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Integration of Factors Controlling Vascular Tone

Overview

Geoffrey Burnstock, D.Sc.

FOR many years, studies of neurohumoral control of
the vasculature have been dominated by consideration
of the role of catecholamines released from sympathetic
perivascular nerves and from the adrenal medulla into
the bloodstream. New and improved techniques in im-
munohistochemistry, electron microscopy, electro-
physiology, and pharmacology, introduced in recent
years, have led to a wealth of discoveries that have pro-
foundly reshaped our understanding of the autonomic
nervous system.'? Although the classic view involved
antagonistic cholinergic and adrenergic nerves, many
new putative neurotransmitters have been proposed in
the last few years. Neuromodulatory mechanisms have
been recognized, including prejunctional inhibition or
enhancement of transmitter release, postjunctional
modulation of transmitter action, and the secondary
involvement of locally synthesized hormones and
prostaglandins. The existence of more than one trans-
mitter substance in some nerves, or cotransmission, is
now also widely recognized.?

Knowledge of local humoral regulation of blood flow
has also rapidly progressed in recent years. This arose
from the seminal discovery that endothelial cells,
which form the innermost layer of blood vessels, play
a crucial role in the vasodilatory response of the vessel
to acetylcholine (ACh)? and to other substances.® The
considerable interest in vascular control mechanisms
arising from these studies has led to the concept of a
dual regulation of blood vessel tone, whereby both
nerves and the endothelium are involved.”®

The current review discusses these recent discoveries
in neurohumoral control of the vasculature, and sug-
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gests a new framework for considering changes in dis-
ease.

Perivascular Nerves

The vascular neuroeffector junction consists of vari-
cose nerve fibers within a plexus at the adventitial-me-
dial border. Transmitter is released “‘en passage’’ from
varicosities to reach vascular smooth muscle cells that
are in electrical continuity with each other via gap
junctions.”'® The varicosities do not have a fixed re-
lationship with particular smooth muscle cells, and the
junctional cleft varies between about 60 nm and as
much as 2 um in some large arteries; muscle cells rarely
(if at all) have postjunctional specializations. This
means that the vascular neuromuscular junction differs
in a significant way from “‘synapses’’ at the motor end-
plate in striated muscle or within ganglia, where there
is a fixed relationship with both pre- and postjunctional
specialization. The variable geometry of the vascular
neuromuscular junction means that neuromodulation
is an important feature. A neuromodulator is defined
as a substance that modifies the process of neurotrans-
mission. It may act as a prejunctional modulator by
decreasing or increasing the amount of transmitter re-
leased by the nerve varicosity, or it may act as a post-
junctional modulator by altering the time course or
extent of action of the neurotransmitter. Neuromodu-
lators may be circulating neurohormones; local agents,
such as prostanoids, bradykinin, or histamine; or neu-
rotransmitter substances released from other nerves
nearby or even from the same nerve varicosity.

Multiplicity of Transmitters: Cotransmission and

Chemical Coding

For more than 50 yr, the only transmitters considered
in perivascular nerves were noradrenaline (NA) and
ACh. Since the discovery of nonadrenergic, noncholi-
nergic nerves in the early 1960s, more than 12 new

20z ludy 60 uo 3sanb Aq Jpd'62000-0002 1 £66 L-2¥S0000/68 L LZE/BIE L/9/6L/4Pd-Bl0IE/ABOj0ISBYISOUE/WOD" JIBYDIBA|IS ZESE//:dRY WO} papeojumod



DUAL CONTROL OF VASCULAR TONE

1369

chemical messengers have been identified, including
monoamines, purines, amino acids, polypeptides, and
nitric oxide (table 1).

The concept of cotransmission, Z.e., that nerves syn-
thesize, store, and release more than one transmitter,
was first proposed in 1976.® This hypothesis is now
generally accepted.®!'-1¢

Although, at first sight, the multiplicity of transmitters
released in various computations from different peri-
vascular nerves appears formidable and unnecessary, a
pattern is now emerging that clarifies the situation. This
is the idea that autonomic nerves have a ‘‘chemical
coding,” #.e., individual neurones contain a particular
combination of transmitter substances, have processes
that project to identifiable target sites, and have defined
central connections. This concept has been developed
most fully for the enteric nervous system,'” but it also
applies to perivascular nerves.

Sympatbetic Perivascular Nerves

There is now a substantial body of evidence showing
that NA and ATP act as cotransmitters, being released
from sympathetic nerves in variable proportions de-
pending on the tissue and species.'® Most of the early
and more detailed studies were made on the vas def-
erens,'? but many studies of sympathetic cotransmis-
sion, involving adenosine 5'-triphosphate (ATP) and
NA, have now also been carried out on a number of
different blood vessels,?® including rat tail artery,?!:?2
rabbit ear artery,?*~?* dog basilar artery,?® mesenteric
artery,?”~*? rabbit pulmonary artery,** guinea pig and
rabbitsaphenousartery,3**¢and rabbit hepaticartery.?’
Sympathetic cotransmission involving NA and ATP
has also been shown in the circulation of skeletal
muscle,®® cat intestine,? kidney,*® dog skin,! and the
pithed rat. 243

Evidence for purinergic cotransmission includes:
block on the prazosin-resistant component of the re-
sponse to sympathetic nerve stimulation by the ATP
antagonist arylazido aminoproprionyl-ATP (ANAPP;),
or by the selective desensitizer of the ATP (P,x-puri-
noceptor) by a,8-methylene ATP; release of ATP during
nerve stimulation, which is prevented by tetrodotoxin,
guancthidine, or destruction of sympathetic nerves by
6-hydroxydopamine, but is unaffected by selective de-
pletion of NA by reserpine; and mimicry of excitatory
junction potentials (EjPs) by ATP, but not by NA.

The purinergic component gives an optimal response
during short bursts of sympathetic nerve stimulation
(1 s or less), but the traditional period of nerve stim-
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Table 1. Established and Putative Transmitters:
Perivascular Nerves

Noradrenaline (NA)

Acetylcholine (ACh)

Adenosine 5'-triphosphate (ATP)
5-Hydroxytryptamine (5-HT)

Dopamine (DA)

Enkephalin-dynorphin (ENK-DYN)
Vasoactive intestinal polypeptide (VIP)
Peptide histidine isoleucine (PHI)
Substance P (SP)

Gastrin-releasing peptide (GRP)
Somatostatin (SOM)

Neurotensin (NT)

Vasopressin (VP)
Cholecystokinin—gastrin (CCK-GAS)
Neuropeptide Y-pancreatic polypeptide (NPY-PPP)
Galanin (GAL)

Angiotensin (ANG)
Adrenocorticotrophic hormone (ACH)
Calcitonin gene-related peptide (CGRP)
Nitric oxide (NO)

ulation in experimental 7z vitro preparations is 30 s
or more, under which conditions the NA component
dominates the mechanical responses.*4

The proportions of the cotransmitters NA and ATP
vary considerably between different vessels. For ex-
ample, ATP is the major component of sympathetic co-
transmission in the rabbit saphenous artery, intestinal
arterioles,*>*¢ and mesenteric arteries,?® but it appears
to be a relatively minor component in rabbit ear artery
and rat tail artery, in which the relationship between
EJPs and mechanical responses is more difficult to
demonstrate. A model depicting sympathetic cotrans-
mission is shown in figure 1. The purinergic component
of sympathetic cotransmission is selectively affected
by the dihydropyridines, nifedipine and Bay K
8644 4849

Recent studies in our laboratory have shown that, in
rabbit coronary vessels, in contrast to other vessels in
which NA and ATP cause synergistic constriction via
ay-adrenoceptors and Poy-purinoceptors, respectively,
the predominant effect of ATP is vasodilatation viag Pyy-
purinoceptors.’® Because, in this vessel, the predomi-
nant effect of NA is vasodilatation via §-adrenoceptors,
this is consistent with the synergism that appears to be
characteristic of cotransmission.

Neuropeptide Y (NPY) is also stored in, and released
from, sympathetic nerves,’">? but, in many vessels, it
has little direct postjunctional action.’**% However, it
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Fig. 1. Diagram showing that adenosine 5-triphosphate (ATP)
and noradrenaline (NA) are released as cotransmitters from
the sympathetic nerves supplying the vas deferens and some
blood vessels. ATP acts on P.-purinoceptors on the smooth
muscles to initiate excitatory junction potentials, action po-
tentials, and a fast initial contraction involving electrome-
chanical coupling via voltage-dependent Ca** channels. In
contrast, NA acts on a;-adrenoceptors to produce the second
slower phase of the contraction by pharmacomechanical (or
at least spike-independent) coupling via receptor-operated Ca*"
channels. Prejunctional a,-adrenoceptors and P,-purinoceptors
can reduce transmitter release when activated by NA and
adenosine (AD), respectively (prejunctional neuromodula-
tion), but NA and ATP enhance each other’s actions (post-

junctional neuromodulation). (Adapted with permission from
Burnstock.%?)

has potent prejunctional actions reducing the release
of NA and ATP, and postjunctional actions enhancing
the actions of NA and ATP.'”*>%¢ The geometry of par-
ticular sympathetic neuromuscular junctions appears
to influence the type of neuromodulation, 7.e., with
wide junctions, postjunctional potentiation by NPY
dominates; however, narrow clefts favor prejunctional
inhibition by NPY.?” Neuropeptide Y has direct vaso-
constrictor actions in some vessels—for example, those
in heart, brain, spleen, and skeletal muscle—but its
origin may be from intrinsic or local neurons, rather
than sympathetic nerves.
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In a study of blood vessels in guinea pig skin, a dif-
ferential chemical coding has been demonstrated, 7.e.,
although sympathetic nerves in the distributing arteries
contain NPY and NA, in the smaller arteries, they con-
tain dynorphin (DYN), as well as NPY and NA; and in
precapillary arteries, only DYN and NA are present.’8

5-Hydroxytryptamine (5-HT) immunofluorescent
nerves have been localized in a number of vessels,”°
However, it seems that, for the most part, 5-HT is not
synthesized and stored in separate nerves, but is taken
up, stored in, and released as a ““‘false transmitter’’ from
sympathetic nerves,®°

Parasympatbetic Perivascular Nerves

In the salivary gland of the cat, vasoactive intestinal
polypeptide (VIP) appears to be stored together with
ACh in parasympathetic nerves, probably in separate
vesicles. During low-frequency stimulation, ACh is re-
leased to increase salivary secretion from acinar cells,
and, also, to elicit some minor dilatation of blood ves-
sels in the gland.®"%? Vasoactive intestinal polypeptide
is released from the same nerves, especially at high
stimulation frequencies, to produce marked dilatation
and, although it has no direct effect on acinar cells, it
acts as a neuromodulator to substantially enhance the
postjunctional effect of ACh on acinar cell secretion,
and to increase the release of ACh from the nerve var-
icosities via prejunctional receptors (fig. 2). Vasoactive
intestinal polypeptide is a potent vasodilator of many

vessels, notably penile vessels; it appears to play a major
role in erection.

Sensory-Motor Perivascular Nerves

Sensory nerves have been claimed to use substance
P (SP),%% calcitonin gene-related peptide (CG-
RP),°*7 and ATP.*-"! Calcitonin gene-related peptide
and SP have been shown to coexist in sensory nerve
terminals in perivascular nerves,”*”? and, with the use
of colloidal gold particles of different sizes, they have
been shown to coexist in the same large granular ves-
icles.” By analogy with other systems, it seems likely
that ATP coexists in different proportions with these
two peptides, perhaps cooperating in axon reflex
vasodilatation” (fig. 3). Because the role of these
nerves during the axon reflex to many organs’® is motor
rather than sensory, they have been termed ‘‘sensory-
motor nerves,”’ to distinguish them from the other sub-
population of afferent fibers that have an entirely sen-
sory role and whose terminals contain few vesicles and
a predominance of mitochondria.?

20z ludy 60 uo 3sanb Aq Jpd'62000-0002 1 £66 L-2¥S0000/68 L LZE/BIE L/9/6L/4Pd-Bl0IE/ABOj0ISBYISOUE/WOD" JIBYDIBA|IS ZESE//:dRY WO} papeojumod



DUAL CONTROL OF VASCULAR TONE

1371

Stored in

separate vesicles

vIP ACh

N

HIGH FREQUENCY

- +! Low FREQUENGCY

RELEASE RELEASE

VIP ACh

muscarinic
receptor

Blood

vessel Acinar Cell

Fig. 2. A classic transmitter acetylcholine (ACh) coexists with
vasoactive intestinal polypeptide (VIP) in parasympathetic
nerves suppiying the cat salivary gland. ACh and VIP are stored
in separate vesicles; they can be released differentially at dif-
ferent stimulation frequencies to act on acinar cells and glan-
dular blood vessels. Cooperation is achieved by selective re-
lease of ACh at low-impulse frequencies, and of VIP at high
frequencies. Pre- and postjunctional modulation is indicated.
(Reprinted with permission from Burnstock.??)

Prejunctional modulation of sensory-motor nerve-
mediated vasodilatation of the rat mesenteric arterial
bed by adenosine has been demonstrated.”

Perivascular Nerves Arising from Intramural

Neurones

Little is known about the physiologic roles or the
pharmacology of intrinsic neurones of the heart, be-
cause it is so difficult to study this /# situ. However, a
novel culture preparation from the atria of newborn
guinea pigs has been developed in our laboratory to
study the intrinsic innervation of the heart under con-
ditions of unequivocal extrinsic denervation.”®”® Some
of these neurones show immunofluorescence for NPY,
some for 5-HT, and some for variable mixtures of both
transmitter substances. Projections of these neurones
in situ form perivascular plexuses in small-resistance
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coronary vessels.® Both NPY and 5-HT are potent va-

soconstrictors of coronary vessels and may have syn-
ergistic actions. Nitric oxide synthase has also been
shown to be localized in a subpopulation of intrinsic
cardiac neurones.?!

Few studies have been carried out on the projections
of intrinsic neurones to blood vessels in other organs,
but intrinsic enteric neurones are known to supply
some vessels in the gut and mesentery, and it is well
known that monoamine-containing neurones in the
brain contribute to the innervation of some cerebral
vessels.” Nitric oxide appears to be a transmitter in ce-
rebral and penile vessels, perhaps derived from local
neurones.®?

Endothelium

Since 1980, when Furchgott and Zawadzki® first re-
ported that the vasodilatation response to ACh re-
quires the presence of an intact endothelium, the
role of the endothelium in the regulation of vascular
tone has attracted considerable interest.®®* Action
on endothelial receptors by a number of vasoactive
substances stimulates the production of endothelium-
derived relaxing factors (EDRF) or constricting fac-
tors (EDCF) and prostaglandins. These subsequently
modify vascular tone by causing contraction or re-
laxation of the vascular smooth muscle. Endothelium-
derived relaxing factor has been identified as nitric
oxide,?"® and the peptide endothelin is considered
one of the constricting factors.?® It should be noted
that there is considerable heterogeneity in the en-
dothelium-dependent responses of mammalian blood
vessels, with variations between arteries and veins
and between different vascular beds. It is likely that
such variations would be physiologically useful, par-
ticularly with regard to ensuring that the blood sup-
ply to the heart and brain are protected under a va-
riety of different conditions.?”

Endotbelium-Mediated Vasodilatation

In addition to ACh, endothelium-dependent vasodi-
latation has been shown to occur in response to ATP,
adenosine 5-diphosphate (ADP), arachidonic acid, SP,
neurokinin A (NKA), 5-HT, bradykinin, histamine,
neurotensin, vasopressin (VP), angiotensin II (AgID),
and thrombin.®® Different subtypes of the receptors to
such vasoactive substances occur on the endothelium
and on the vascular smooth muscle. For example, Pox-
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purinoceptors are present on the vascular smooth mus-
cle, and are acted on by ATP released from perivascular
nerves to produce vasoconstriction; and ATP can cause
vasodilatation via Pay-purinoceptors on the endothelial
cells,#90

It is clear that neurotransmitters released from
perivascular nerves have direct access to vascular
smooth muscle cell receptors to produce a response.
It is neither likely nor desirable that the same neu-
rotransmitter can diffuse through the media and basal
lamina of a large blood vessel (without degradation)
to act on endothelial receptors and produce the op-
posite effect. To establish that endothelium-depen-
dent responses have a role to play in the control of
vascular tone in the intact organism, it is necessary
to identify the source of the vasoactive substances
that act on the endothelial receptors. For some sub-
stances, a readily available source is the blood. In
the case of ACh and SP, however, circulating levels
are low because of their rapid breakdown. The pos-
sibility that endothelial cells themselves may be the
source of such substances was first proposed in 1985,
when Parnavelas et al.®' reported that choline ace-
tyltransferase, the enzyme responsible for the syn-
thesis of ACh, could be localized in endothelial cells
lining capillaries and small vessels in the rat cortex.
Since this time, using the same technique of immu-
nocytochemical staining combined with electron
microscopy, ChAT, SP, 5-HT, VP, and AgllI have all
been localized in endothelial cells from a variety of
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Sensory Fig. 3. Diagram showing the basis of the
{pain) “axon reflex in the skin leading to va-

fibre sodilatation and inflammation. It is sug-
gested that calcitonin gene-related pep-
tide (CGRP), substance P (SP), and aden-
osine 5-triphosphate (ATP) are released
during antidromic activation of sensory
collaterals. (Adapted with permission
from Burnstock.”)

STIMULUS

blood vessels.®*=®> In addition, SP levels have been
measured in endothelium isolated from cerebral ar-
teries and aorta.®® Others have also demonstrated that
endothelial cells have the capability of synthesizing
Agll and histamine,®??8

Experiments have been carried out to investigate
whether certain stimuli can cause the release of vaso-
active substances from their endothelial stores, thus
providing evidence for a physiologic mechanism for the
endothelium-dependent responses to such stimuli to
occur. 5-Hydroxytryptamine, ATP, SP, and ACh, all of
which are present in coronary endothelial cells, have
been shown to be released after hypoxic perfusion of
the Langendorf heart preparation from the rat.939499
Hypoxic vasodilatation has been shown to be endothe-
lium-dependent. In the perfused rat hindlimb, increased
flow causes the release of SP, which has been localized
in the endothelial cells of the rat femoral artery.! After
removal of the endothelium by perfusion with air bub-
bles,'°! increased flow no longer induced the release of
SP, although denervation of the hindlimb vasculature of
SP-containing nerves by capsaicin had no effect on flow-
induced SP release.’*? Substance P has also been shown
to be released from columns of endothelial cells grown
on microcarrier beads after increased flow.'®? This sup-
ports the view that the source of the SP is endothelial
cells. Thus, SP and other vasoactive substances within
endothelial cells, by their release, contribute to flow-
induced vasodilatation, which is known to be an en-
dothelium-dependent response.
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Fig. 4. Regulation of vascular tone by
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perivascular nerves and endothelial
cells. Neuropeptide Y (NPY), noradren-
aline (NA), adenosine 5-triphosphate
(ATP), calcitonin gene-related peptide
(CGRP), substance P (SP), and vasoactive
intestinal polypeptide (VIP) can be re-
leased from nerve varicosities in the ad-

MED.

ventitia (ADV) to act on receptorsin the
media (MED), causing vasoconstriction
or vasodilatation. ATP, ACh, 5-hydroxy-
tryptamine (5-HT), and SP, released from
endothelial cells (END) by shear stress
or hypoxia, act on their receptors on
endothelial cells to cause a release of

EDREF or prostaglandins (PG), which, in

END.

turn, act on the smooth muscle to cause
relaxation. Angiotensin I (Agll), vaso-
pressin (VP), and histamine (H) are also
contained in, and may be released from,
subpopulations of endothelial cells. In

areas denuded of endothelial cells, op-
posite effects may be produced by re-

SHEAR STRESS
HYPOXIA

Endothelium-Mediated Vasoconstriction

It has been proposed that the endothelium mediates
vasoconstriction via production of an EDCF in response
to various chemical and physical stimuli, such as NA,
thrombin, high extracellular potassium, hypoxia, and
stretch.'®-1%8 In response to stretch, endothelial Ca2*
channels have been described and suggested to operate
as mechanotransducers.'® Thus, the role of endothelial
cells is twofold, sensory and effector, such that vaso-
constriction may occur independently of the action of
extraneous vasoactive substances.

Although the nature of EDCF is still uncertain, and
appears to be different in blood vessels of different an-
atomic origin, at least three different classes of endo-
thelial vasoconstrictor substances have been recog-
nized: (1) metabolites of arachidonic acid; (2) a poly-
peptide-like factor (or factors) produced by cultured
endothelial cells; and (3) a still-unidentified diffusible
factor released from anoxic/hypoxic endothelial
cells.''® A polypeptide produced by the endothelium
in response to various stimuli was demonstrated using
cultured bovine aortic endothelial cells, and could
represent the EDCF. On release, this was shown to be
a potent vasoconstrictor that was unaffected by inhib-
itors of receptors for known vasoactive substances and
by inhibitors of prostaglandin synthesis, but was abol-
ished by several treatments (sodium dodecyl sulphate,
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ceptors on the smooth muscle cells; for
example, via P,x- and Py-purinoceptors
and muscarinic receptors (M). (Adapted
from Burnstock.'?)

trypsin, alkali, or acid hydrolysis) known to affect pro-
teins.ll 1-113

An endothelium-derived 21-residue vasoconstrictor
peptide, endothelin, has been isolated from porcine
aortic endothelial cells, and the complementary DNA
of its precursor, preproendothelin, has been cloned
and sequenced.®® It has been shown to be a potent con-
strictor in, for example, the rabbit skin microvascula-
ture,’'* isolated human resistance vessels,!'® and rat
mesenteric resistance vessels.!'® Endothelin and ATP,
but not VIP, have been shown to be released from iso-
lated aortic endothelial cells exposed to increased
flow.''” Receptors for endothelin have been localized
by autoradiography on cultured rat aortic smooth mus-
cle cells,'*® rat kidney, ' and human and porcine cor-
onary arteries,'?°

A schematic model of the neural and endothelial fac-
tors involved in control of vascular tone is illustrated
in figure 4.

Changes in Vascular Control in Aging and
Disease

Because perivascular nerves are separated from en-
dothelial cells by vascular smooth muscle, the possi-
bility of trophic interactions between perivascular
nerves and endothelial cells has received little direct
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investigation. However, studies of the vasculature in
disease, and after denervation or mechanical injury,
do provide some indication that such interactions may
occur.

Perivascular nerve varicosities have been demon-
strated in close apposition to endothelial cells in cap-
illaries; this raises the possibility of direct trophic in-
teractions between nerves and endothelial cells in the
microvasculature. Adenosine can be formed from the
extracellular breakdown of ATP released from nerves.
Chronic inhibition of adenosine uptake with dipyri-
damole has been shown to cause proliferation of cap-
illary endothelium and increased capillary density in
skeletal muscle and heart.'?' Furthermore, it has been
suggested that neuropeptides may have a role in con-
trolling neurochemical differentiation, cell prolifera-
tion, hypertrophy, and regeneration.'?* Such interac-
tions require further investigation in the context of
vascular cell biology.

Changes in Perivascular Nerves in Development

and Aging

In a study of the changes in density of sympathetic
adrenergic nerves in blood vessels of the rabbit, using
image analysis quantitation, Cowen et al.'** recognized
that the pattern of change with age varied considerably
between different vessels. Although the early stages of
development of vascular innervation were similar in
all the vessels studied, and reached an initial peak den-
sity at about 6 weeks after birth, the density of inner-
vation of some vessels (e.g., femoral artery) declined
thereafter; other vessels (e.g., renal artery) reached
peak density at 6 months and then rapidly declined;
however, in the basilar artery, density of innervation
continued to increase into old age (3 yr).

Changes in the development of peptide-containing
perivascular nerves of guinea pig vessels were studied
between 6 weeks in utero and old age, and compared
with changes in perivascular adrenergic nerves.'?!
Again, variation in the pattern of development of peri-
vascular nerves in different vessels was demonstrated.
In addition, in mesenteric and carotid arteries, although
adrenergic nerve density reached a peak 4 weeks after
birth and declined thereafter, the peptide-containing
nerves (VIP, CGRP, and SP) reached a peak at birth
and declined thereafter to about half of maximum den-
sity in old age, raising the possibility that perivascular
neuropeptides may play a trophic role in early devel-
opment,
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In another study from our laboratory, it has been
shown that, although there is a decrease in expression
of vasoconstrictor, cerebrovascular neurotransmitters
(NA and 5-HT) in aging rats, there is an increase in
vasodilator neurotransmitters (VIP and CGRP).!?*

Changes in Perivascular Nerves After Trauma,

Surgery, and Chronic Exposure to Drugs

It has been shown that, 2-8 weeks after sympathetic
and sensory denervation of the rabbit ear artery, en-
dothelium-dependent relaxation responses to metha-
choline are significantly depressed.’?® The reduction
in response was not caused by any impairment of the
ability of the muscle to relax, because the maximal
relaxation to sodium nitroprusside (an endothelium-
independent agent) was unaffected by denervation.
Long-term sympathetic denervation in rabbits resulted
in an increase in the sensitivity of cerebral arteries to
hypercapnia, hypoxia, and 5-HT.'*’ Although morpho-
logic changes in the endothelial cells were not detected
under these conditions,'® it is possible that alterations
in the endothelial control of the cerebral vasculature
after sympathetic denervation contributed to this effect.
In contrast, when the endothelium of the dog coronary
artery was mechanically injured without disruption of
the elastic lamina, neuron-specific enolase-positive
nerve fibers were increased in number at both 1 and 3
months.'* An increased density of SP-containing nerve
fibers was also observed in the dog coronary artery 3
months after mechanical injury to the endothelium.
Surgical sympathectomy or long-term adrenoceptor
blockade by propranolol are claimed to prevent or re-
duce the induction of atherosclerosis by diet.'® It has
been proposed that NPY and NA in cerebral perivascular
nerves, which increase during the development of hy-
pertension in rats,'?' are involved in protection against
disruption of the blood-brain barrier and cerebral
hemorrhage caused by hypertension. Sympathetic de-
nervation before the development of hypertension re-
sults in increased incidence of stroke and increased
permeability of the blood-brain barrier.

Unilateral removal of the superior cervical ganglion
(8CG) results in the reinnervation of denervated ce-
rebral vessels by sprouting nerves from the contralateral
SCG."*? Other marked compensatory changes after su-
perior cervical ganglionectomy include increased SP
levels in the ipsilateral iris and ciliary body,'** in-
creased CGRP content of pial vessels,'** and increased
expression of NPY in nonadrenergic VIP-containing
nerves in the cerebral vasculature.’®® Long-term chem-
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ical sympathectomy of developing rats, induced by
chronic guanethidine treatment, leads to increased
brightness and density of CGRP-positive immunoflu-
orescent nerves innervating blood vessels.!?¢ In late
pregnancy, sympathetic innervation of guinea pig uter-
ine blood vessels exhibits a remarkable switch from
adrenergic vasoconstrictor to cholinergic vasodilator
control,'*” although ultrastructural studies of the
guinea pig uterine artery did not show any degeneration
of serotonergic or peptidergic (NPY, VIP, SP, and
CGRP)-containing nerves in late pregnancy.'>® Four-
week treatment with estrogen, but not progesterone,
leads to a marked reduction in the density and varicosity
diameters of 5-HT-containing nerves supplying the
rabbit basilar artery.'* In view of the possible involve-
ment of 5-HT in the pathogenesis of headache, this
finding indicates that contraceptive pills with a high
estrogen content may be contraindicated in women
prone to migraine attacks. The effect of crush lesions
on perivascular noradrenergic nerves has shown dif-
ferential rates of reinnervation in different blood ves-
sels, indicating the presence of characteristic levels of
local neurotrophic activity.'*?

Changes in Perivascular Nerves in Hypertension

The distribution of NA and NPY in nerves was com-
pared during the early development of cerebral vessels
in normotensive rats and spontaneously hypertensive
rats (SHR) before and after the time when hypertension
becomes apparent at about 5 weeks of age.'*' Three
interesting findings emerged from this study. First, the
levels of both NA and NPY were significantly higher in
cerebral perivascular sympathetic nerves in SHR com-
pared with normotensive rats. Second, in both nor-
motensive rats and SHR, there was a discrepancy be-
tween the time course of changes in the expression of
NA and NPY, Z.e., the density of NA-fluorescent fibers
increased rapidly between 4 and 6 weeks, but NPY-
immunofluorescent nerves showed a rapid increase be-
tween 6 and 8 weeks (fig. 4). Because NA and NPY
coexist in sympathetic perivascular nerves, this shows
that the expression of cotransmitters is not necessarily
identical. And, third, the increase in NA and NPY in
SHR does not occur in the sympathetic nerve cell bodies
in the superior cervical ganglion from which the ce-
rebral perivascular nerves arise.

Diabetes
Perivascular nerves in penile vessels containing VIP
and ACh were shown to be damaged or lost in strep-
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tozotocin-diabetic rats and in diabetic impotent
men."*"'42 A reduction in the expression of VIP and
5-HT, but not NPY and NA, has been demonstrated in
perivascular nerves supplying the cerebral blood ves-
sels of streptozotocin-induced diabetic rats.!4?

Attenuation of endothelial-mediated vasodilatation
has been claimed in diabetic vessels, perhaps because
of reduced release of EDRF.'44

Atherosclerosis

Although endothelial-mediated vasodilatation has
been shown to be seriously attenuated in heavily le-
sioned vessels, such as aorta and carotid artery, in other
vessels in early atherosclerosis a compensatory increase

in endothelium-mediated vasodilatation has been re-
ported 145,146

Chronic Hypoxia

In a recent study of the effect of chronic hypoxia on
the control of endothelial vasoactive substances, it was
shown that, in response to sheer stress, endothelial cells
isolated from hypoxic rats released less ATP, but more
endothelin, compared with cells from normoxic rats.'*”
It was suggested that, under conditions of reduced ar-
terial oxygen tension, a dynamic balance between ATP
and endothelin could regulate the response of vessels
to flow.

Chronic Stimulation of Perivascular Nerves In

Vivo

After 10 days of chronic in vivo stimulation of peri-
vascular nerves in the rabbit ear artery, the vasoactive
peptides NPY and CGRP were shown to appear in sub-
populations of endothelial cells, indicating that the
level of activity in perivascular nerves has a trophic

influence on the expression of peptides in endothelial
cells.'®

Final Comment

The recent developments in our knowledge of both
perivascular nerves and endothelial cells described in
this article have profound implications on our under-
standing of the mechanisms controlling blood flow. It
can be envisioned that the status of vascular tone will
be the result of interactions between the neural and
endothelial control mechanisms. It seems likely that
spontaneous release of EDRF is responsible for a resting
endothelial-mediated vasodilator tone, which is op-
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posed by a resting vasoconstrictor tone mediated by
sympathetic nerves. Under different physiologic or
pathophysiologic circumstances, the balance may be
altered so that one or the other may dominate. It seems
likely that endothelial release of vasoactive substances
may be of greater significance in the response of blood
vessels to local changes in their environment, such as
hypoxia and increased flow. In contrast, perivascular
nerves may be more concerned with the integrative
control of blood flow in the organism as a whole.
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