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Ketamine Inbibits Glutamate-, N-Methyl-D-Aspartate-,
and Quisqualate-stimulated cGMP Production in

Cultured Cerebral Neurons

Jerry M. Gonzales, M.D.,* Alex L. Loeb, Ph.D., Peter S. Reichard, M.D.,% Steven Irvine, B.S.§

Background: Glutamatergic signaling has been linked to the
recently discovered neurotransmitter/neuromodulator nitric
oxide (NO), and several classes of anesthetics block some step
in glutamatergic signaling. This study was designed to deter-
mine whether or not ketamine would prevent NO-dependent
cGMP production stimulated by glutamate (GLU) and the GLU
analogs NMDA, quisqualate (QUIS), and kainate (KAIN).

Metbods: Primary cultures of cortical neurons and glia (pre-
pared from 16-day gestational rat fetuses) were used after 12—
16 days in culture. Reactions were carried out in magnesium-
free buffer containing 100 um 3-isobutyl-1-methylxanthine, and
cGMP content of cultures was used as a bioassay of NO pro-
duction.

Results: Cyclic GMP production stimulated by sodium nitro-
prusside (100 um) occurred predominately in neurons and not
in glia. Neurons were spontaneously active in these cultures;
basal cGMP production was decreased by 50% in the presence
of 1 um tetrodotoxin (TTX). Glutamate (100 um), NMDA (100
um), QUIS (300 um), and KAIN (100 um) each increased cGMP
content of neuronal cultures. .I-NMMA (100 um), a NO synthase
inhibitor, prevented the stimulation of cGMP production by
GLU or its analogs. Pretreatment with MK-801 (1 um) or ket-
amine (10-100 pgm) inhibited GLU-, NMDA-, and QUIS-stimulated
cGMP production. Quisqualate-stimulated responses were the
most sensitive to inhibition by ketamine and NMDA-stimulated
responses were the least sensitive to inhibition. MK-801 and
ketamine did not significantly inhibit KAIN-stimulated cGMP
production. CNQX (10 pm) blocked KAIN-stimulated cGMP
production only.
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Conclusions: The authors’ data demonstrate that ketamine
inhibited NO synthesis stimulated by NMDA- and non-NMDA-
receptor specific analogs. Our findings indicate that blockade
of QUIS- as well as NMDA-subtypes of GLU- receptor may be
important in the development of ketamine-induced anesthesia.
(Key words: Agonist: NMDA. Amino acid, excitatory: kainate;
quisqualate. Anesthetics, intravenous: ketamine. Antagonists:
MK 801. Cultured neurons. Neurotransmitters: glutamate.)

GLUTAMATE (GLU) is the major excitatory neurotrans-
mitter in the vertebrate central nervous system. L-glu-
tamate activates several subtypes of receptors leading
to an increase in intracellular calcium ion concentra-
tion ([Ca’'];). This increase in [Ca**], occurs by at least
three mechanisms. First, Ca’" enters the cells from the
extracellular space through ion channels that are in-
tegral to GLU receptors that are activated selectively
by the GLU analog N-methyl-D-aspartate (NMDA).'™?
Second, Ca®" enters the cells through voltage-depen-
dent calcium channels that are opened secondary to an
influx of sodium ions through ligand gated channels
that are activated selectively by the GLU analogs kainate
(KAIN), quisqualate (QUIS), a-amino-3-hydroxy-5-
methyl-4-isoxazoleproprionic acid (AMPA), or
NMDA."** Third, metabotropic GLU receptors that are
selectively activated by QUIS or (+)-1-aminocylopen-
tane-trans-1,3-dicarboxilic acid (ACPD) stimulate
phospholipase C through a G-protein to produce ino-
sitol 1,4,5-trisphosphate (IPs) and release of Ca** from
intracellular stores.>® Activation of GLU receptors and
subsequent cellular responses are associated with the
production of excitatory postsynaptic potentials
(EPSPs) and long-term modulation of neuronal behav-
ior, including changes in neuronal excitability, nerve
cell architecture, and gene expression.” '?

Although many responses to GLU in the central ner-
vous system can be directly attributed to these changes
in membrane polarization and [Ca**};, it has been dem-
onstrated recently that activation of GLU receptors in
the central nervous system results in the synthesis of
nitric oxide (NO). This response was first observed by
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Garthwaite et al.'*"® Nitric oxide produced after GLU
stimulation acts as a paracrine/autocrine substance
where it stimulates cyclic GMP (¢cGMP) accumula-
tion,'® and may have other actions, as well.!718

There is increasing evidence that blocking the func-
tion of the GLU-Ca**-NO-cGMP pathways may be as-
sociated with the development of anesthesia. Riluzole
(53274 RP), an inhibitor of GLU neurotransmission
with both pre- and postsynaptic effects, has anesthetic
action.'® Noncompetitive antagonists at the NMDA re-
ceptor, including (+)-5-methyl-10,11-dihydro-5H-di-
beno(a,d)cyclohepten-5,10-amine maleate (MK-801),
(+)-N-allyl-normetazocine [(+)-SKF 10,047], phen-
cyclidine, dextrorphan, and ketamine, increase the po-
tency of a variety of general anesthetics and have an-
algesic and anesthetic properties.”*' The competitive
antagonist at the NMDA receptor, CGS-19755, also has
analgesic and anesthetic effects.’*?* A competitive an-
tagonist at AMPA receptors, 2,3-dihydroxy-6-nitro-7-
sulfamoyl-benzo(f)quinoxaline (NBQX), reduces the
MAC for halothane in rats.>* Because GLU has been as-
sociated with both direct and indirect postsynaptic re-
sponses (e.g., ion flux, EPSP, and NO release), the pos-
sibility has been raised that the anesthetic properties
of at least some drugs may be attributable to inhibition
of NO synthesis/release. In support of this possibility,
it has been shown that antagonists of NMDA receptors
inhibit GLU-stimulated increases in NO synthesis,** ¢
and blocking the synthesis of NO increases the potency
of the volatile anesthetic halothane.?” Also, NO synthase
inhibition has been shown to be antinociceptive,®*
although other work indicates that NO may mediate
some forms of analgesia.*'**-*7 In addition, the admin-
istration of GLU or its analogs can reverse ketamine
anesthesia.*®*’

In vivo and in vitro studies from several laboratories
indicate that various general anesthetics block the GLU-
Ca?*-NO-cGMP pathway at several sites. Martin et al.*’
demonstrated that enflurane inhibited GLU-stimulated
MK-801 binding to NMDA receptors in membranes
prepared from rat cerebral cortex; because MK-801
binds to the open channel, this indicated that enflurane
decreased opening of the anion channel. Halothane and
isoflurane reduce increases in [Ca®"]; in response to GLU
and NMDA in neurons cultured from rat hippocam-
pus.* In cortical wedges from mice, electrophysiologic
responses of neurons to AMPA and NMDA were reduced
by chloroform, halothane, thiopental, diethyl ether,
and isoflurane.*? Enflurane also decreased cGMP con-
tent of the cerebellum of mice.*?
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Ketamine is the single anesthetic drug used in clinical
practice that is believed to act primarily by blockade
of GLU receptors.**~*7 Whether ketamine works exclu-
sively by blockade of NMDA receptors, or whether it
blocks the function of other subtypes of GLU receptor,
is not known with certainty. In studies of cortical
wedges from mice, ketamine blocked responses to o
NMDA but not to AMPA, but agonists at other subtypes g
of GLU receptors were not tested.*” Studies of isolated §
spinal cord from one of the most primitive vertebrates, E:
the lamprey, showed that ketamine specifically blocked 3
NMDA responses and not responses to KAIN or QUIS. i85
Studies in another model system, locust muscle, indi-g
cate that ketamine can block a QUIS receptor.*’ Thc?
current study was designed to examine how ketamineg
affects the function of the various subtypes of GLU re-3
ceptors. Our main experimental goal was to detcrminc%
whether or not ketamine would prevent NO-dependentg
cGMP production stimulated by the GLU analogs QUISE
and KAIN, as well as the responses to GLU and NMDAg
in cortical neurons cultured from the rat.

§
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Materials and Methods

Materials

Chemicals used in the current study were obtamcd
from the following sources: GLU, KAIN, NMDA, tetro-§
dotoxin (TTX), cytosine-3-D-arabinofuranoside (Ara-N
C), 3-isobutyl-1-methylxanthine (IBMX), Hank’s bal-w :
anced salt solution (HBSS), Dulbecco’s modified Eaglc's‘o‘
medium with 25 mm HEPES (DMEM), and sodium ni-g
troprusside (SNP) from Sigma (St. Louis, MO); Ham’ se:
F-12 and penicillin/streptomycin from JRH Bloscxences% :
(Lenexa, KS); (+)-quisqualate and 6-cyano-7- mtro«:
quinoxaline-2,3-dione (CNQX) from Research Bio®
chemicals, Inc. (Natick, MA); ketamine HCI from Parkc-i
Davis (Morris Plains, NJ); and N°-monomethyl- L-argig
nine (.-NMMA) from Calbiochem (San Diego, CA){g
Fetal calf serum was obtained from HyClone (Logan®

uT).
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Cell Culture

Cultures of cerebral cortical neurons were prepared
essentially as described by Dichter’® and Atkinson and
Minneman.’' Whole cerebral hemispheres were col-
lected in HBSS from fetuses of 16—17-day gestational
Sprague-Dawley rats. They were washed twice in phos-
phate buffered saline, digested using trypsin (5
mg-ml ') in DMEM, washed three times in HBSS, and
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triturated with a ““fire polished™ pasteur pipette into
DMEM containing 25 mm HEPES supplemented with
10% Ham’s F12 media, 10% heat inactivated fetal calf
serum, 100 pg-ml ™' streptomycin, and 100 U-ml™’
penicillin. Cells were plated at a density of 4 X 10°
cells per 1.2-cm-diameter tissue culture well that had
been pretreated with 10 ug-ml™' poly-D-lysine. The
cultures were grown in a 37°C humidified incubator
containing 5% CO; in air, and were fed approximately
every 2-3 days with fresh medium. On day 5, cells
were treated with 10 pg-ml™' Ara-C for 24 h to stop
nonneuronal cell proliferation. Subsequent feeding was
with the above-described media without Ham’s F-12,
to eliminate GLU from the feeding. Experiments were
carried out after 12—-16 days in culture. Preliminary
experiments indicated that the capacity of the cultures
to respond to GLU with an increase in cGMP was well
developed by this time.

Glial cell cultures were prepared as described by At-
kinson and Minneman®' by trypsinizing cells at day 5
in culture and replating at a density of 8 X 10* cells
per 1.2-cm-diameter well. The cultures were also fed
every 2-3 days, but were not treated with Ara-C. This
procedure resulted in preparations that were essentially
devoid of neuronal cells. Similar to the neurons, ex-
periments were performed after 12-16 total days in
culture.

Measurement of cGMP Production

Experiments were performed at 37°C. Cells were
washed three times in buffer (in mm: NaCl, 137; KCI,
0.4; CaCl,, 1.3; KH,POy, 0.44; Na,HPOy, 0.7; glucose,
6; HEPES, 20; pH 7.4) with a final addition of buffer
as the reaction medium. Tetrodotoxin (1 um) was added
at this time in most experiments to block spontaneous
action potentials and transmitter release. IBMX (100
uMm), a phosphodiesterase inhibitor, various GLU antag-
onists, or vehicle were added at the beginning of the
timed 10-min incubation period. After the incubation
period, agonist or vehicle was added for 90 s, except
as noted for the time course experiments. At this time,
the supernatant was removed and 0.1 M HCI was added
to stop the reaction and to extract cyclic nucleotides.
Cyclic GMP was measured by radioimmunoassay.>?
Protein content was determined using the coomassie
blue method.’®> Results were expressed as pmol
¢GMP-mg ' protein.

Data Analysis
Data were expressed as mean *= SEM and differences
between treatment groups were determined using Stu-
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dent’s  test or ANOVA and post hoc analysis with the
method of Bonferroni, as indicated in the figure leg-
ends. Differences were considered significant when P
< 0.05.

Results

The primary cultures of mixed cerebral cortical cells
used in these experiments consisted of a bed of glial
cells on which the neurons grew. The glial cultures
were similar, but without the overlying neuronal cells.
To determine whether pure cultures of glia, as well as
the mrixed cultures containing mostly neurons, could
respond to NO with an increase in cGMP, we deter-
mined the time course of cGMP accumulation on ex-
posure to the NO donor sodium nitroprusside (SNP),
as shown in figure 1. Although both types of cultures
did respond to SNP with an increase in cGMP, the re-
sponse in the neuronal cultures was of much greater
magnitude, indicating that the preponderance of the
cGMP response occurred in neurons. Figure 1 dem-
onstrates that the increase in cGMP in response to 100
uM SNP was maximal by 90 s. Therefore, all subsequent
experiments were terminated 90 s after the addition
of agonist.

401 NEURONS

Cyclic GMP Production
(pmol-mg protein-1)

201 GLIA \
0 30 60 9 120 150 180
Seconds

Fig. 1. Time course of sodium nitroprusside (SNP)-stimulated
c¢GMP production in cultured neurons and glia from fetal rat
brain. Primary cultures were prepared from the cerebral
hemispheres of 16-day gestational § Dawley rats and
experiments were carried out on day 12-16 in cultures. Cyclic
GMP production was measured in mixed cultures of neurons
and glia or glia alone at various time points after the addition
of 100 um SNP. IBMX (100 pm) was included in all reactions.
Data represent the mean + SEM for n = 2 experiments, each
performed in triplicate.
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Neuronal cells in culture form multiple complex in-
tercellular contacts and are spontaneously active.’ To
determine whether spontaneous neuronal activity, in-
cluding action potential-stimulated neurotransmitter
release, was responsible for a portion of the basal cGMP
content observed, the cells were treated with 1 um TTX,
a sodium channel blocker. As shown in figure 2, TTX-
treated neurons had significantly reduced basal cGMP
content. To prevent spontaneous generation of action
potentials and, thus, transmitter release, TTX was in-
cluded in all subsequent experiments.

Treatment of neuronal cultures with agonists at GLU
receptors, including GLU (100 pm), NMDA (100 um),
QUIS (300 um), or KAIN (100 um), for 90 s each pro-
duced significant increases in cGMP content, as shown
in figure 3. Pretreatment of cultures with the NO syn-
thase inhibitor L-NMMA (100 pm) decreased cGMP
production to below basal levels and prevented any
increase in the presence of GLU or its analogs. These
data demonstrated that GLU and its analogs stimulated
¢GMP production via the NO pathway and that any
increase in cGMP observed in response to these agonists
was subsequent to NO synthesis and release.

Pretreatment of cultures with ketamine (100 um) or
MK-801 (1 um) blocked GLU-, NMDA-, and QUIS-stim-
ulated cGMP production, as shown in figure 4A and B.
The non-NMDA GLU-channel antagonist, CNQX (10
um), blocked ¢GMP responses to KAIN, but did not
inhibit responses to GLU, NMDA, or QUIS, as shown in
figure 4C.

Cyclic GMP Production
(pmol-mg protein-1)

BASAL BASAL + TTX

Fig. 2. Role of spontaneous neuronal activity on basal cGMP
production in cultured neurons. Cyclic GMP production was
determined in cultures of neurons after a 10-min exposure to
1 um TTX or vehicle (control) in the absence of exogenous
stimulating agents (basal). Data represent the mean + SEM for
n = 3 experiments, each performed in triplicate. *P < 0.05
control versus the presence of TTX (Student’s 7 test).
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Fig. 3. Role of nitric oxide activity on agonist-stimulated cGMFE
production in cultured neurons. Cyclic GMP accumulation was?,
determined in neuronal cultures stimulated by GLU and the’-
GLU analogs NMDA, KAIN, and QUIS in the presence and aM
sence of the NO synthase inhibitor .I-NMMA (100 um). Dat@
represent the mean + SEM for n = 3 experiments, each perm
formed in triplicate. *P < 0.05 each versus basal, by ANOVIﬁ_
and the Bonferroni post boc correction.

Additional experiments were carried out with cul
tures pretreated with lower concentrations of ketamin:
to determine the dose-response relationship, if any. As
shown in figure 5, ketamine at concentrations as lov%
as 10 um blocked the response to QUIS. The responscﬁi
to NMDA, however, were not significantly affected b§
ketamine at concentrations less than 100 um. The rc§
sponse to GLU was inhibited by ketamine with a seng
sitivity between that of QUIS and NMDA.
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Discussion
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Initial studies indicating that activation of GLU res
ceptors in the central nervous system resulted in NG
synthesis and increases in cGMP have implicated th§
NMDA receptor as the responsible subtype.'*"* Sub-
sequently, other GLU analogs have been shown to stim-
ulate NO synthesis through activation of specific re-
ceptor subtypes.?>?*>*3% Our results demonstrate that
ketamine, and its sister compound MK-801, both drugs
primarily believed to block the NMDA receptor chan-
nel, can also inhibit QUIS receptor mediated NO syn-
thesis. However, ketamine and MK-801 had no signif-
icant effect on KAIN-stimulated NO synthesis.

We monitored changes in NO synthesis by measuring
changes in cGMP content in cultures of cells from fetal
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Fig. 4. Effect of GLU-receptor inhibitors on agonist-stimulated
c¢GMP production in cultured neurons. The effect of the GLU-
receptor antagonists ketamine (4), MK-801 (B), and CNQX (©O)
on ¢cGMP production was determined in neuronal cultures
stimulated by GLU and the GLU analogs NMDA, KAIN, and QUIS.
Data represent the mean + SEM for n = 5-18 experiments,
each performed in triplicate. *P < 0.05 antagonist versus con-
trol without antagonist for each agonist, by ANOVA and Bon-
ferroni post boc correction.
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rat brain after agonist stimulation. Although both neu-
rons and glia can respond to NO with an increase in
cGMP, we found that preparations of mixed cells from
brain that contain neurons respond to SNP with a much
greater increase in cGMP than cultures of nonneuronal
cells (fig. 1). These findings indicated that the primary
site of response to NO was in neurons and, more im-
portantly, that the changes in cGMP production that
we observed were from changes occurring in neurons,
in which anesthetic drugs are believed to work.

The experiments with and without TTX (fig. 2)
showed that neurons in these cultures were sponta-
neously active. These data indicated that there was,
most likely, a basal release of endogenous neurotrans-
mitter in these cultures that was caused by this spon-
taneous depolarization that stimulated NO synthesis.
This phenomenon has been described previously in
electrophysiologic terms in cultured neurons,’ but we
know of no other report indicating that a substantial
portion of this basal generation of NO is caused by this
mechanism. To minimize spontaneous activity and re-
lease of endogenous transmitter, subsequent experi-
ments were all carried out in the presence of TTX.
Thus, the cGMP measured is almost exclusively caused
by neuronal stimulation by exogenous agonist and is
not caused by intrinsic or spontaneous activity.

L-NMMA pretreatment clearly demonstrated that the
observed stimulation of cGMP production was indeed
through the NO pathway (fig. 3). The concentration
of L-NMMA used, 100 um, is maximally effective in in-
hibiting NO synthase.'*'® Other investigators®®>*>>
have also shown that GLU-stimulated cGMP was caused
by activation of NO synthesis in cultured cortical, stria-
tal, and cerebellar neurons from rat and mouse, dem-
onstrating that this pathway is conserved among brain
regions and among species. Using supramaximal doses
of agonists, our studies further showed that the GLU-
agonists NMDA, QUIS, and KAIN were as effective as
GLU in leading to the stimulation of NO synthase, in-
dicating that full activation of all of the GLU pathways
simultaneously give a response less than the sum of the
responses of each pathway activated independently.

As expected, 100 um ketamine blocked cGMP pro-
duction stimulated by the GLU analog NMDA. Blockade
of NMDA receptor activation by ketamine has been
shown previously using other indicators of NMDA-re-
ceptor stimulation**™*” and is the basis for the view
that NMDA-receptor activation is specifically coupled
to the stimulation of NO synthase. In addition to acting
at the NMDA-receptor channel, our data showed that
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Fig. 5. Effect of ketamine on GLU-, NMDA-, and QUIS-stimulated
¢GMP production in cultured neurons. The effect of various
concentrations of ketamine on ¢cGMP production was deter-
mined in neuronal cultures stimulated by GLU and the GLU
analogs NMDA and QUIS. Data represent the mean + SEM for
n = 5-27 experiments, each performed in triplicate. The results
from individual experiments were normalized and the data
expressed as the percent of the agonist-stimulated value in
the absence of ketamine (100%) (control basal = 18 + 2
pmol - mg protein ', GLU-stimulated control value = 96 + 15
pmol - mg protein’, NMDA-stimulated control value = 127 +
26 pmol - mg protein’, QUIS-stimulated control value = 90 +
16 pmol - mg protein ). *P < 0.05 versus control without ket-
amine for that agonist, by ANOVA and Bonferroni post boc
correction. TP < 0.05 versus NMDA-stimulated value in pres-
ence of 10 um ketamine.

100 um ketamine blocked GLU- and QUIS-stimulated
NO production. Quisqualate-stimulated NO production
was more sensitive to ketamine blockade than NMDA-
stimulated responses, as shown in figure 5. Ketamine
at concentrations of 10, 30, and 100 um prevented
QUIS-stimulated ¢GMP production. This effect on
QUIS-stimulated responses has not been reported pre-
viously.

The concentrations of ketamine used in this study are
comparable with those measured in the plasma of rats
and humans anesthetized by ketamine. The potency of
ketamine is greater in humans compared with rats. In
rats, plasma ketamine concentrations greater than 50
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uM are required to produce anesthesia and the righting
reflex is lost only at concentrations greater than 20 um.%°
In humans anesthetized with ketamine, the plasma
concentration has been measured to be approximately
5-10 um.>”*® Thus, the range of concentrations used
in this study spanned the range present clinically in
humans and, more importantly, the concentrations e
quired for anesthesia in rats, the species from wh1c§
cells were obtained.

The ketamine analog MK-801 (1 um) blocked GLU%
NMDA-, and QUIS-stimulated cGMP production but ha§
no significant effect on KAIN-stimulated responses. Thﬁ
effect of supposedly specific NMDA-antagonists such a@
MK-801 on responses to QUIS is controversial. Marln
et al.*® also demonstrated effective inhibition of QUI@
stimulated cGMP production by MK-801 in striatﬂ
neurons cultured from fetal mice. Wood et al.,>® hov%
ever, did not find that MK-801 inhibited QUIS-stimq’;
lated cGMP production in the hippocampus in viv@
There are several possible mechanisms by which Mli‘
801 and ketamine may block QUIS-stimulated cGME
production. Ketamine may block direct QUIS actlvauom
of the NMDA channel, but this is not likely. qusqualatg
can act as an agonist at the NMDA receptor,”®® but thg
affinity of QUIS for the NMDA receptor is reported tg
be 2- to 23-fold less than that of NMDA and the totﬁ
contribution of QUIS-activated current through NMDS
channels is very small compared with that through thg
QUIS/AMPA channel in whole cell preparations. Aﬂ"

other possible mechanism by which MK-801 and ket%
amine may block QUIS-stimulated cGMP production 13
by directly blocking activation of the AMPA/QUIS rfg
ceptor or the metabotropic GLU receptor. A prommcdﬁ
effect on the metabotropic receptor (a nomonotropn&
receptor) would not have been observed by others, b@
cause the electrophysiologic techniques they used**~*
would not have detected this biochemical response.

The effects of ketamine and MK-801 were spccnﬁE
for NMDA and QUIS receptors, because neither drug
inhibited KAIN-stimulated ¢cGMP production in ouf
study. CNQX specifically blocked KAIN-stimulated
¢GMP production without effect on the activation of
NMDA or QUIS receptors. This apparent lack of effect
of CNQX on QUIS responses in our study may be ex-
plained by either rapid desensitization of the AMPA/
QUIS receptor, therefore preventing any agonist-me-
diated response through this receptor,?® or by the fact
that QUIS activation of the metabotropic receptor gives
a maximal cellular response. The lack of blockade of
the GLU-stimulated response by CNQX supports the
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suggestion by others that GLU does not activate KAIN
receptors.” !

These findings may also help to cxplain the role of
ketamine in the protection of neurons from excitotox-
icity. Several investigators have reported that ketamine
can protect the brain against ischemic injury.®*®* Isch-
emia is believed to lead to the release of GLU and the
subsequent activation of GLU receptors activates the
cellular processes that can result in neuronal death.***
Activation of NMDA and QUIS receptors are involved
in neuronal death, but the production of nitric oxide
and ¢cGMP production may or may not be involved in
neuronal death.®*“® Protection of neurons from exci-
totoxicity by ketamine may, therefore, result from
blocking the activation of both NMDA and QUIS sub-
types of GLU receptors.

In conclusion, our study demonstrates that GLU and
the GLU analogs NMDA, KAIN, and QUIS stimulate NO
production in cultures of cerebral neurons from the
rat. Ketamine, an anesthetic drug that is pharmacolog-
ically similar to MK-801 and blocks the NMDA-subtype
of GLU receptor, also blocks the effect of activation of
GLU receptors activated by QUIS. These results are
consistent with the hypothesis that blockade of NO
production, and, thus, inhibition of the subsequent in-
crease in neuronal cGMP content, results in anesthesia;
these results allow one to speculate that interruption
of other than the NMDA subtype of GLU receptor may
also contribute to the state of anesthesia.

The authors thank Chris Cuspud and Iris Méndez-Bobé for their
technical assistance.
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