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Endotbelium, Anestbetics, and Vascular Conitrol

Roger A. Johns, M.D.*

ENDOTHELIUM-DERIVED relaxing factor/nitric oxide
(EDRF/NO), first discovered in the vascular endothe-
lium,! is now recognized as the signal transduction
mechanism for the activation of soluble guanylyl cy-
clase.? Synthesized from L-arginine by NO synthase(s),
NO is a novel cell messenger now implicated in wide-
ranging physiologic and pathophysiologic actions in
the cardiovascular, immune, and nervous systems.2 In
blood vessels, where EDRF/NO is produced by endo-
thelium, it is a primary determinant of resting vascular
tone through basal release, and causes vasodilation
when synthesized in response to a wide range of va-
sodilator agents.*>* It also inhibits platelet aggregation
and adhesion, and it may play a major role in disease
states, such as atherosclerosis and hypertension, cere-
bral and coronary vasospasm, and ischemia-reperfusion
injury.?? In the immune system, it is an effector mech-
anism for macrophage-induced cytotoxicity,6 and, in
the brain, EDRF/NO appears to subserve multiple
functions.” It is present in several specific neuronal
pathways and is known to mediate the NMDA and ace-
tylcholine receptor stimulated increases in neuronal
cyclic GMP.#%-'% Nitric oxide has been implicated in
longterm potentiation in the CAl region of the hip-
pocampus,’®'* thus mediating an important step in
learning and memory; it is the potential agent respon-
sible for NMDA mediated cytotoxicity,'® and is the me-
diator of nonadrenergic, noncholinergic neurotrans-
mission.'®~'® The significance of the L-arginine to NO
pathway in other cell types in which it is present (in-
cluding bronchial epithelium, renal tubular, and jux-
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taglomerular cells, and the adrenal medulla) is now
being explored.®'®

This paper reviews the biochemistry and cell and
molecular biology involved in nitric oxide (NO) pro-
duction and action; the role of NO signalling in the
cardiovascular system; the evidence for, and impor-
tance of anesthetic interaction with this pathway; and
likely sites and mechanisms by which anesthetics in-
hibit NO signalling.

Biochemistry, Molecular Biology, and
Regulation of NO Synthesis

Current evidence indicates that there are at least two
major NO synthase isoforms.>?° One requires calcium
and calmodulin binding for activation, is expressed
constitutively in neurons and in the vasculature, and
is involved in cell communication. This constitutive
enzyme is activated by a rise in cytosolic free calcium.
In neural tissue, it is in a soluble form; in endothelium,
it is membrane bound. The other isoform is only ex-
pressed after induction by cytokines or microbial
products, such as endotoxin (lipopolysaccharide), and
participates in host defense. This inducible isoform has
calmodulin tightly bound as a subunit,?' and produces
NO continuously and in large amounts without a cal-
cium requirement. The cytokine-induced isoform may
also participate in pathophysiology associated with cy-
tokine overproduction, such as in sepsis.>**%? Although
this inducible form of the enzyme is present in the
macrophage under basal conditions, it is not normally
found in the endothelial cell or vascular smooth mus-
cle. It is present in these vascular tissues only after
induction by cytokines.?*?3

In contrast to their differences in location, expression,
and function, the NO synthase isoforms appear to be
biochemically similar. The inducible and constitutive
NO synthases are active as homodimers with molecular
sizes of 130 kDa (inducible) and 150 kDa (constitu-
tive).?*?> Both are members of a rare class of flavopro-
teins that contain both FAD and FMN as prosthetic
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groups.>?52% The constitutive brain enzyme, the con-
stitutive endothelial cell enzyme, and the cytokine-in-
duced macrophage enzyme have been sequenced and
cloned.?*?”3! The deduced amino acid sequence of
the endothelial cell NO synthase reveals 57 and 50%
homology with the brain and macrophage enzymes,
respectively.?® In addition, the endothelial cell NO
synthase contains a unique N-myristylation consensus
sequence not shared by the brain and macrophage en-
zymes, which may explain its membrane localization.
The primary sequences of these enzymes indicate that
the monomers are comprised of an oxygenase and re-
ductase domain. The reductase domain of the isoforms
has significant sequence homology to all other FAD-
and FMN-containing flavoproteins, including NADPH-
cytochrome P450 reductase.*® In addition to flavins,
both isoforms contain bound tetrahydrobiopterin and
a recently recognized heme moiety.?>3%?%3

'These NO synthases are NADPH utilizing mixed func-
tion monooxygenases that oxidize L-arginine in a step-
wise manner to form NO and citrulline as primary
products.?*?5:33 NADPH serves as the electron donor,
and oxygen is the electron acceptor. It is now recog-
nized that the initial step in NO synthesis is an NADPH-
and oxygen-dependent hydroxylation of arginine that
forms N-hydroxyarginine. Enzymatic conversion of the
intermediate N-hydroxyarginine to NO and citrulline
also utilizes NADPH and O,.>*** The oxygen atoms in
both NO and citrulline are derived from O,. Although
not yet proven, it is proposed that NADPH passes elec-
trons through the flavins, which subsequently reduce
the iron in heme to its ferrous form, which can then
bind oxygen and oxidize the substrate.?® Limiting the
availability of molecular oxygen is the likely mecha-
nism by which hypoxia inhibits NO synthase activation
and EDRF/NO-dependent vasodilation.?®

All forms of the enzyme can be specifically and com-
petitively inhibited by analogs of L-arginine in which

~ asubstitution is made at one of the guanidino nitrogen
atoms.>® These include N®-monomethyl L-arginine
(LNMMA), N€-L-arginine methyl ester (LNAME), and
N-imino-L-ornithine (L-NIO).**7 These inhibitors are
proving to be of enormous benefit in elucidating the
physiologic and pathophysiologic roles of the NO
pathway.

After its production, the primary biologic function
of NO is the activation of soluble guanylyl cyclase to
increase the cyclic GMP content of several tissues, in-
cluding VSM and brain.*®** It does so by binding to the
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heme moiety of soluble guanylyl cyclase. In vascular
smooth muscle, the increase in cyclic GMP caused by
guanylyl cyclase leads to relaxation, most likely through
activation of cyclic GMP-dependent protein kinase and
the subsequent phosphorylation of proteins involved
in extrusion of calcium from the cytosol (also, see the
article by Bosnjak in this issue of ANESTHESIOLOGY, page
1392).

Nitric oxide, a reactive free radical, has also been
reported to have other, noncyclic GMP-mediated ac-
tions. It has been shown to activate ADP ribo-
syltransferase®® and to inhibit a number of enzymes,
including mitochondrial aconitase, electron transport
chain complexes I and II, and ribonucleotide reduc-
tase.*!*? These protein/enzyme interactions of NO have
been suggested to be a result of its ability to form com-
plexes with both heme and nonheme iron proteins.*?
Recently, White and Marletta demonstrated that both
the inducible and constitutive NO synthases contain a
heme moiety.** We recently reported the feedback in-
hibition of NO synthase by NO, a potentially important
mechanism for regulation of this signalling pathway. 44
The binding of NO to the heme of NO synthase would
be a likely mechanism of this observed inhibition.

Nitric oxide also interacts avidly with reactive oxygen
species, resulting in its rapid inactivation.?>%¢ It com-
bines with superoxide radical to form peroxynitrite,4’
and with oxygen to form nitrite, nitrate, and nitric
acid.”*® This explains the ability of high oxygen con-
centrations to inhibit EDRF/NO,**° and of superoxide
dismutase to markedly prolong its biologic half-life. 4>
This is a potential mechanism of anesthetic inactivation
of NO, because inhalational anesthetics have been
shown to generate oxygen-derived radicals that would
avidly combine with NO.5!%?

An understanding of the regulation of EDRF/NO syn-
thesis will form a basis for understanding the likely
sites of inhalational anesthetic inhibition of NO sig-
nalling. Potential sites of regulation are indicated in
figure 1, and include: (1) receptor activation and signal
transduction; (2) calcium availability; (3) availability
of other cofactors; (4) direct effects on NO synthase,
including phosphorylation and feedback inhibition;
(5) interactions with nitric oxide itself; and (6) inter-
actions with guanylyl cyclase and cyclic GMP.

The availability of calcium is, perhaps, the most sig-
nificant mode of regulation of NO synthesis in the en-
dothelium. The constitutive NO synthase is activated
by increases in cytosolic calcium,?*3° The calcium de-
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Fig. 1. The nitric oxide (NO) signalling
pathway. In the brain and endothelium,
NO is produced from L-arginine by sim-
ilar constitutive enzymes called NO syn-
thase(s). These enzymes are activated by
the binding of calcium (Ca**) and cal-
modulin, often in response to agonist-
receptor interaction leading to increased
cytosolic calcium. They are homologous
to P450 reductase enzymes, having rec-

L-ARGININE

ognition sites for reduced nicotina- ! ® LNAME
mide adenine dinucleotide phosphate c . <
(NADPH), flavin adenine dinucleo- o 4Ca" ®<_‘ - NO SYNTHASE e ll:’mg A
tide (FAD), and flavin mononucleotide A Si‘ggg““n

(FMN). Tetrahydrobioptein (BH,) is an- ® $ FAD, EMN ® NO

other cofactor. After its production, NO o | BH 4' \

binds to the heme moiety of guanylyl g \

cyclase (GC), which catalyzes the pro-
duction of cyclic 3',5-guanosine mono-
phosphate (GMP) from guanosine tri-
phosphate (GTP). Specific analogues of
L-arginine, including nitro-L-arginine
methyl ester, N°-monomethyl-L-argi-
nine, and N-imino ornithine, are com-
petitive inhibitors of NO synthase. The
numbers 1-6 represent potential sites of
inhalational anesthetic interaction, as
discussed in the text. (Modified with
permission from Johns ez al.'%%)

pendence of the activation of NO synthase and pro-
duction of NO has been studied extensively in the en-
dothelial cell.>*° Endothelium-dependent responses
are enhanced by the calcium ionophore A23187, and
attenuated or abolished by the removal of extracellular
calcium or pretreatment with calcium entry blockers
(verapamil, nifedipine).>*>® Although the removal of
extracellular calcium consistently causes inhibition of
EDRF-dependent responses,”® calcium entry blockers
do not inhibit endothelium-dependent relaxations in
all vessels studied.>®>° Both extracellular influx of cal-
cium and release of calcium from intracellular stores
are involved in EDRF release from endothelial cells. In
the absence of extracellular calcium, bradykinin-stim-
ulated endothelial cells release EDRF in an attenuated
and transient manner.** An increase in endothelial cell
intracellular calcium has been shown to accompany
the release of EDRF in response to a wide variety of
endothelium-dependent dilators, including histamine,
bradykinin, ATP, melittin, thrombin, and norepineph-
rine,>®%9-%% implicating receptor-mediated transloca-
tion of intracellular calcium as the initial step in the
production or release of EDRF. This increase in intra-
cellular calcium associated with EDRF release corre-
lates with an increase in the concentration of endothe-
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lial cell inositol-1,4,5-trisphosphate (IP3).57:%-7" Ip-
hibition of phospholipase C by gentamicin, thus
blocking IP3 production, prevents EDRF release from
cultured endothelial cells.”?

Several endothelial cell receptor and signalling path-
ways have been related to EDRF/NO production. An in-
crease in cytosolic calcium leads to calcium-calmodulin
activation of NO synthase.””"®' There are multiple
mechanisms by which cytosolic free calcium may be
increased in the endothelial cell (also, see the article
by Bosnjak in this issue of ANESTHESIOLOGY, page 1392,
for a more detailed discussion). Agonist binding to a
receptor may lead to opening of receptor-operated
calcium channels present in the plasma mem-
brane.”*748283-87 Alternatively, receptor-mediated G
protein activation of phospholipase C can lead to the
cleavage of phosphatidylinositol-4,5-bisphosphate gen-
erating IP3 and diacylglycerol (DAG).”7%%8 IP3 releases
calcium from intracellular stores.”>7%® Although not
definitively demonstrated in the endothelial cell, it is
also possible that inositol 1,3,4,5 tetrakisphophate (IP4)
can stimulate receptor-operated channels, allowing entry
of calcium.® Both a calcium leak channel, dependent
on the electrochemical gradient for calcium, and inter-
nal Na*-dependent calcium entry (Na*-Ca?" exchange)
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hidve Beéen proposed, but not well demonstrated.”772°
Atthough there are reports of voltage-operated calcium
channels in endothelial cells, the overwhelming evi-
dence indicates that L-type voltage-operated channels
are not present.”® The presence of other potential op-
erated channels remains controversial. The rate of cal-
cium entry can be modulated by the resting membrane
potential, which may be regulated by two types of K*
channels”: inwardly rectifying K* channels activated
on hyperpolarization or shear stress, and a calcium-ac-
tivated K* channel activated on depolarization, which
may function to repolarize the agonist-stimulated en-
dothelial cell.”®-8! ATP-sensitive K+ channels have been
demonstrated in endothelial cells.”®7?

Phosphorylation is another likely regulatory mechanism
for NO synthase. Study of the NO synthase amino acid
sequence reveals recognition sites for protein phosphor-
ylation, in addition to sites for NADPH, FAD, FMN, and
calmodulin.?”®'*? Indeed, NO synthase has recently been
reported to be stoichiometrically phosphorylated by
cyclic AMP-dependent protein kinase, protein kinase C,
and calcium/calmodulin-dependent protein ki-
nase,*?"9%%4 each kinase phosphorylating a different ser-
ine site on the enzyme. The phosphorylation by protein
kinase C resulted in a marked inhibition of the enzyme.

As mentioned, the receptor-mediated activation of
phospholipase C (PLC), in conjunction with initiating
the inositol phosphate cascade, produces diacylglyc-
erol (DAG), which leads to protein kinase C activation.
The DAG response to receptor stimulation in endothe-
lial cells has two components. An initial peak correlates
with PLC-mediated inositol-1 ,4,5-trisphosphate re-
lease. A secondary, sustained release of DAG may be
related to the action of other lipases.”® DAG, through
activation of protein kinase C, may play an important
physiologic role in modulating endothelial cell re-
sponsiveness to vasoactive agents.”? Activation of pro-
tein kinase C by phorbol esters has been shown, by
several investigators, to inhibit EDRF production stim-
ulated by receptor-mediated agents, but not in response
to the calcium jonophore A23187.9>¢ This is consis-
tent with known protein kinase C inactivation of re-
ceptor/GTP binding proteins involved in PLC activa-
tion, a negative feedback pathway observed in other
cell types. As mentioned above, the direct phosphor-
ylation of NO synthase by protein kinase C has been
demonstrated to inhibit enzyme activity.

The mechanisms of calcium sequestration by endo-
plasmic reticulum (a site of inhalational anesthetic in-
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teraction in other cell types) are poorly defined in en-
dothelial cells. Currently, it is not known whether en-
dothelial cells contain functional ryanodine receptors;
however, this issue is being actively pursued. If a ry-
anodine receptor is localized in endothelial cells, this
would be an obvious site for further investigation of
anesthetic effects based on inhalational anesthetic in-
teractions at this site in myocytes.””??

Evidence for Inhalational Anesthetic
Interaction with NO Signalling in the
Vasculature

Several studies have examined the role of the endo-
thelium in mediating the vascular responses of anes-
thetics or the effects of anesthetics on endothelium-
dependent responses. Blaise et al.'°® demonstrated that
isoflurane impairs the contractile response of canine
coronary arteries induced by phenylephrine in an en-
dothelium-dependent manner, and proposed that this
might be caused by isoflurane-induced release of EDRF.
Consistent with these observations, in an abstract report
by Greenblatt et al.,'°' the microsphere technique was
used to measure tissue-specific blood flow, indirectly
indicating that isoflurane may stimulate EDRF/NO pro-
duction in certain vascular beds. Several laboratories,
including ours, have provided strong direct evidence,
however, that anesthetics are not capable of stimulating
EDRF release.'®2-'% Rather, inhalational anesthetics
appear to be potent inhibitors of EDRF-dependent vas-
cular relaxation at clinically relevant doses. Muldoon
et al.'® demonstrated that halothane inhibits endothe-
lium-dependent vasodilation in response to the recep-
tor-mediated agonists, acetylcholine and bradykinin.
Stone and Johns previously reported that a small va-
soconstricting response observed with low concentra-
tions of isoflurane, enflurane, and halothane requires
an intact endothelium, and may be caused by the in-
hibition of EDRF production or action.’® Recently,
Uggeri et al. more directly and definitively demon-
strated that these three volatile anesthetics can inhibit
both receptor and nonreceptor-mediated EDRF/NO-
dependent vasodilation.'®” Halothane, enflurane, and
isoflurane inhibited the endothelium-dependent va-
sodilation induced by the receptor-mediated agent
methacholine and that by the receptor-independent
calcium ionophore A23187, but had no effect on the
endothelium-independent vasodilation induced by so-
dium nitroprusside. Although this study demonstrated
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that anesthetic inhibition of EDRF/NO vasodilation oc-
curred distal to receptor activation of the endothelial
cell, it did not rule out an additional effect on receptor
mechanisms, as was suggested by Muldoon,!®®
and which has been demonstrated in other cell
types.'®”~'12 Toda et al. recently reported that both iso-
flurane and halothane inhibited acetylcholine-induced
endothelium-dependent relaxation of rat aorta and si-
multaneously prevented acetylcholine-induced in-
creases in cyclic GMP.!'*'4 Consistent with the work
by Uggeri et al.,'®” jsoflurane was more potent than
halothane in this regard. Unlike Uggeri et al., however,
these investigators did not demonstrate an inhibition
of A23187-induced vasodilation.

In the studies by Muldoon'®® and Uggeri et al.'®” of
inhalational anesthetic inhibition of EDRF-dependent
vasodilation, it was shown that this inhibition was
caused by an effect on the production, transport, or
release of EDRF and was independent of any effect on
guanylyl cyclase activation in the vascular smooth
muscle. The evidence for this was that nitroglycerin-
or sodium nitroprusside-induced relaxation, which is
mediated by a direct activation of vascular smooth
muscle soluble guanylyl cyclase after its breakdown to
NO, was not affected by any of the anesthetics. A recent
paper, also by the Muldoon laboratory, however, sug-
gests that vasodilation induced by NO and by nitro-
glycerin is inhibited by halothane, and implies that in-
halational anesthetics may inhibit guanylyl cyclase.!'?
Thus, it is not clear from isolated vascular ring studies
whether inhalational anesthetics are capable of inter-
fering with NO signalling through an action in vascular
smooth muscle involving guanylyl cyclase.

A recent report on the vascular actions of sevoflurane
demonstrated the selective impairment of EDRF-de-
pendent relaxation induced by acetylcholine, brady-
kinin, and the calcium jonophore, A23187, and the
partial reversal of this effect by superoxide dismutase.??
These authors demonstrated, with electron paramag-
netic resonance spectroscopy techniques, that sevo-
flurane generated the superoxide free radical, and sug-
gested superoxide inactivation of NO as a possible
mechanism of sevoflurane’s inhibition of EDRF.

Potential and Likely Sites for Anesthetic
Interaction with NO Signalling

There are multiple sites at which inhalational anes-
thetics may, potentially, inhibit EDRF/NO production
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or release based on the known mechanisms of EDRF/
NO synthesis and action and on the observed effects of
these anesthetics in endothelial cells, neurons, and
other cell types. Likely sites of interaction are indicated
in figure 1 by circled numbers, which correlate with
the discussion below.

I and 2: Receptor Activation and Cytosolic

Calcium Availability

As inhalational anesthetics have been shown to have
profound and specific effects on calcium homeostasis
in other cell types,''S effects of inhalational anesthetics
on calcium availability is a highly likely site of anes-
thetic interaction with EDRF/NO generation. As dis-
cussed above, inhalational anesthetics have been shown
to impair receptor activation.'°®> Halothane has been
shown to shorten acetylcholine receptor kinetics,'%®
and isoflurane has been shown to cause flickering of
the acetylcholine receptor using patch clamp tech-
niques.'®® Anthony et al.,''® Dennison et al.,''' and
Aronstam et al.''? investigated the mechanisms of in-
halational anesthetic inhibition of muscarinic acetyl-
choline receptors in rat brain. They found both an in-
crease in antagonist, but not agonist, binding affinity
caused by a decrease in the rate of dissociation, and a
decrease in the guanine nucleotide sensitivity of agonist
binding. These effects were common to halothane, en-
flurane, isoflurane, diethyl ether, and chloroform, in-
dicating that interference with muscarinic receptor-G
protein interactions is a common property of volatile
anesthetics, and may represent a general mechanism
for the disruption of signal transmission between cells
during anesthesia. Puil et al.,"'” studying calcium tran-
sients in response to NMDA receptor activation in rat
hippocampal neurons, observed that both isoflurane
and halothane inhibited the calcium response to glu-
tamate. Although anesthetic inhibition of muscarinic
receptor (or other receptor) activation may be a com-
ponent of the mechanism by which anesthetics inhibit
EDRF/NO production in response to those specific ag-
onists, receptor activation is not likely to be the major
site of anesthetic inhibition of NO signalling, because
we have demonstrated significant anesthetic inhibition
of calcium ionophore (A23187) stimulated EDRF/NO
production that bypasses receptor effects.'®’

Effects of anesthetics on calcium homeostasis in en-
dothelial cells have been reported in preliminary ab-
stract form. Uhl et al.,''® using fluorescent dye studies,
showed that halothane modestly decreased basal intra-
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cellular calcium and impaired the ATP-stimulated cal-
cium transient in endothelial cells. Loeb et al.,''® using
the fluorescent calcium indicator dye FURA2, have re-
ported that both halothane and isoflurane enhance basal
calcium concentrations, and that halothane significantly
inhibited the calcium transient evoked by bradykinin.
Tsuchida et al.,'?° studying endothelium-denuded rat
aorta, found a decrease in cytosolic calcium that cor-
related with halothane- and isoflurane-induced vaso-
dilation. The most established actions of inhalational
anesthetics on cytosolic Ca*" concentration in other
cell types have been through an effect on calcium
movement into the cell, either by changing Ca** influx
through receptor- or voltage-activated membrane Ca?*
channels, or by altering Ca®* release from, or uptake
into, the sarcoplasmic reticulum,*'¢:121.122

EDRF/NO activity may be attenuated by an interaction
with the phospholipase C-inositol phosphate pathway
in the endothelial cell. Indeed, halothane has been
shown to inhibit stimulated phosphatidylinositol-4,5-
bisphosphate hydrolysis in RBL-2H3 cells.'?3 Sill dem-
onstrated that halothane inhibits serotonin-stimulated
phosphatidylinositol-4,5-bisphosphate hydrolysis in
vascular smooth muscle, and that isoflurane inhibits
acetylcholine-stimulated phosphatidylinositol-4,5-
bisphosphate hydrolysis in coronary smooth muscle.'?
This same group, in preliminary studies, demonstrated
that halothane does not inhibit phorbol-12,13-dibu-
tyrate-stimulated protein kinase C action in vascular
smooth muscle, indicating that an effect through di-
acylglycerol is unlikely.'?® Thus, inhalational anes-
thetics are clearly capable of decreasing calcium avail-
ability for NO synthase activation, and may do so by
altering calcium entry through the plasma membrane;
through calcium release from, or reuptake into, intra-
cellular stores; or through inhibiting phospholipase C
and altering IP3-mediated calcium release.

3: Awvailability of Other Cofactors for NO

Synthase

Halothane Iﬁay interact with, and inhibit, calmodulin,
perhaps by interacting with hydrophobic sites on the
protein. Halothane potentiation of the antitumor activ-
ity of interferon is suggested to be mediated through
inhibition of calmodulin. It was shown that halothane
clearly mimicked specific calmodulin blocking
agents."?® Excess calmodulin has been shown to reverse
the activating effects of halothane on sarcoplasmic re-
ticulum calcium release in skeletal muscle, indicating
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that this action of halothane may be partially mediated
through an inhibition of calmodulin.!?¢

4: Direct Interactions with NO Synthase

Inhalational anesthetics have been shown to bind
competitively to specific hydrophobic regions of pro-
teins. For example, halothane, methoxyflurane, and
chloroform caused a 50% inhibition of luciferase ac-
tivity.'?” There appears to be a specific anesthetic bind-
ing pocket on this enzyme, the hydrophobicity of which
(and, therefore, anesthetic sensitivity of luciferase ac-
tivity) is modulated by ATP.'® In the endothelial cell,
NO synthase is 80-90% membrane associated,3%!2?
providing an additional potential mechanism for an-
esthetic interaction. Inhalational anesthetics could di-
rectly impair endothelial NO synthase activity through
interaction with a hydrophobic site on the enzyme, or
by altering the fluidity or structure of enzyme-asso-
ciated membrane.

5: Inactivation of NO

It is also possible that-inhalational anesthetics may
inactivate EDRF after its production, either via a direct
interaction, or indirectly, by enhancing free radical ac-
tivity within the endothelial cell, leading to the inac-
tivation of EDRF by superoxide (see above discussion
regarding sevoflurane).®>!3? Shayevitz et al.*! showed
that halothane and isoflurane increase the sensitivity of
rat pulmonary artery endothelial cells to injury by ox-
ygen metabolites by inhibiting processes involved in
intracellular antioxidant defenses. Anesthetic mediated
increases in oxygen radicals within endothelial cells
would clearly be a means of inactivating NO.

6: Inbibition of Guanylyl Cyclase

Muldoon et al. recently suggested that, in contrast to
their original work, halothane may inhibit endothe-
lium-dependent vasodilation through direct inhibition
of soluble guanylyl cyclase.''® They suggest that halo-
thane may interact with the heme moiety of guanylyl
cyclase, as it was previously shown to interact with the
heme of a cytochrome P450. Although our work in
vascular rings indicates that this is not the major site
of anesthetic inhibition of NO signalling, an additional
action on guanylyl cyclase cannot be ruled out by such
studies. A recent report by Eskinder et al.'®® studied
the effects of halothane on the activity of isolated sol-
uble and particulate guanylyl cyclases. Although halo-
thane had no effect on the soluble cyclase (which is
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involved in vasodilation by EDRF/NO), it significantly
stimulated the activity of the particulate guanylyl cy-
clase (normally stimulated by atrial natriuretic peptide
and some bacterial toxins, but not involved in EDRF/
NO-dependent vasodilation).

Importance of Anesthetic Interaction with
NO Signalling

An understanding of the mechanisms of the observed
inhibitory interactions of inhalational anesthetics with
NO signalling, and their potential stimulation of this
pathway under certain conditions, is clearly of tremen-
dous clinical importance, given the widespread role of
this pathway in physiology and pathophysiology”®!?
and the extensive use of these anesthetics and their
potent hemodynamic and central nervous system ef-
fects. The actions of NO have been most studied in the
vasculature, the site at which anesthetics have clearly
been shown to inhibit NO-dependent vasodilation. The
pathway for NO production is present in all vascular
beds and in large and small vessels, in a wide range of
species.>>*? EDRF/NO is a potent endogenous vaso-
dilator and an inhibitor of platelet aggregation and
adhesion.? Its activity is impaired in hypertension and
atherosclerosis,? and its absence because of endothelial
damage may play a role in cerebral and coronary va-
sospasm.’ It is a mediator of flow-dependent vasodila-
tion, and a modulator of the hypoxic pulmonary va-
soconstrictor response.’*? Endothelial cell damage and
impairment of EDRF/NO production may also contrib-
ute to acute and chronic pulmonary hypertension, and
EDRF/NO may be responsible for the low resting tone
of the pulmonary vasculature.’® Inhaled exogenous
NO is a potent, selective, and clinically useful pul-
monary vasodilator.*® The central nervous system func-
tions of NO are just beginning to be explored, but it is
clear that NO mediates excitatory amino acid receptor
stimulation of neuronal cyclic GMP*~'? (a pathway
strongly implicated in mechanisms of anesthesia); that
it mediates nonadrenergic, noncholinergic neurotrans-
mission, through which it may control peristalsis of
the gastrointestinal tract; and that it mediates relaxation
of the corpora cavernosae of the penis.'5" 8134 Nitric
oxide is also a mediator in synaptic plasticity, for ex-
ample, in its role in long-term potentiation.'3!¥ We
recently demonstrated an exciting potential new role
for the NO signalling pathway in modulating con-
sciousness, and a possible involvement in the central
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mechanisms of anesthetic action, both of which clearly
demand further exploration.!
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