Kendall Healthcare Products Company 15 Hampshire Street Mansfield, Massachusetts 02048

REFERENCE

 Rigler ML, Drasner K: Distribution of catheter-injected local anesthetic in a model of the subarachnoid space. ANESTHESIOLOGY 75:684–692, 1991

(Accepted for publication March 26, 1992.)

velocity profile. Velocity is equal to the flow/cross sectional area. For a given flow rate, the velocity of a drug solution injected through a 28-G catheter is seven times greater than that of a 20-G catheter. Figure 2 compares the velocities for the 20-G and the 28-G catheter at NIR. Because the 28-G catheter produces a higher velocity (and more turbulence) with a slower injection rate, the two catheters have similar distribution profiles (see Figure 1).

Based on our analysis of Rigler and Drasner's data, ¹ we conclude that 1) hyperbaric local anesthetic solution injected through a sacrally directed microbore catheter with NIR does not maldistribute any more or less than through an endport macrobore catheter; 2) the velocity with which the fluid leaves the catheter tip is equally and perhaps more important than flow rate in enhancing distribution; and 3) because of this effect of velocity, we recommend a typical injection rate of 1 ml in 30 s when using microbore catheters for continuous spinal anesthesia.

AMY WENDELL

Section Manager, Research and Development

Anesthesiology 77:212, 1992

II. Factors Affecting Distribution of Catheter-injected Local Anesthetic

To the Editor:—I have several comments to make regarding the article by Rigler and Drasner, which examined the distribution of local anesthetics when injected using a catheter in a subarachnoid space model.

This case study was published in the Laboratory Investigation section and could lead the reader to believe that the conclusions are based on sound scientific methodology. In fact, most of the comparisons were based on single events only, and therefore this article suffers from a major scientific flaw. Conclusions were drawn from single injections at a given rate, through a given catheter type and a given position in the subarachnoid space model. Although the results presented are intellectually acceptable, they do not address the possibility that they could have occurred by chance.

I therefore urge the authors to repeat the study with a large enough n (certainly not an n=1) so that we, as critical readers, may be satisfied that the conclusions are derived from information that is statistically significant. In the event that ANESTHESIOLOGY's intention was to publish it as a case study, then it should have been identified as such.

At our institution, we have recently also studied the spread of isobaric and hyperbaric solutions in a subarachnoid space model using a 25-G needle, a multiport 20-G catheter, and a 20-G distal port catheter under various conditions. Each specific condition was reproduced five times, and measurements were performed every minute for 5 min. The data were then analyzed for their statistical significance using a paired Student's t test. With a centrally located injection, using a 25-G needle or a multiport catheter, both hyperbaric and isobaric solutions distributed symetrically. However, using the distal port catheter the spread was directional (i.e., greater along the orientation of the catheter) with both types of solutions. We did not find that the baricity affected the asymmetry in spread, which remained constant (P < 0.001). As one would expect, the overall spread was twice as great with the hyperbaric as compared with isobaric solution (P < 0.001).

We also found in our study that spread had not stabilized by 3 min after injection. There was a 10-20% increase in spread depending on the mode of injection between 3 and 5 min. This may have introduced some error in the measurements in the paper by Rigler and Drasner,

as the eight samples were drawn "beginning 3 min after each injection," and as it is unclear how long after injection the last sample was drawn. This again would warrant repetition of the measurements to determine the variance and the validity of the conclusions. Based on our results, we recommend the use of a multiport catheter with a cephalad orientation using a hyperbaric solution for a high-level (T_4-T_6) block or an isobaric solution for a intermediate level $(T_{10}-T_{12})$ block. The use of a cephalad-oriented distal port catheter should be avoided, as it may run the risk of a large incidence of high spinals, especially when using hyperbaric solutions.

In conclusion, while our recommendations may agree with those of Rigler and Drasner, we have statistically validated the results used to draw these conclusions, thereby providing confidence that the data reflect an outcome not biased by a chance observation.

RALPH F. ERIAN, M.D., M.Sc., F.R.C.P.(C.)
Assistant Professor
Department of Anesthesiology
The University of Texas Health Science Center
7703 Floyd Curl Drive
San Antonio, Texas 78284-7838

REFERENCES

- Rigler ML, Drasner K: Distribution of catheter-injected local anesthetic in a model of the subarachnoid space. ANESTHESIOLOGY 75:684–692, 1991
- Erian RF, Levin D, Hwang WJ. Spread of hyperbaric (HBS) and Isobaric (IBS) solutions: Needle vs. catheter in subarachnoid space model (SASM) (abstract). Anesth Analg 72:S336, 1991

(Accepted for publication March 26, 1992.)