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Propofol in Pediatrics

Lessons in Pharmacokinetic Modeling

Propofol recently was approved for use in children 3
yr of age and older. One study sponsored by its man-
ufacturer, Zeneca, and performed by Kataria et al.! re-
ports the pharmacokinetics of propofol in children
aged 3-11 yr. There are several important findings in
this study, some related to general issues of pharma-
cokinetic modeling, others specific to the administra-
tion of propofol to children. As in other pharmacoki-
netic studies, the goal of Kataria et al. is to determine
the “‘typical” values for the pharmacokinetic parame-
ters, Z.e., those values that best describe the overall
population. However, a reader who expects a tradi-
tional pharmacokinetic study will be surprised, and
possibly frustrated, by the manuscript presented by Ka-
taria et al.: The study bears little resemblance to many
of the pharmacokinetic studies published previously
in ANESTHESIOLOGY.

A major focus of Kataria et al. is to compare three
approaches to determining typical values for the phar-
macokinetics of propofol in children, a traditional ap-
proach in which data from individuals are analyzed
separately, and two ‘““‘population’’ approaches, in which
data from all individuals are analyzed simultaneously.
In the traditional approach, pharmacokinetic parame-
ters are determined in each of several individuals and
then averaged (Kataria et al., recognizing that their
values were not distributed normally, appropriately
averaged the logarithms of their parameters). Although
this ‘‘two-stage’’ approach has been popular in studies
of the pharmacokinetics of many anesthetic drugs, its
utility may be limited. For example, the averaged re-
sults may be influenced by ‘“wild” values (Kataria et
al.’s description of outliers), particularly when a small
number of samples are obtained from some subjects.
Kataria et al. obtained as few as five (and as many as
18) samples in their subjects, a reflection of ethical
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limitations on the amount of blood that may be obtained
from children. When few samples are obtained from
an individual—a technique known as ‘‘sparse sam-
pling” —pharmacokinetic parameters estimated for
that individual using compartmental or noncompart-
mental techniques may be inaccurate. For example, if
few samples are obtained, an estimate of each half-life
depends on the accuracy of the even fewer plasma sam-
ples obtained during that phase. Recognizing that all
measurements contain error (usually defined by the
coefficient of variation of the assay), having more sam-
ples during each phase allows for better definition of
the half-life associated with that phase. In contrast,
newer population approaches described below provide
reasonable estimates of pharmacokinetic parameters,
even when only small numbers of samples are obtained
from each individual.? As a result, subjects previously
excluded from pharmacokinetic analyses for practical
or ethical reasons reasonably might be studied using
sparse-sampling regimens when pharmacokinetic pa-
rameters are determined using population approaches.

Recognition that the two-stage approach was limited
led to the development of several techniques by which
the pharmacokinetics of drugs could best be described
in a population.> Two approaches emerged. With the
‘““naive pooled-data’ approach (referred to by Kataria
et al. and hereafter as the ““pooled-data” approach),
all the data are analyzed simultaneously, not accounting
for random variation between individuals but allowing
for differences in ““fixed effects’’ such as dosing regi-
men, age, or creatinine clearance. The second tech-
nique, known as “‘mixed-effects’’ modeling, allows not
only for these fixed effects but also for random variation
between individuals. The latter approach can be im-
plemented using various software, the most popular of
which is NONMEM* (nonlinear mixed effects model).

Kataria et al. compare the pooled-data and mixed-
effects approaches and conclude that the pooled-data
approach is best because of its mathematical and com-
putational simplicity and its adequacy, at least for cer-
tain data sets. Does their “‘success” with the pooled-
data approach imply that this method is preferred to
the mixed-effects modeling approach? Probably not.
Kataria et al. obtain parameter estimates for each of
the pooled-data and the mixed-effects approaches by
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minimizing an ‘‘objective function,” a complicated
mathematical function of the differences (known as re-
sidual difterences or residuals) between their measured
propofol concentrations and the propofol plasma con-
centrations predicted by the “‘typical” pharmacokinetic
parameters. Then they evaluate the ‘‘goodness of fit”
of these parameter estimates by comparing the values
for a different mathematical function, which I term
their “predictive function.” This approach seems il-
logical. As an analogy, if automotive engineers ‘‘opti-
mized” the performance of an automobile for either
speed or maneuverability (analogous to the objective
functions minimized by the two approaches), would
it be appropriate to judge the vehicle based on its ap-
pearance (analogous to the predictive function)? If Ka-
taria et al.’s goal is to minimize the value of their pre-
dictive function, they should have minimized their
predictive function rather than the two objective func-
tions. Perhaps their predictive function is more similar
to the objective function of the pooled-data approach
than to that of the mixed-effects approach, thereby as-
suring that the pooled-data approach performs better
(or returning to the analogy, perhaps in their case ap-
pearance of the vehicle relates more to its maneuver-
ability than to its speed). It also is unknown whether
Kataria et ql.’s predictive function is “‘reasonable”’: The
objective function used with mixed-effects modeling
is designed to properly weight data from different in-
dividuals, accounting for interindividual differences in
covariates and random unexplained interindividual dif-
ferences (in contrast with random intraindividual dif-
ferences), factors deemed important in describing and
analyzing pharmacokinetic data from populations. In
contrast, the predictive function used by Kataria et al.
has not been demonstrated to account for these factors
adequately. Finally, parameter estimates typically are
validated using a new set of plasma concentration data
rather than the same data used to obtain the estimates;
Kataria et al. could have partitioned their data set, using
one portion to obtain the parameter estimates and the
remainder to test these estimates. Despite these poten-
tial problems in Kataria et al.’s approach, values for
the predictive functions from the pooled-data and the
mixed-effects approaches differ little. Therefore, it is
questionable whether either approach performs better
with their particular data and using their predictive
function.

The contrast between the pooled-data and the mixed-
effects approaches is more evident regarding the anal-
ysis of “‘unbalanced’ data sets. For example, a sampling
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regimen might be influenced by the pharmacokinetics
of the drug itself: An investigator might collect two
samples to determine the pharmacokinetics of an
opioid, the first 1-5 min after drug administration, the
second at the time at which each subject begins spon-
taneous ventilation. Allowing for the improbable cir-
cumstance that patients differed in their pharmacoki-
netics but all began to breathe at the same plasma con-
centration, a pooled-data analysis for this study (fig. 1)
might suggest a two-compartment model with an infi-
nite terminal half-life, whereas a different sampling
regimen might yield markedly different conclusions. A
second example of an unbalanced design might occur
if an investigator administered a one-compartment drug
and obtained early samples in one group of subjects
and late samples in another. In certain instances, a
pooled-data approach would suggest a two-compart-
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Fig. 1. Data are shown from a hypothetical pharmacokinetic
experiment in which two plasma samples are obtained from
each subject, the first 1-5 min after drug administration, the
second at the time at which each subject begins to breathe.
Allow for the improbable circumstance that all subjects begin
to breathe at the same plasma concentration. (Top) The four
thin lines represent the “actual” plasma concentration versus
time curves for individual subjects, and the symbols overlying
these lines represent values sampled from these subjects. The
thick solid line represents a possible “fit” obtained using
mixed-effects modeling; note that it “typifies” the population.
(Bottom) The thick dashed line represents a possible “fit” to
the data using the pooled-data approach; note that it does not
“typify” the population.
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Fig. 2. Data are shown from a hypothetical pharmacokinetic
experiment for a drug that displays a monoexponential decay
(i.e., a one-compartment model fits the data well). Men differ
from women by having a longer halflife and a larger volume
of distribution. Lacking that information and assuming that
men do not differ from women, the investigator samples early
from women and later from men. The four thin lines represent
the ‘“‘actual” plasma concentration versus time curves for in-
dividual subjects, and the symbols overlying these lines rep-
resent values sampled from these subjects; solid lines represent
women, and dashed lines, men. The thick line represents a
possible “fit” to the data using the pooled-data approach, in-
correctly suggesting a two-compartment model. Both mixed-
effects modeling and the two-stage approach would suggest a
one-compartment model and would recognize differences be-
tween men and women.

ment model (fig. 2), i.e., with a faulty study design,
the pooled-data approach might suggest an incorrect
structural pharmacokinetic model. Kataria et al. warn
the reader that such problems might occur, acknowl-
edging that the pooled-data approach is only appro-
priate if the data being analyzed represent a random
sample from the underlying plasma concentration ver-
sus time curves. Yet, investigators rarely know this
when the data are collected or analyzed, particularly
if sampling regimens differ between individuals (as in
the Kataria et al. study). In contrast, mixed-effects
modeling should deal appropriately with these prob-
lems of unbalanced data sets.

Another limitation of the pooled-data approach is
that, although it estimates the ‘“‘typical”’ pharmacoki-
netic parameters, it does not describe the variation of
these pharmacokinetic parameters within the popula-
tion. Kataria et al.’s results suggest that random inter-
individual variability is an important factor in their data:
Using the mixed-effects approach, their value for the
objective function (214) is markedly less (i.e., better)
than that obtained with the pooled-data method (380;
see their table 3). If knowledge of this variability is
important, mixed-effects modeling is preferable and
the pooled-data approach has limited utility.

The final issue of interest regards the applicability of
the pharmacokinetic parameters reported by Kataria et
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al. Should their terminal half-life of 398 min (the value
determined from the pooled-data approach) be con-
sidered different from the various values reported in
adults (ranging from 184 to 1,411 min in representa-
tive studies®®)? Should their clearance of 34
ml-kg™'-min~' be considered different from values
reported in adults (ranging from 1.3 to 2.2 1/min, or
approximately 19-31 ml-kg™'-min™' for a 70-kg
adult, in representative studies“)? In turn, can the cli-
nician interpret these pharmacokinetic parameters to
suggest that children require higher or lower infusion
rates than adults do to maintain comparable plasma
propofol concentrations during anesthesia? Probably
not. Shafer and Varvel® demonstrated that pharmaco-
kinetic parameters cannot be interpreted in isolation
as suggesting differences in infusion rates or differences
in rates of recovery. For example, after an infusion of
8 h or shorter, sufentanil (for which the terminal half-
life is >9 h) is associated with a more rapid twofold
decline in effect site concentrations than is either al-
fentanil (terminal half-life is <2 h) or fentanyl (with
a terminal half-life of 8 h). This apparent discrepancy
occurs because all three drugs have sufficiently large
distribution volumes that, even during prolonged in-
fusion, tissues do not equilibrate with plasma; as a re-
sult, the decline in plasma concentration after an in-
fusion is governed largely by distributional rather than
metabolic clearance. Hughes et al.” introduced the
term ‘‘context-sensitive half-time”’ to describe the time
it takes plasma concentrations to decline twofold after
infusions of different duration. In a similar manner,
Kataria et al. model both the decline of propofol’s
plasma concentration after termination of an infusion
and the infusion rates necessary to maintain constant
plasma propofol concentrations. Only by comparing
the results of these simulations (rather than the phar-
macokinetic parameters themselves) can one ascertain
whether children differ from adults.

A reader might be frustrated attempting to interpret
pharmacokinetic parameters reported by Kataria et al.,
which may limit the utility of the manuscripts by Ka-
taria et al. and others. Yet, such analyses are important
in guiding our administration of intravenous anesthetic
drugs, particularly by infusion. In addition, computer-
controlled infusion devices programmed with “typi-
cal” pharmacokinetic data presently have limited
availability. However, as technology improves and
software becomes more user-friendly, anesthesiologists
someday may administer all intravenous anesthetic
drugs and adjuvants using these devices. Data such as
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that reported by Kataria et al. are essential to the de-
velopment of such drug regimens.

The manuscript by Kataria et al. raises several stim-
ulating issues regarding pharmacokinetic analysis, and
I encourage the reader to contemplate these issues.

Dennis M. Fisher, M.D.
Professor of Anesthesia and Pediatrics
Department of Anesthesia

University of California, San Francisco
San Francisco, California 94143-0648
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