Disp 7:260-262, 1979
16. Rice SA, Sbordone L, Mazze RI: Metabolism by rat hepatic microsomes of fluorinated ether anesthetics following isoniazid administration. ANESTHESIOLOGY 53:489-493, 1980
17. Baker MT, Ronnenberg WC, Ruzicka JA, Chiang C-K, Tinker JH : Inhibitory effects of deuterium substitution on the metabolism of sevoflurane. Drug Metab Dispos 21:1170-1171, 1993
18. Rice SA, Dooley JR, Mazze RI: Metabolism by rat hepatic microsomes of fluorinated ether anesthetics following ethanol consumption. anesthesiology 58:237-241, 1983
19. Cook TL, Beppu WJ, Hitt BA, Kosek JC, Mazze RI: A comparison of renal effects and metabolism of sevoflurane and methoxyflurane in enzyme-induced rats. Anesth Analg 54:829-835, 1975
20. Martis L, Lynch S, Napoli MD, Woods EF: Biotransformation of sevoflurane in dogs and rats. Anesth Analg 60:186-191, 1981
21. Kharasch ED, Thummel KE: Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane and methoxyflurane. Anesthesiology 79:795-807, 1993
22. Kharasch ED, Thummel K, Mhyre J, Lillibridge J: Single-dose disulfiram inhibition of chlorzoxazone metabolism: A clinical probe for P450 2E1. Clin Pharmacol Ther 53:643-650, 1993
23. Kharasch ED, Thummel KE, Mautz D, Bosse S: Clinical en flurane metabolism by cytochrome P450 2E1. Clin Pharmacol Ther 55:434-440, 1994
24. Scheller MS, Saidman LJ, Partridge BL: MAC of sevoflurane in humans and the New Zealand white rabbit. Can J Anaesth 35:153156, 1988
25. Paulson SM, Krause S, Iber FL: Development and evaluation of a compliance test for patients taking disulfiram. Johns Hopkins Med J 141:119-125, 1977
26. Kraml M: A rapid test for antabuse ingestion. Can Med Assoc J 109:578, 1973
27. Faiman MD, Jensen JC, Lacoursiere RB: Elimination kinetics of disulfiram in alcoholics after single and repeated doses. Clin Pharmacol Ther 36:520-526, 1984
28. Frink EJ Jr, Malan TP, Atlas M, Dominguez LM, DiNardo JA, Brown BR Jr: Clinical comparison of sevoflurane and isoflurane in healthy patients. Anesth Analg 74:241-245, 1992
29. Peter R, Bocker R, Beaune PH, Iwasaki M, Guengerich FP, Yang CS: Hydroxylation of chlorzoxazone as a specific probe for human liver cytochrome P-450IIE1. Chem Res Toxicol 3:565-573, 1990
30. Guengerich FP, Kim D-H, Iwasaki M: Role of human P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol 4:168-179, 1991
31. Yamazaki H, Inui Y, Yun C-H, Guengerich FP, Shimada T: Cytochrome P450 2E1 and 2A6 enzymes as major catalysts for metabolic activation of N -nitrosodialkylamines and tobacco-related nitrosamines in human liver microsomes. Carcinogenesis 13:17891794, 1992
32. Wrighton SA, Stevens JC: The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 22:1-21, 1992 33. Wallin RF, Regan BM, Napoli MD, Stern IJ: Sevoflurane: A new inhalational anesthetic agent. Anesth Analg 54:758-766, 1975
33. Frink EJ Jr, Malan TP, Morgan SE, Brown EA, Malcomson M, Gandolfi AJ, Brown BR Jr: Quantification of the degradation products of sevoflurane in two CO_{2} absorbants during low-flow anesthesia in surgical patients. Anesthesiology 77:1064-1069, 1992
34. Thummel KE, Kharasch ED, Podoll T, Kunze K: Human liver microsomal enflurane defluorination catalyzed by cytochrome P- 450 2E1. Drug Metab Dispos 21:350-357, 1993
35. Guengerich FP, Turvy CG: Comparison of levels of several human microsomal cytochrome-P- 450 enzymes and epoxide hydro-
lase in normal and disease states using immunochemical analysis of surgical liver samples．J Pharmacol Exp Ther 256：1189－1194， 1991
37．Perrot N，Nalpas B，Yang CS，Beaune P：Modulation of cyto－ chrome P450 isozymes in human liver by ethanol and drug intake． Eur J Clin Invest 19：549－555， 1989

38．Lucas D，Berthou F，Dreano Y，Lozac＇h P，Volant A，Menez J－F：Comparison of levels of cytochromes P450，CYP1A2，CYP2E1， and their related monooxygenase activities in human surgical liver samples．Alcohol Clin Exp Res 17：900－905， 1993
39．Koop DR，Tierney DJ：Multiple mechanisms in the regulation of ethanol－inducible cytochrome P450IIE1．Bioessays 12：429－435， 1990

40．Apfelbaum JL，Zacny JP，Lichtor JL，Thapar P，O＇Connor MF， Binstock W，Coalson D，Lane B：Phenobarbital and the defluorination of sevoflurane in healthy male volunteers（abstract）．ANESTHESIOLOGY 81：A364， 1994

41．Shiraishi Y，Ikeda K：Uptake and biotransformation of sev－ oflurane in humans：A comparative study of sevoflurane with halo－ thane enflurane，and isoflurane．J Clin Anesth 2：381－386， 1990

42．Higuchi H，Arimura S，Sumikura H，Satoh T，Kanno M：Urine concentrating ability after prolonged sevoflurane anaesthesia． Br J Anaesth 73：239－240， 1994

Effect on Lef Anesth

Axel W．Goert Uwe Schirmer

Background tonic salfine h ， as well awinin ar
a possib色 po
humans．$\stackrel{\substack{\circ}}{\frac{\sim}{2}}$ The
whether $\stackrel{\text { 毫 }}{2}$ cli
demonstor
Methoiss：Tw
were rand̆

$\mathrm{ml} \cdot \mathbf{k g}^{-1}{ }_{\mathrm{O}}^{\mathrm{m}} \mathrm{min}$

Transesoshag

 ventricu娄ar fu ventricu裔ar en wall thiẹ̛ administestatio systolic ${\underset{W}{0}}_{\infty}^{\infty}$ all s sure－len eith re PLR $_{\text {area }}$ 骨备Resultsti Adn sulted in $\dot{\mathscr{c}} \mathrm{a}$ sig end－syst尚lic $\mathbf{m m H g}$（ ${ }_{\phi}<0$ （ $P>0.01 \frac{18}{6}$ ，res change ighcrea and fron 0.5 whereasiother
± 13 to $\frac{0}{5} 4$

\dagger Residênt in
\ddagger Professor o
$\$$ Professor Anesthesiology
Received fro Ulm，Ulm，Gerı Accepted for p
Address repr siology，Univer
｜｜Mathru M， of hypertonic s hemorrhagic st （abstract）．ANES

[^0]: \＃Masaki E，Kondou T，Kobayashi K：Relationship between serum F－and cytochrome P－450 after sevoflurane anesthesia in ethanol treated rats．ANesthesiology 73：A396， 1990.

[^1]: Values are mean \pm SE（range）．No significant differences were found between groups for any variable
 ＊Propofol infusions were used after 3 h of sevoflurane exposure if the surgical duration exceeded 3 h （control， $\mathrm{n}=7$ ；disulfiram， $\mathrm{n}=6$ ）．

[^2]: * Kharasch ED: Unpublished data. 1995.

[^3]: $\dagger \dagger$ Thummel KE：Unpublished observations． 1994
 $\ddagger \ddagger$ Frink E Jr：Personal communication． 1994.

