Nitrous Oxide Effects on Isolated Myocardium: A Reexamination In Vitro

Dan Lawson, M.D.,* Martha J. Frazer, B.S., \dagger Carl Lynch III, M.D., Ph.D. \ddagger

Abstract

This study examined in vitro myocardial depression by $50 \% \mathrm{~N}_{2} \mathrm{O}$. Maximal isometric contractions of guinea pig right ventricular papillary muscles were studied in Tyrode's superfusate at $37^{\circ} \mathrm{C}$ within a gas-tight chamber. Superfusate (pH at 7.45) and chamber were equilibrated with $95 \% \mathrm{O}_{2} / 5 \% \mathrm{CO}_{2}$. After control measurements in $\mathbf{9 5 \%} \mathrm{O}_{2}$, muscles were studied with $50 \% \mathrm{~N}_{2}$ and $50 \% \mathrm{~N}_{2} \mathrm{O}\left(\mathbf{4 5 \%} \mathrm{O}_{2} /\right.$ $5 \% \mathrm{CO}_{2}$) in random order with an intervening and final recovery in oxygen. Muscles were field stimulated after rest and at $0.1-3 \mathrm{~Hz}$. At $37^{\circ} \mathrm{C}$, muscle performance deteriorated over time with exposure to reduced oxygen; therefore, identical experiments were performed at $30^{\circ} \mathrm{C}$ in which no systematic deterioration occurred. Peak tension and maximum rate of tension development ($\mathbf{d T} / \mathrm{dt}_{\text {max }}$) were compared for each stimulation rate. At both temperatures, $\mathrm{N}_{2} \mathrm{O}$ caused a $10-15 \%$ depression of contractility as compared to that observed with nitrogen. In a second protocol, muscles were studied at $37^{\circ} \mathrm{C}$ in $\mathbf{2 6 ~ m M ~ K}{ }^{+}$Tyrode's solution with $0.10 \mu \mathrm{M}$ isoproterenol to study enhanced contractions mediated by slow (Ca^{2+}-channel-dependent) action potentials. Rested-state double stimulations were used (stimulus interval, $\mathbf{2 5 0} \mathbf{- 6 0 0} \mathbf{~ m s}$) resulting in a first rested-state contraction followed by a second contraction (C2) with rapid initial tension development. The muscles were exposed to nitrogen and $\mathrm{N}_{2} \mathrm{O}$ as in the force-frequency experiments and did not deteriorate over time. In this setting, $\mathrm{N}_{2} \mathrm{O}$ also caused a $10-15 \%$ depression of C 2 contractility as compared with nitrogen. Another set of muscles was studied in $\mathbf{9 5 \%} \mathrm{O}_{\mathbf{2}}$ to which 0.5% halothane or 1% isoflurane was added before exposure to nitrogen and $\mathrm{N}_{2} \mathrm{O}$. The combined depressant action of $\mathrm{N}_{2} \mathrm{O}$ with either halothane or isoflurane did not differ from that predicted by the simple addition of independent effects; there was no evidence of synergism. Furthermore, $\mathrm{N}_{2} \mathrm{O}(50 \%)$ alone depressed $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ in a manner similar to that of 0.5% halothane and different from that of 1.0% isoflurane. Experiments conducted in iso-osmolar $\mathbf{4 0} \mathrm{mM} \mathrm{Na}{ }^{+}$Tyrode's solution, in which activator Ca^{2+} arose from the sarcoplasmic reticulum $\mathbf{C a}^{2+}$, also showed greater depression by $\mathrm{N}_{2} \mathrm{O}$ than nitrogen. $\mathrm{N}_{2} \mathrm{O}(50 \%)$ is a myocardial depressant independent of concurrent hypoxic effects with a pattern and magnitude of contractile depression similar to that of 0.5% halothane. (Key words: Anesthetics, gases: nitrous oxide. Anesthetics, volatile: halothane; isoflurane. Animal: guinea pig. Heart: contractility; force-frequency relation; papillary muscle.)

[^0]EXPERIMENTAL TECHNIQUES devised to study myocardial contractile physiology and pharmacology have significantly advanced our understanding of the mechanisms by which anesthetics exert their effects. ${ }^{1}$ Data accumulated thus far suggest that the volatile anesthetics interfere with calcium $\left(\mathrm{Ca}^{2+}\right)$ availability to myofibrils, thereby reducing contractility, while the agents also modify myofibrillar Ca^{2+} release, thus altering relaxation. ${ }^{2-7}$ Conspicuously absent from recent experimental scrutiny is $\mathrm{N}_{2} \mathrm{O}$. In use for over 130 years and the most ubiquitous of the inhaled anesthetics, $\mathrm{N}_{2} \mathrm{O}$ effects on myocardium remain unresolved. Goldberg et al., ${ }^{8}$ using rat trabeculae carneae bathed at $37^{\circ} \mathrm{C}$, demonstrated similar degrees of contractile depression with $\mathrm{N}_{2} \mathrm{O}$ and nitrogen; they suggested that reduced contractility was not attributable to $\mathrm{N}_{2} \mathrm{O}$. Price ${ }^{9}$ used cat papillary muscles suspended in a $25^{\circ} \mathrm{C}$ bath to examine $\mathrm{N}_{2} \mathrm{O}$-induced depression. On exposure to $50 \% \mathrm{~N}_{2}$, no effect was seen; however, significant depression was demonstrable with $50 \% \mathrm{~N}_{2} \mathrm{O}$, which was reversed by increasing the Ca^{2+} concentration in the perfusate. Su et al., ${ }^{10}$ using skinned myocardial muscle preparations at $22^{\circ} \mathrm{C}$, presented evidence that $\mathrm{N}_{2} \mathrm{O}$ slightly decreases the affinity of myofibrils for activator Ca^{2+} and it also increases the uptake of Ca^{2+} by the sarcoplasmic reticulum (SR). In all, the data on $\mathrm{N}_{2} \mathrm{O}$ leave doubt as to its ultimate direct effects on in vitro myocardial inotropy. Moreover, little can be said of the mechanisms by which $\mathrm{N}_{2} \mathrm{O}$ may act.

To reexamine the hypothesis that $\mathrm{N}_{2} \mathrm{O}$ significantly depresses myocardial contractility and to properly position it in the spectrum of anesthetic effects on in vitro myocardium, a series of experiments were conducted on guinea pig papillary muscle that were similar to those previously conducted using the volatile agents. ${ }^{5,7}$ Experiments were also performed to determine if myocardial depression by halothane and isoflurane is modified by exposure to $\mathrm{N}_{2} \mathrm{O}$.

Methods

$\mathrm{N}_{2} \mathrm{O}$ effects were studied using techniques previously described. ${ }^{5,7}$ The heart was excised from methoxyfluraneanesthetized guinea pigs according to protocol approved by the University of Virginia Animal Research Committee. Right ventricular papillary muscles were horizontally mounted in a recirculating chamber maintained at 37 or $30^{\circ} \mathrm{C}\left(15 \mathrm{ml} \cdot \mathrm{min}^{-1}\right)$ and superfused with modified Tyrode's solution (composition in $\mathrm{mm}: \mathrm{Na}, 143 ; \mathrm{K}, 5.0 ; \mathrm{Cl}$,

128; $\mathrm{Ca}, 2.5 ; \mathrm{Mg}, 1.2 ; \mathrm{SO}_{4}, 1.2 ; \mathrm{HCO}_{3}, 25$; glucose, 11 ; and EDTA, 0.1). All experiments were conducted with the recirculating muscle chamber enclosed within a 21.6 1 Plexiglass ${ }^{\oplus}$ enclosure. Gas mixtures ($6 \mathrm{l} / \mathrm{min}$ total flow) were bubbled through superfusate in a sealed 1-1 reservoir maintained at 37 or $30^{\circ} \mathrm{C}$ and then directed into the enclosure before venting to an exhaust source. Gases used for the study were as follows: $95 \% \mathrm{O}_{2} / 5 \% \mathrm{CO}_{2}, 50 \% \mathrm{~N}_{2}$ / $45 \% \mathrm{O}_{2} / 5 \% \mathrm{CO}_{2}$, and $50 \% \mathrm{~N}_{2} \mathrm{O} / 45 \% \mathrm{O}_{2} / 5 \% \mathrm{CO}_{2}$. The latter two mixtures were composed by combining 90% $\mathrm{O}_{2} / 10 \% \mathrm{CO}_{2}(\pm 0.02 \%)$ with either $100 \% \mathrm{~N}_{2}$ or 100% $\mathrm{N}_{2} \mathrm{O}$ so that the final mixed gas flow contained $45 \% \mathrm{O}_{2}$ ($\pm 1 \%$) as measured by a calibrated polarographic oxygen electrode. Oxygen levels (per cent) inside the enclosure were monitored continuously. Perfusate $p \mathrm{H}$ was also monitored continuously, and its maintenance at 7.45 ± 0.05 verified a continuous CO_{2} in the gas phase of 5%. $\mathrm{N}_{2} \mathrm{O}$ and N_{2} were assumed to be 50% (within 2%) by subtraction of the other gases. Muscles were field stimulated with $0.5-1-\mathrm{ms}$ pulses at current levels 10% above threshold. Isometric tension development was recorded at the minimum muscle length and rest tension that produced the maximal active tension. The stability of each muscle's contractile behavior was verified by equilibration for a $25-35-\mathrm{min}$ period in $95 \% \mathrm{O}_{2}$, during which time intermittent stimulation at 0.5 Hz demonstrated identical developed force. The muscle was then kept inactive for $15-20 \mathrm{~min}$.

Force-Frequency Protocol

The first contraction elicited after 20 min of rest was termed the rested-state contraction (RSC). Consistent muscle tension development was then elicited at $0.1,0.25$, $0.5,1,2$, and 3 Hz stimulation rates with $20-60 \mathrm{~s}$ required at each frequency for stabilization. This stimulation profile produces the typical positive "staircase" or force-fre-
quency relation: greater tension and more rapid tension development with each higher stimulation rate. The peak developed tension and the first derivative with respect to time (rate of tension development; $\mathrm{dT} / \mathrm{dt}$) were recorded continuously.

In all the protocols described, the muscle was equilibrated with gas in the following manner: 1) initial 95% O_{2} control; 2) 50% nitrogen or $50 \% \mathrm{~N}_{2} \mathrm{O}$ with $45 \% \mathrm{O}_{2}$; 3) intermediate $95 \% \mathrm{O}_{2}$ recovery; 4) 50% nitrogen or $50 \% \mathrm{~N}_{2} \mathrm{O}$ with $45 \% \mathrm{O}_{2}$; and 5) final $95 \% \mathrm{O}_{2}$ recovery. $\mathrm{N}_{2} \mathrm{O}$ or nitrogen was applied in random'order, and every gas exposure period lasted $25-35 \mathrm{~min}$ (seven to nine exchanges of the enclosure volume). Muscle contractility, as determined by peak tension and by the maximum rate of tension development ($\mathrm{dT} / \mathrm{dt}_{\text {max }}$), decreased by $30-50 \%$ during a typical 2-3 h force-frequency experiment at $37^{\circ} \mathrm{C}$; this decline was greater than past controls from this laboratory ${ }^{5}$ when employing $95 \% \mathrm{O}_{2} / 5 \% \mathrm{CO}_{2}$. Such deterioration suggested that $45 \% \mathrm{O}_{2}$ resulted in some degree of hypoxic dysfunction. ${ }^{11}$ Many laboratories routinely perform experiments at $30^{\circ} \mathrm{C}$ to increase the longevity of their superfused isolated muscle preparations; therefore, these experiments were completely duplicated in identical fashion at $30^{\circ} \mathrm{C}$. In muscles studied at 30° C , little deterioration in contractile behavior was observed over the course of the experiment; at this temperature, contractility was enhanced at $0.5-3 \mathrm{~Hz}$, as shown by the control force-frequency curves in figure 1 . When standardized for cross-sectional area, peak tension in muscles at $30^{\circ} \mathrm{C}$ was approximately threefold greater than at 37° $\mathrm{C} ; \mathrm{dT} / \mathrm{dt}_{\text {max }}$ at 1 and 3 Hz was approximately twofold greater in muscles studied at the lower temperature.

Rested-state Double-Stimulation Protocol

Tyrode's superfusate was altered for this protocol by the partial substitution of K^{+}for Na^{+}(in $\mathrm{mm}: \mathrm{Na}, 97 ; \mathrm{K}$,

Fic. 1. Force-frequency relation of guinea pig papillary muscles in Tyrode solution at 37 and $30^{\circ} \mathrm{C}$. Peak tension and maximum rate of tension development ($\mathrm{dT} / \mathrm{dt}_{\text {max }}$) standardized for the estimated muscle cross-sectional area. Error bars represent \pm SEM ($\mathrm{n}=5$).

26) and the addition of $0.1 \mu \mathrm{M}$ isoproterenol, with the bath at $37^{\circ} \mathrm{C}$. Isoproterenol significantly enhances muscle inotropy and cell automaticity. Increased extracellular K^{+} partially depolarizes the muscle, inactivates the Na^{+}channels, and inhibits spontaneous papillary muscle activity, but permits propagation of slow (Ca^{2+}-channel-dependent) action potentials in response to electrical stimulation. After adjusting muscle tension and confirming stable contractile behavior as previously described, rested-state double-stimulation experiments were performed as follows: The first stimulus of the pair elicited an enhanced RSC that was characterized by modest initial tension development within 100 ms followed by rapid tension development resulting in late-peak tension. A second stimulus that was generated after an interval of 250,300 , 400,500 or 600 ms elicited a second contraction (C2) that was notable for very rapid and strong early tension development without an initial delay. Each pair of stimuli was spaced by a 3 - or 4 -min rest so that reproducible RSCs were obtained. Contractile behavior with double stimulation was first determined under the following conditions: 1) initial $95 \% \mathrm{O}_{2}$ control; 2) 50% nitrogen or $50 \% \mathrm{~N}_{2} \mathrm{O}$ with $45 \% \mathrm{O}_{2}$; 3) intermediate $95 \% \mathrm{O}_{2}$ recovery; 4) 50% nitrogen or $50 \% \mathrm{~N}_{2} \mathrm{O}$ with $45 \% \mathrm{O}_{2}$; and 5) final $95 \% \mathrm{O}_{2}$ recovery. During the course of a 2 - or 3 -h experiment, a decline of $15-25 \%$ in peak tension was typically observed, with little change in the maximum rate of tension development.

To compare $\mathrm{N}_{2} \mathrm{O}$ with the volatile anesthetics and to evaluate the additive effects of $\mathrm{N}_{2} \mathrm{O}$ with those of the volatile anesthetics, a set of double-stimulation experiments was conducted using 1% isoflurane and another set using 0.5% halothane (approximately 0.66 MAC and 0.45 MAC , respectively, for the guinea pig^{12}). The gas mixture exposure protocol was altered as follows: 1) 95% O_{2}; 2) $95 \% \mathrm{O}_{2}$ and volatile anesthetic (VA); 3) 50% nitrogen or $50 \% \mathrm{~N}_{2} \mathrm{O}$ and VA with $\left.45 \% \mathrm{O}_{2} ; 4\right) 95 \% \mathrm{O}_{2}$ and VA; 5) 50% nitrogen or $50 \% \mathrm{~N}_{2} \mathrm{O}$ and VA with 45% O_{2}; 6) $95 \% \mathrm{O}_{2}$ and VA; and 7) $95 \% \mathrm{O}_{2}$ alone. As in the other experiments, the order in which $\mathrm{N}_{2} \mathrm{O}$ or nitrogen was introduced was random, and for each gas mixture, rested-state double-stimulation contractions were observed (stimulus interval, 250-600 ms).

Low-sodium Contractions

In a final set of experiments, the Na^{+}concentration in Tyrode's solution was reduced (in mm: $\mathrm{Na}, 40 ; \mathrm{KCl}, 5.0$;) and superfusate osmolarity was maintained with 200 mm sucrose. This experimental preparation decreases the exchange of extracellular Na^{+}for intracellular Ca^{2+} so that intracellular Ca^{2+} normally pumped out of the cell during rest accumulates within the SR, resulting in early tension development and large contractions. ${ }^{5,13}$ After adjusting
muscle tension and 20 min of stabilization with oxygen control, the muscles were stimulated at 0.1 Hz , achieving a steady-state response within $30-60 \mathrm{~s}$. The first contraction after rest (RSC) and steady-state 0.1 Hz contractions were recorded. When stimulated at rates higher than $0.5-$ 1 Hz , these muscles tended to develop some degree of contracture, a decrease in peak developed tension, and subsequent permanent loss in contractility. Therefore, higher stimulation rates were not employed. The gas mixtures were applied as previously described in the force-frequency protocol.

Data Analysis

At each stimulation rate or interval used in the forcefrequency, double stimulation, and low $-\mathrm{Na}^{+}$experiments, peak tension and maximum rate of tension development ($\mathrm{dT} / \mathrm{dt}_{\text {max }}$) during $\mathrm{N}_{2} \mathrm{O}$ or nitrogen exposure were expressed as a per cent of "control-recovery": the average of the values observed in the immediately preceding 95% O_{2} (control) and in the subsequent $95 \% \mathrm{O}_{2}$ (recovery). This method corrects for nonreversible systematic changes in contractile characteristics of the muscle during the course of the experiment. In the presence of the volatile anesthetics, nitrogen or $\mathrm{N}_{2} \mathrm{O}$ effects were also expressed as a per cent of average contractile behavior (con-trol-recovery) in the preceding and subsequent $95 \% \mathrm{O}_{2}$ and VA.

To directly compare the relative potency of $\mathrm{N}_{2} \mathrm{O}$ with those of isoflurane and halothane, contractions in the presence of either volatile anesthetic in $45 \% \mathrm{O}_{2}$ and $\mathrm{N}_{2} \mathrm{O}$ in $45 \% \mathrm{O}_{2}$ were expressed as a per cent of the initial 95% O_{2} control only (see fig. 7). Thus, all three anesthetics are comparable in the presence of 45% oxygen. To evaluate the combined pharmacologic action of the volatile agents with $\mathrm{N}_{2} \mathrm{O}$, the depressant action of $\mathrm{N}_{2} \mathrm{O}$ with each volatile agent was estimated according to the formula:

$$
\begin{align*}
& \text { Predicted effect of combined nitrous } \\
& \text { oxide-volatile agent (as \% control) }= \\
& \begin{array}{l}
\left(\mathrm{N}_{2} \mathrm{O} \text { effect as } \% \text { control }\right) \\
\times\left(\mathrm{VA} \text { in } 45 \% \mathrm{O}_{2} \text { effect as } \% \text { control }\right)
\end{array} 100 \%
\end{align*}
$$

This estimate assumes that each agent works independently, and the effects merely superimpose onto the measured variable (peak tension or $\mathrm{dT} / \mathrm{dt}_{\text {max }}$). The effects as predicted by equation 1 were compared with the actual observed results for $50 \% \mathrm{~N}_{2} \mathrm{O}$ and either volatile agent.

A simple t-test was used to evaluate the significance of the effect of $\mathrm{N}_{2} \mathrm{O}$ or nitrogen at each stimulation rate or interval (as per cent control-recovery) versus unity (100%). Comparisons between nitrogen and $\mathrm{N}_{2} \mathrm{O}$ oxide employed a two-way analysis of variance for repeated measures with Duncan's multiple range test. Comparisons among the
anesthetics during rested-state double stimulation employed an analysis of variance with Duncan's multiplerange test.

Results

Force-Frequency Experiments

$\mathrm{N}_{2} \mathrm{O}(50 \%)$ consistently and reversibly reduced contractile performance of the papillary muscles at $37^{\circ} \mathrm{C}$ to a greater extent than that caused by $50 \% \mathrm{~N}_{2}$ after rest and at all stimulation rates (fig. 2). The presence of nitrogen depressed the peak tension developed by the papillary muscles to approximately 80% of the control-recovery value after rest and at all steady-state frequencies $(0.1-3 \mathrm{~Hz})$, which is a significant, partially irreversible reduction in muscle performance. $\mathrm{N}_{2} \mathrm{O}$ depressed peak tension development at all frequencies to $59-64 \%$ of the control-recovery value and an average of $16 \pm 6 \%$ more than with nitrogen; this additional depression was significant at all frequencies except 2 and 3 Hz . In contrast, the maximum rate of tension development ($\mathrm{dT} / \mathrm{dt}_{\text {max }}$) was more resistant to the effects of reduced oxygen concentrations and was reduced ($P<0.05$) compared to con-trol-recovery in the presence of nitrogen only at the 1 Hz stimulation rate. The maximum rate of tension development was inhibited by $\mathrm{N}_{2} \mathrm{O}$ an additional $27 \pm 5 \%$ compared to nitrogen, a difference that was significant at all frequencies. Although there appeared to be less difference between the actions of nitrogen and $\mathrm{N}_{2} \mathrm{O}$ on dT/ $\mathrm{dt}_{\text {max }}$ as the stimulation rate was increased to 3 Hz , the difference in depression (N_{2} effect minus $\mathrm{N}_{2} \mathrm{O}$ effect, as $\%$ of control) after rest ($35 \pm 8 \%$ of control) did not differ from that at $3 \mathrm{~Hz}(20 \pm 5 \%$ of control).

The average change in peak tension and $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ for each stimulation rate between the initial $95 \% \mathrm{O}_{2}$ control and the final $95 \% \mathrm{O}_{2}$ recovery is shown in figure 3A. There was less deterioration of $d T / \mathrm{dt}_{\text {max }}$ than peak tension during the experiment. Past controls of guinea pig papillary muscle from this laboratory show a decline of $0-20 \%$ in peak tension development during a typical 3h experiment in $95 \% \mathrm{O}_{2} / 5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}^{5}{ }^{5}$ However, over the course of these experiments, with two 25-35\min exposures to $45 \% \mathrm{O}_{2}$, the muscles showed a decline in contractile performance of up to 50% (fig. 3A). The contractile depression at $37^{\circ} \mathrm{C}$ associated with exposure to nitrogen and the significant overall deterioration in papillary muscle contractility led us to repeat the forcefrequency protocol at $30^{\circ} \mathrm{C}$ with the expectation that oxygen consumption and muscle degradation would be reduced. ${ }^{11}$ In this setting, despite stronger contractions (see fig. 1), the contractile behavior of the muscles showed little change over the course of the experiment between the initial $95 \% \mathrm{O}_{2}$ control and the final $95 \% \mathrm{O}_{2}$ recovery (fig. 3B).

The effects of nitrogen and $\mathrm{N}_{2} \mathrm{O}$ on contractile performance at $30^{\circ} \mathrm{C}$ are shown in figure 2B. Nitrogen caused little depression of peak tension or $d T / \mathrm{dt}_{\text {max }}$ steady-state contractions except at 2 Hz where $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ was reduced 3% and 3 Hz where peak tension was reduced 5%. Enhanced peak tension development and $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ were seen in the RSC. $\mathrm{N}_{2} \mathrm{O}$ significantly reduced peak tension across all frequencies an average of $19 \pm 4 \%$ when compared to $95 \% \mathrm{O}_{2}$ control-recovery, and $20 \pm 5 \%$ at $0.5,1$, and 3 Hz when compared to nitrogen. $\mathrm{N}_{2} \mathrm{O}$ depressed $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ by an average $19 \pm 3 \%$, an effect that was significantly different from both nitrogen control and $95 \% \mathrm{O}_{2}$ control-recovery at all frequencies. Thus, at 30 and $37^{\circ} \mathrm{C}, 50 \% \mathrm{~N}_{2} \mathrm{O}$ depressed papillary muscle contractions by $15-20 \%$ compared to that caused by nitrogen; however, at $30^{\circ} \mathrm{C}$, there was no superimposed depression of contractility in association with repeated exposures to $45 \% \mathrm{O}_{2}$.

Rested-state Double-stimulation Experiments

A typical experiment using the double-stimulation technique on muscles in $26 \mathrm{~mm} \mathrm{~K}^{+}$Tyrode's solution and $0.1 \mu \mathrm{~m}$ isoproterenol is shown in figure 4A. The first RSC showed modest tension development for approximately 100 ms before rapid strong tension development, a pattern typical for the RSC observed in guinea pig muscle when stimulated by drugs that increase intracellular cyclic adenosine monophosphate (cAMP). ${ }^{13-15}$ The contraction (C2) elicited by the second stimulus (at an interval of 300 ms) showed rapid strong initial tension development with no initial delay. In this example, $\mathrm{N}_{2} \mathrm{O}$ caused significant (18%) depression of both the RSC and of C2, with substantial recovery on return to $95 \% \mathrm{O}_{2}$. Subsequent application of $50 \% \mathrm{~N}_{2}$ and return to $95 \% \mathrm{O}_{2}$ had little effect. Figure 4B plots the change observed in the $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ for the muscle shown in figure 4A across all the stimulation intervals; $50 \% \mathrm{~N}_{2} \mathrm{O}$ caused the greatest depression in all instances.

The mean change observed for the rested-state and second contractions (C2) with either $50 \% \mathrm{~N}_{2}$ or $50 \% \mathrm{~N}_{2} \mathrm{O}$ are summarized in figure 5 . Small significant changes (3 and 4%) were observed with nitrogen for peak tension and $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ for C 2 at 250 ms . Unlike the behavior of the papillary muscles in the force-frequency protocol at $37^{\circ} \mathrm{C}, 50 \% \mathrm{~N}_{2}$ had little deleterious effect on peak tension under the double-stimulation technique. The relatively short periods of muscle activity in this protocol (two contractions followed by 3 or 4 min of rest) appeared to prevent the deterioration of contractile performance seen in muscles in the force-frequency protocol at $37^{\circ} \mathrm{C} . \mathrm{N}_{2} \mathrm{O}$ significantly depressed all C2 peak tensions and all C2 $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ compared to the $95 \% \mathrm{O}_{2}$ control-recovery. $\mathrm{N}_{2} \mathrm{O}$ also depressed C2 compared to nitrogen; peak tension was depressed by 10% compared to nitrogen at the

A $37^{\circ} \mathrm{C}$

B $30^{\circ} \mathrm{C}$
Peak Tension

dT/dt-max

Fig. 2. Nitrous oxide effects on papillary muscles (mean CSA $=0.80 \pm 0.11 \mathrm{~mm}^{2}$ for $37^{\circ} \mathrm{C}$ experiments; mean $\mathrm{CSA}=0.68 \pm 0.06 \mathrm{~mm}^{2}$ for $30^{\circ} \mathrm{C}$ experiments) during force-frequency contractions at 37 and $30^{\circ} \mathrm{C}$. Peak tension and $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ are expressed as percent of the average of the values observed in $95 \% \mathrm{O}_{2}$ immediately preceding and following the N_{2} or $\mathrm{N}_{2} \mathrm{O}$ exposure (control and recovery). Error bars represent \pm SEM; $n=5$ at each temperature. (A) at $37^{\circ} \mathrm{C} \mathrm{N} \mathrm{N}_{2}(50 \%)$ significantly depressed peak tension, with less effect on $\mathrm{dT} / \mathrm{dt}_{\text {max }} . \mathrm{N}_{2} \mathrm{O}(50 \%)$ was significantly more depressant than was $\mathrm{N}_{2} .(B)$ At $30^{\circ} \mathrm{C}, 50 \% \mathrm{~N}_{2}$ caused no deleterious effects on the preparations. In this setting, $\mathrm{N}_{2} \mathrm{O}$ still caused significant depression of contractility. ${ }^{*} P<0.05 ; * * P<0.01$, different from control-recovery (100%) by simple t test; $\dagger P<0.05$; $\dagger \dagger P$ <0.01 by ANOVA between gases with Duncan's multiple range test.

FIG. 3. Final papillary muscle contractile performance in 95% O_{2} control after a 2-3-h experiment that included two 25-35\min periods of exposure to $50 \% \mathrm{~N}_{2}$ and $50 \% \mathrm{~N}_{2} \mathrm{O}$ with 45% $\mathrm{O}_{2} ; \mathrm{n}=5$ at each temperature. Contractility is expressed as the percent difference from the initial $95 \% \mathrm{O}_{2}$ control. (A) Two exposures to reduced (45%) oxygen at $37^{\circ} \mathrm{C}$ resulted in considerable loss of contractile performance. (B) Reduced O_{2} at $30^{\circ} \mathrm{C}$ caused little significant alteration in overall contractility. $* P<0.05 ; * * P<0.01$, difference from initial 95% oxygen control (100%) by simple t test.

$250-, 400$-, and $500-\mathrm{ms}$ intervals; the $\mathrm{C} 2 \mathrm{dT} / \mathrm{dt}_{\text {max }}$ at 250 , 300,400 , and 600 ms was depressed by $\mathrm{N}_{2} \mathrm{O}$ by $10-15 \%$ compared to nitrogen.

To examine $\mathrm{N}_{2} \mathrm{O}$ depression in the presence of the other anesthetics, the effects of $\mathrm{N}_{2} \mathrm{O}$ and nitrogen were determined in a stable anesthetic background of either isoflurane (1%) or halothane (0.5%). Nitrogen did not cause further inhibition of muscle performance during the RSC or C2 (fig. 6). However, the presence of $\mathrm{N}_{2} \mathrm{O}$ caused significant additional depression of approximately $10-15 \%$ of peak tension and $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ during the RSC and all second contractions. This depressant effect was similar in magnitude to that observed in the absence of the volatile anesthetics (fig. 5), except for the RSC that appeared to be depressed only in the presence of anesthetics plus $\mathrm{N}_{2} \mathrm{O}$ but not in $50 \% \mathrm{~N}_{2} \mathrm{O}$ alone.

The minimal effect of 45% oxygen on the rested-state double-stimulation experiments allows a direct comparison among isoflurane, halothane, and $\mathrm{N}_{2} \mathrm{O}$ in $45 \% \mathrm{O}_{2}$. Effects on muscle contractility of $50 \% \mathrm{~N}_{2} \mathrm{O}, 1 \%$ isoflurane, and 0.5% halothane are plotted in figure 7 as per cent of initial muscle performance in $95 \% \mathrm{O}_{2}$ rather than as per cent of $\left(95 \% \mathrm{O}_{2}\right.$ control $+95 \% \mathrm{O}_{2}$ recovery) $/ 2$ as employed in figures 2, 5, and 6. Any intrinsic changes in muscle contractility with respect to time are not factored out by this analytic method and would thus be included as part of the anesthetic effect. This difference in contractile analysis may explain why $\mathrm{N}_{2} \mathrm{O}$ appeared to significantly depress the RSC dT / $\mathrm{dt}_{\text {max }}$ (as per cent of initial $95 \% \mathrm{O}_{2}$ control in fig. 7A), yet contractility, as expressed
as the mean of $95 \% \mathrm{O}_{2}$ control-recovery (fig. 5), revealed no significant $\mathrm{N}_{2} \mathrm{O}$ effect. The depression of RSC peak tension amplitude did not significantly differ among $\mathrm{N}_{2} \mathrm{O}$, isoflurane, and halothane (fig. 7A); however, 1% isoflurane did increase the time to the RSC tension peak by 17% from 174 ± 6 to $203 \pm 4 \mathrm{~ms}(\mathrm{n}=4 ; P=0.001)$. By way of contrast, $50 \% \mathrm{~N}_{2} \mathrm{O}$ and 0.5% halothane caused insignificant changes of 0.3 and 2.6% from control values of 160 ± 5 and $159 \pm 16 \mathrm{~ms}$, respectively. The $29-\mathrm{ms}$ increase in time to late-peak RSC tension caused by isoflurane was sufficient to prevent the second stimulus at 250 ms from eliciting a second contraction in three of four muscles; therefore, values for C 2 at 250 -ms intervals are not shown for isoflurane. The second contraction at 300 ms in isoflurane was stronger than the preceding RSC and also stronger than the corresponding C 2 contraction in halothane, but otherwise, the three anesthetics depressed C2 peak tension to a similar degree.

Differences among the anesthetics emerge on examination of the rates of tension development ($\mathrm{dT} / \mathrm{dt}_{\text {max }}$, fig. 7 A). Although $\mathrm{N}_{2} \mathrm{O}$ and halothane depress $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ during the RS contraction, isoflurane caused greater depression of the RSC $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ as is characteristic for this agent. ${ }^{5,7}$ Isoflurane in $45 \% \mathrm{O}_{2}$ did not depress C 2 $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ compared to the initial $95 \% \mathrm{O}_{2}$ control, whereas halothane and $\mathrm{N}_{2} \mathrm{O}$ depression of $\mathrm{C} 2 \mathrm{dT} / \mathrm{dt}_{\text {max }}$ was significantly greater than that of either isoflurane or oxygen control. In the case of halothane, the depression of C2 $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ at 500 - and $600-\mathrm{ms}$ stimulation intervals was greater than for the RSC.

FIG. 4. Nitrous oxide effects on papillary muscles in $26 \mathrm{mM} \mathrm{K}{ }^{+}$Tyrode solution with $0.1 \mu \mathrm{M}$ isoproterenol at $37^{\circ} \mathrm{C}$; depolarizations are mediated by slow (calcium channel-dependent) action potentials. Rested-state double-stimulation protocol employed two stimuli separated by $250,300,400,500$, or 600 ms with intervening periods of $3-4 \mathrm{~min}$ of rest. (A) Tension recordings of papillary muscle contractions with a stimulation interval of 300 ms (arrows in control tracing indicate time of stimulus). The rested state contraction (RSC) with late-peaking tension is followed by the second contraction (C2) with rapid initial tension development. Sequential traces for the same muscle are shown for $95 \% \mathrm{O}_{2}$ initial control, $50 \% \mathrm{~N}_{2} \mathrm{O}, 95 \% \mathrm{O}_{2}$ recovery, $50 \% \mathrm{~N}_{2}$, and $95 \% \mathrm{O}_{2}$ final recovery. (B) Maximum rate of tension development ($\mathrm{dT} / \mathrm{dt}_{\max }$) of the muscle shown in fig. $4 A$ at all stimulus intervals and standardized for cross-sectional area ($0.40 \mathrm{~mm}^{2}$).

The observed combined depressant action of $\mathrm{N}_{2} \mathrm{O}$ and either halothane or isoflurane is plotted in figure 7 B as a percentage of initial $95 \% \mathrm{O}_{2}$ control contractions. The estimated combined additive depression of $\mathrm{N}_{2} \mathrm{O}$-isoflurane and $\mathrm{N}_{2} \mathrm{O}$-halothane is also plotted, employing the
per cent depression of each agent in $45 \% \mathrm{O}_{2}$ (fig. 7A) and calculated using equation 1 (see methods). Although slight differences from the prediction were noted in two of the 22 comparisons, the experimental combination of $\mathrm{N}_{2} \mathrm{O}$ with either halothane or isoflurane did not signifi-

Fig. 5. $\mathrm{N}_{2} \mathrm{O}$ effects on papillary muscles (mean CSA $=0.79$ $\pm 0.17 \mathrm{~mm}^{2}$) during rested-state double-stimulation experiments at $37^{\circ} \mathrm{C}$ (see fig. 4). Peak tension and $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ of rested state contraction (RSC) and second contraction (C2) are expressed as a percent of the average control-recovery values in $95 \% \mathrm{O}_{2}$. $\mathrm{N}_{2}(50 \%)$ caused no consistent change in contractility, whereas $\mathrm{N}_{2} \mathrm{O}$ depressed C2, with little effect on the RSC. Error bars represent $\pm \operatorname{SEM}(\mathrm{n}=4) . * P<0.05 ; * * P<0.01$ different from control-recovery (100%) by simple t test; $\dagger P<0.05 ; \dagger \dagger P<0.01$ different than $50 \% \mathrm{~N}_{2}$ by ANOVA with Duncan's multiple range test.

A 0.5\% halothane

B 1\% isoflurane

Fig. 6. $\mathrm{N}_{2} \mathrm{O}$ effects, in the presence of a volatile anesthetic, during rested-state double stimulation. Peak tension and $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ of contractions are expressed as a percent of the average control-recovery values in $95 \% \mathrm{O}_{2}$ with either anesthetic. Error bars represent \pm SEM; $n=4$ for each anesthetic. N_{2} had no additional effect on muscles previously depressed by anesthetic, whereas $\mathrm{N}_{2} \mathrm{O}$ caused additional uniform depression in the presence of either anesthetic. (A) Effects in the presence of prior depression by 0.5% halothane. (B) Effects on the presence of 1.0% isoflurane. $P<0.05$ compared to control-recovery by simple t test. $\dagger P<0.05 ; \dagger \dagger P<0.01$ different from nitrogen by ANOVA using Duncan's multiple range test.

FIG. 7. $\mathrm{N}_{2} \mathrm{O}$, isoflurane, and halothane effects during rested-state double stimulation. The data for $\mathrm{N}_{2} \mathrm{O}$ are derived from separately studied muscles shown in figure 5; data for the volatile anesthetics with and without $\mathrm{N}_{2} \mathrm{O}$ are derived from separately studied muscles shown in figure 6. Peak tension and $\mathrm{dT} / \mathrm{dt}_{\max }$ of contractions are observed in $45 \% \mathrm{O}_{2}$ and are expressed as a percent of the initial $95 \% \mathrm{O}_{2}$ control. Error bars represent \pm SEM; $n=4$ for each anesthetic. (A) Anesthetics significantly depressed peak tension and $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ from $95 \% \mathrm{O}_{2}$ control in all cases ($P<0.05$ by ANOVA between each anesthetic and initial control), except for isoflurane, which did not depressed the $\mathrm{C} 2 \mathrm{dT} / \mathrm{dt}_{\max }$. (B) Predicted combined depression of $50 \% \mathrm{~N}_{2} \mathrm{O}$ with 0.5% halothane and with 1% isoflurane, calculated according to equation 1 in methods, is plotted with the observed contractile behavior of muscles in the presence of $\mathrm{N}_{2} \mathrm{O}$ and either agent. No synergy is apparent. $\dagger P<0.05 ; \dagger \dagger P<0.01$ different from isoflurance by ANOVA with Duncan's multiple range test; ${ }^{*} P<0.05$ difference between measured and predicted values by simple t test.
cantly vary from that predicted by simply adding the drugs' effects.

Low-sodium Contractions

In this experimental protocol, the presence of $50 \% \mathrm{~N}_{2}$ did not significantly diminish the rapidly developed peak tension and early $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ of the RS or $0.1-\mathrm{Hz}$ contractions (fig. 8). However, the exposure of the muscles to $\mathrm{N}_{2} \mathrm{O}$ caused a depression of the RS and $0.1-\mathrm{Hz}$ contractions, significantly diminishing $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ and peak tension.

Discussion

This study examined the effects of $\mathrm{N}_{2} \mathrm{O}$ in a well-characterized model of isolated myocardial tissue (superfused guinea pig papillary muscles) in a manner intended to eliminate or reduce confounding variables such as nonphysiologic temperatures and possible muscle deterioration. ${ }^{8,9,11}$ In addition, the magnitude and pattern of $\mathrm{N}_{2} \mathrm{O}$'s contractile effects were contrasted with those of isoflurane and halothane, two anesthetics that cause distinctly different patterns of depression. ${ }^{5,7}$

Nitrous Oxide Depression, Reduced O_{2}, or Drug Effect?

The force-frequency stimulation protocol was conducted at $37^{\circ} \mathrm{C}$ because changes in the sources of activator Ca^{2+} may occur during contractions performed at temperatures lower than physiologic. ${ }^{16}$ Unfortunately, periods of continuous muscle stimulation at $37^{\circ} \mathrm{C}$ during exposure to $25-30-\mathrm{min}$ periods of $45 \% \mathrm{O}_{2}$ caused a $20-$ 40% decline in baseline $\left(95 \% \mathrm{O}_{2}\right.$) contractility over a $2-$ or 3-h period. This decline was substantially greater than that observed in our previous experience, ${ }^{5}$ despite the fact that the cross-sectional area (CSA) of the muscles was consistently less than $1.0 \mathrm{~mm}^{2}$, which is, ostensibly, a small radial diffusion distance for oxygen. Paradise et al. ${ }^{11}$ previously demonstrated in kitten papillary muscles that with
decreasing solution $\mathrm{P}_{\mathrm{O}_{2}}$, nonlinear deterioration in contractile performance occurred with increases in muscle diameter or stimulation rate. These effects were more prominent at 37 than at $30^{\circ} \mathrm{C}$. In the current study, at $37^{\circ} \mathrm{C}$, peak tension and $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ were, to a large degree, irreversibly reduced across most frequencies after periods of exposure to 50% nitrogen, whereas a greater readily reversible depression was observed with $\mathrm{N}_{2} \mathrm{O}$ (fig 2A). The depression recorded during nitrogen exposure, although relatively irreversible, did not lead to the contractures classically described in the presence of profound tissue hypoxia, metabolic dysfunction, and imminent cell death. ${ }^{17}$

Goldberg et al. ${ }^{8}$ found no difference in muscle depression under $50 \% \mathrm{~N}_{2}$ or $50 \% \mathrm{~N}_{2} \mathrm{O}$ in rat trabeculae bathed at $37^{\circ} \mathrm{C}$ and stimulated at $15 /$ minute $(0.25 \mathrm{~Hz})$. Although depression of $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ of 28.9% with $50 \% \mathrm{~N}_{2}$ and 43.4% with $50 \% \mathrm{~N}_{2} \mathrm{O}$ suggested an $\mathrm{N}_{2} \mathrm{O}$ effect, the difference was not statistically significant. Unlike our protocol, Goldberg et al. made no attempt to wash out each gas administration with $95 \% \mathrm{O}_{2}$; thus, the full potential for reversibility was not assessed. They also exposed their preparations to $25 \% \mathrm{O}_{2}$ while testing for the effects of $75 \% \mathrm{~N}_{2}$ and $75 \% \mathrm{~N}_{2} \mathrm{O}$; without high oxygen intervals separating these exposures, hypoxic depression and permanent damage to their preparation cannot be excluded. ${ }^{11}$ Although the authors acknowledge that hypoxia adversely affected their preparation, they conclude that $\mathrm{N}_{2} \mathrm{O}$ lacks pharmacologic potency. Our data at $37^{\circ} \mathrm{C}$ demonstrate additional depression on exposure to $\mathrm{N}_{2} \mathrm{O}$, despite some underlying tissue deterioration. The contractility data are reported as per cent of the mean 95% O_{2} control-recovery for each nitrogen or $\mathrm{N}_{2} \mathrm{O}$ administration; therefore, muscle deterioration is factored between each gas exposure, and drug washout and muscle recovery could be readily recorded.

The study by Price in cat papillary muscles presented evidence for an $\mathrm{N}_{2} \mathrm{O}$ effect at $25^{\circ} \mathrm{C} .{ }^{9}$ Recognizing the effect of decreased oxygen tensions at $37^{\circ} \mathrm{C}$ in obscuring

Fig. 8. $\mathrm{N}_{2} \mathrm{O}$ effects on papillary muscle contractions elicited in isoosmotic $40 \mathrm{mM} \mathrm{Na}{ }^{+}$Tyrode; contractions are mediated by the release of sequestered SR calcium. Peak tension and $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ are expressed as percent of the average controlrecovery values in $95 \% \mathrm{O}_{2}$. Error bars represent \pm SEM (n $=7$). $* P<0.05$ compared to control-recovery by simple t test; $\dagger P<0.05 ; \dagger \dagger P<0.01$ different from nitrogen by ANOVA using Duncan's multiple range test.
the action of $\mathrm{N}_{2} \mathrm{O}$, we repeated the force-frequency protocol in a $30^{\circ} \mathrm{C}$ bath. If the average temperature coefficient $\left(Q_{10}\right)$ for metabolic rate is at least two, then a $7^{\circ} \mathrm{C}$ decrease in bath temperature to $30^{\circ} \mathrm{C}$ should reduce oxygen demand by 35%. Although tension and $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ at 30° and $37^{\circ} \mathrm{C}$ are similar at low stimulation rates, both peak tension and $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ increased two- or threefold with successive stimulation rates above 0.5 Hz . Yet, the amplification of muscle contractility at $30^{\circ} \mathrm{C}$ and intermittent exposure to $45 \% \mathrm{O}_{2}$ did not cause a serious change in contractile performance over time. Muscle performance at the time of the first $95 \% \mathrm{O}_{2}$ control, compared with contractility during the last $95 \% \mathrm{O}_{2}$ control (as depicted in figure 3B), showed little evidence of run-down at $30^{\circ} \mathrm{C}$, unlike muscle behavior at $37^{\circ} \mathrm{C}$ (fig. 3A). Steadystate contractions up to 1.0 Hz were unaffected by nitrogen at $30^{\circ} \mathrm{C}$, while $\mathrm{N}_{2} \mathrm{O}$ significantly decreased peak tension at selected stimulation rates and decreased $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ at all stimulation rates. At the physiologic frequencies of 2 and 3 Hz , nitrogen was associated with a slight reduction of $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ or peak tension, probably due to the moderate oxygen tension and high muscle workload. With greater contractility at $30^{\circ} \mathrm{C}$, the absence of sustained detrimental effects of $45 \% \mathrm{O}_{2}$ following periods of 2 and 3 Hz contractions suggest that basal metabolic requirements (e.g., maintenance of ion gradients, etc.) may be sufficiently decreased by the lower temperature so that metabolic reserves are maintained. It is also noteworthy that permanent deterioration in contractility at $37^{\circ} \mathrm{C}$ required a sustained myocardial workload, since the β-adrenergically enhanced muscles studied in the doublestimulation experiments at $37^{\circ} \mathrm{C}$ did not manifest signs of deterioration in $45 \% \mathrm{O}_{2}$. The increase in myocyte oxygen consumption during enhanced contractions in the double-stimulation experiments must have been offset by the infrequency of contractions. In this setting as well, $\mathrm{N}_{2} \mathrm{O}$ was clearly depressant.

In isolated perfused whole guinea pig hearts at $37^{\circ} \mathrm{C}$, Stowe et al. ${ }^{18}$ demonstrated significant depression (25%) of left ventricular pressure generation by $48 \% \mathrm{~N}_{2} \mathrm{O}$ (with $48 \% \mathrm{O}_{2}, 4 \% \mathrm{CO}_{2}$), which significantly exceeded the depression (of 20%) caused by $48 \% \mathrm{~N}_{2}$. These results in a vascularly perfused preparation of the same cardiac muscle underscore the impact of low oxygen concentrations at $37^{\circ} \mathrm{C}$; it is unclear why the additional depression caused by $\mathrm{N}_{2} \mathrm{O}$ was so modest. In contrast, Motomura et al. ${ }^{19}$ used a blood-perfused isolated dog papillary muscle (maintained at $38^{\circ} \mathrm{C}$ and stimulated at a rate of 2 Hz) and found that substitution of $80 \% \mathrm{~N}_{2} \mathrm{O}$ for $80 \% \mathrm{~N}_{2}$ in the inspiratory gas of the donor dog caused a $25 \pm 5 \%$ reduction in developed tension, which is consistent with the $\mathbf{1 5 - 2 0 \%}$ additional depression caused by $50 \% \mathrm{~N}_{2} \mathrm{O}$ in the current study.

In summary, the data collected at 30 and $37^{\circ} \mathrm{C}$ strongly suggest a reversible $\mathrm{N}_{2} \mathrm{O}$ effect that is distinct and separable from any concurrent hypoxic effect. Although unlikely, one may argue that $\mathrm{N}_{2} \mathrm{O}$-induced depression may be dependent on the presence of a low oxygen tension, and such depression would not be observed at high oxygen tensions. Ultimately, experiments using hyperbaric chambers will be required to resolve such an objection.

Nitrous Oxide: Potency and Potential Mechanisms

We used the rested-state double-stimulation protocol at $37^{\circ} \mathrm{C}$ to further study $\mathrm{N}_{2} \mathrm{O}$ because the force-frequency stimulation pattern used on the guinea pig muscles in 45% oxygen at $37^{\circ} \mathrm{C}$ caused substantial deterioration in contractility and because the contractile activation characteristics of myocardium are altered at $30^{\circ} \mathrm{C} .{ }^{16} \mathrm{Ad}$ ditionally, this method permitted a detailed comparison of $\mathrm{N}_{2} \mathrm{O}$ and volatile inhalational anesthetics and determination of combined actions. This preparation relies on β-adrenergic stimulation using isoproterenol to increase cAMP levels, thereby increasing Ca^{2+} entry to the cell ${ }^{20}$ and Ca^{2+} uptake by the $\mathrm{SR} .{ }^{21}$ Although the partially depolarized $\left([\mathrm{K}]_{\mathrm{o}}=26 \mathrm{~mm}\right), \beta$-adrenergically enhanced muscles are clearly nonphysiologic, the observed anesthetic effects do correlate closely with those of the normal force-frequency response ${ }^{5}$ while also permitting some mechanistic insights. ${ }^{7}$

The potency of $50 \% \mathrm{~N}_{2} \mathrm{O}$ (approximately 0.33 MAC for guinea pig, as calculated from the halothane: $\mathrm{N}_{2} \mathrm{O}$ and isoflurane: $\mathrm{N}_{2} \mathrm{O}$ potency ratio for humans and the volatile anesthetic MAC values for guinea pig ${ }^{12}$) was relatively consistent in the various conditions under which it was employed; peak contractile tension and $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ were depressed approximately 15% as compared to nitrogen. If contractility in the rested-state double-stimulation experiments is expressed as the per cent of the initial 95% O_{2} control and directly compared with the volatile agents, then depression of peak tension by $50 \% \mathrm{~N}_{2} \mathrm{O}$ was similar to that of $0.45-\mathrm{MAC}$ halothane and $0.66-\mathrm{MAC}$ isoflurane in $45 \% \mathrm{O}_{2}$. This analytic representation (as per cent of initial $95 \% \mathrm{O}_{2}$ control only) may exaggerate drug-induced depressant effects by including intrinsic time-dependent decreases in contractility and reversible hypoxic changes; this analysis does lead to a modest increase in the estimate of $\mathrm{N}_{2} \mathrm{O}$ depression from $10-15 \%$ to $15-25 \%$. It may perhaps be surprising that $50 \% \mathrm{~N}_{2} \mathrm{O}$ appears to be as potent as the higher doses of the volatile agents. $\mathrm{N}_{2} \mathrm{O}$ closely resembles halothane in its relatively uniform depression of contractions after rest and at various stimulation intervals (fig. 7) and at various continuous stimulation rates. ${ }^{5}$ In contrast, isoflurane caused little depression with in-
creases of the stimulation rate to 2 or $3 \mathrm{~Hz}^{5}$ and a different pattern of rested-state contraction inhibition. Su et al. ${ }^{10}$ found that $50 \% \mathrm{~N}_{2} \mathrm{O}$ depressed maximal Ca-stimulated active tension of skinned rabbit myofibrils to 96% of control. While this effect may contribute to the depression observed in this study, it is insufficient to explain the greater effect observed.

In these studies of $\mathrm{N}_{2} \mathrm{O}$ action on intact muscle, it is not possible to define with certainty the subcellular processes by which $\mathrm{N}_{2} \mathrm{O}$ produces its effect. However, based on $\mathrm{N}_{2} \mathrm{O}$ actions on initial or late elements of tension development, and its similarity to other anesthetics and drugs, certain mechanistic inferences are possible. Ryanodine is a plant alkaloid that binds to the Ca^{2+} release channel-"foot" protein complex of the junctional sarcoplasmic reticulum (SR) and causes a low conduction and prolonged open state that ultimately leads to the loss of Ca^{2+} from SR. ${ }^{22,23}$ Ryanodine most profoundly depresses muscle contractility during steady-state 2 or 3 Hz contractions, ${ }^{24}$ and it also depresses the rapid initial tension development of the second contraction of the restedstate double stimulation (C2). ${ }^{7}$ These findings suggest that such contractions are heavily dependent on intact SR release of stored Ca^{2+}, and it is the resultant rapid initial tension development that is most relevant for tension generation at physiologic frequencies. In this study, the rate of tension development of $\mathrm{C} 2\left(\mathrm{dT} / \mathrm{dt}_{\text {max }}\right)$ is depressed by 0.5% halothane to $\sim 75-65 \%$ of control, while 1.5% halothane was previously found to depress C2 contractions to $\sim 40 \%$ of control. ${ }^{7} \mathrm{~N}_{2} \mathrm{O}(50 \%)$ depression of $\mathrm{C} 2 \mathrm{dT} /$ $\mathrm{dt}_{\text {max }}$ closely resembled 0.5% halothane, while isoflurane was not depressed. These results suggest that halothane and $\mathrm{N}_{2} \mathrm{O}$ decrease the rapid Ca^{2+} release from the ry-anodine-sensitive SR pool; this decrease may be due to Ca^{2+} depletion or blockade of release. A similar conclusion regarding halothane was recently reached by Komai and Rusy in their study of rabbit atria. ${ }^{25}$

The experiments conducted in a low extracellular Na^{+} environment (40 mm) add support to the postulate that $\mathrm{N}_{2} \mathrm{O}$ depression at physiologic frequencies is mediated in part at the SR. In tissue superfused with physiologic solutions ($\sim 140 \mathrm{mM} \mathrm{Na}$), the large Na^{+}gradient across the sarcolemma drives the entry of three extracellular Na^{+}into the cell in exchange for one intracellular Ca^{2+} via a specific $\mathrm{Na}^{+}: \mathrm{Ca}^{2+}$ exchange mechanism. At rest, a fraction of the intracellular Ca^{2+} sequestered by the SR to maintain relaxation is exchanged out of the cell; with prolonged rest, the ventricular myocyte of the guinea pig and certain other mammals actually becomes depleted of $\mathrm{Ca}^{2+} .{ }^{26}$ A low extracellular Na^{+}concentration (40 mm) reduces the exchange of intracellular Ca^{2+} out of the cell so that all the intracellular Ca^{2+} is retained in the SR during prolonged periods of rest. ${ }^{27}$ Drugs that can inter-
fere with SR function will reduce the amplitude of an RSC in low Na^{+}solutions, while drugs that reduce Ca^{2+} entry have no effect on the rate of rise of contractions in low $\mathrm{Na}^{+} .{ }^{13,28} \mathrm{~N}_{2} \mathrm{O}(50 \%)$, but not $50 \% \mathrm{~N}_{2}$, modestly reduced the $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ and peak tension of contraction in the low Na^{+}experiments (fig. 8), implying that $\mathrm{N}_{2} \mathrm{O}$ possesses a depressant effect on SR function. Su et al. ${ }^{10}$ inferred from tension development of skinned rabbit myofibrils subjected to caffeine-induced Ca^{2+} release that Ca^{2+} uptake was enhanced by $\mathrm{N}_{2} \mathrm{O}$ while release was unchanged. When $\mathrm{N}_{2} \mathrm{O}$ was present during both the uptake and release phases, tension was enhanced. Since these experiments were performed at $22^{\circ} \mathrm{C}$, direct application to the present results may be misleading.

As previously noted, guinea pig myocardium permitted to rest in physiologic solutions will become depleted of SR Ca ${ }^{2+} .{ }^{26,29}$ Therefore, the RSC is mediated by Ca^{2+} entering from the extracellular space through the surface membrane (sarcolemma) to activate the myofibrils. In the absence of inotropic stimulation, this contraction is small with delayed tension development. The force-frequency experiments conducted at both 37 and $30^{\circ} \mathrm{C}$ clearly demonstrate $\mathrm{N}_{2} \mathrm{O}$ depression of the RSC, a possible result of decreased entry of extracellular Ca^{2+} into the muscle. Shattock and Bers ${ }^{16}$ demonstrated that the positive inotropy observed in rat and rabbit ventricular muscle at lower temperatures, and similar to that seen in this study for guinea pig, is less sensitive to ryanodine (i.e., $\mathrm{SR} \mathrm{Ca}^{2+}$ depletion). This suggests that the SR does not contribute additional activator Ca^{2+} for the increased inotropy seen at lower temperatures, rather the Ca^{2+} is derived extracellularly. $\mathrm{N}_{2} \mathrm{O}$ was as equally depressant at 30 and 37° C, thus one might infer that $\mathrm{N}_{2} \mathrm{O}$ also altered the entry of external Ca^{2+}.

The application of β-adrenergic agents, or other drugs that increase intracellular cAMP, results in the development of a distinct late-peak tension RSC (fig. 4A) ${ }^{5,7,13-15}$ Drugs that inhibit sarcolemmal Ca^{2+}-channel conductance, such as nifedipine, can reduce or eliminate this enhanced RSC. ${ }^{7,13,28}$ However, substantial evidence suggests that entering extracellular Ca^{2+} is first sequestered by the SR and then released for activation of the contractile process. ${ }^{7,13,29}$ The RSC late-peak tension is not inhibited by ryanodine; yet, it is depressed by the local anesthetics ${ }^{7,30}$ that are known to inhibit certain forms of Ca^{2+}-induced Ca^{2+} release in isolated cardiac $\mathrm{SR}^{31}{ }^{31} \mathrm{As}$ previously demonstrated, isoflurane causes selective depression of the RSC dT/ $\mathrm{dt}_{\text {max }},{ }^{5}$ and in our experiments, it introduced a sufficient delay so that a C2 contraction could not be elicited with a $250-\mathrm{ms}$ interval. ${ }^{7}$ The contractile delay caused by isoflurane in the face of modest effects on Ca^{2+} entry leads to the conclusion that isoflurane inhibits $\mathrm{SR} \mathrm{Ca}^{2+}$ release in a manner distinct from
the rapid initial Ca^{2+} release that is sensitive to ryanodine. $\mathrm{N}_{2} \mathrm{O}$ caused significantly less depression and no delay of the late peaking RSC $\mathrm{dT} / \mathrm{dt}_{\text {max }}$ as compared to isoflurane (fig. 7A), and the effect of $\mathrm{N}_{2} \mathrm{O}$ on the RSC was not significant when considered as a per cent of control-recovery values. The lack of significant depression of the enhanced RSC suggests that any effects of $\mathrm{N}_{2} \mathrm{O}$ on the Ca^{2+} entry mechanisms responsible for the RSC must be small. Thus, the myocardial depression induced by $\mathrm{N}_{2} \mathrm{O}$ is probably mediated by a decrease in the rapid SR release of Ca^{2+} and possibly by a modest decrease in the contribution of entering extracellular Ca^{2+} to total activator Ca^{2+}.

The observed depression caused by $\mathrm{N}_{2} \mathrm{O}$ combined with either volatile agent agrees with the value predicted for each combination, assuming separate noninteracting effects (fig. 7B). This precludes any obvious synergy arising from the simultaneous presence of two depressants. The simple superimposition of effects (as defined by equation l) occurred whether $\mathrm{N}_{2} \mathrm{O}$ was combined with an agent with a similar pattern of effects (halothane) or whether the pattern of depression was distinctly different (isoflurane). These statements can only be made about the relatively modest concentrations studied (<1 MAC) and may not apply to higher concentrations.

In summary, $50 \% \mathrm{~N}_{2} \mathrm{O}$ causes significant depression of myocardial tension development in isolated superfused guinea pig heart that is above and beyond any effect attributable to hypoxia. The pattern and magnitude of contractile depression are similar to that of 0.5% halothane and distinct from that seen with 1% isoflurane. One possible site of $\mathrm{N}_{2} \mathrm{O}$ action may be the SR. Finally, the combination of $\mathrm{N}_{2} \mathrm{O}$ with either anesthetic ($<1 \mathrm{MAC}$) merely produces the additive superimposition of the individual depressant actions of each anesthetic.

The authors thank David E. Longnecker, M.D., and Thomas J. Gal, M.D., for their scientific insights and editorial assistance.

References

1. Rusy BF, Komai H: Anesthetic depression of myocardial contractility: A review of possible mechanisms. ANESTHESIOLOGY 67: 745-766, 1987
2. Komai H, Rusy BF: Negative inotropic effects of isoflurane and halothane in rabbit papillary muscles. Anesth Analg 66:29-33, 1987
3. Housmans PR, Murat I: Comparative effects of halothane, enflurane, and enflurane at equipotent anesthetic concentrations on isolated ventricular myocardium of the ferret. I. Contractility. ANESTHESIOLOGY 69:451-463, 1988
4. Housmans PR, Murat I: Comparative effects of halothane, enflurane, and enflurane at equipotent anesthetic concentrations on isolated ventricular myocardium of the ferret. II. Relaxation. ANESTHESIOLOGY 69:464-471, 1988
5. Lynch C III: Differential depression of myocardial contractility by halothane and isoflurane in vitro. Anesthesiology 64:620631, 1986
6. Lynch C III, Frazer MJ: Depressant effects of volatile anesthetics upon rat and amphibian ventricular myocardium: Insights into mechanisms of action. ANESTHEsiology 70:511-522, 1989
7. Lynch C III: Differential depression of myocardial contractility by volatile anesthetics in vitro: Comparison with uncouplers of excitation-contraction coupling. J Cardiovasc Pharmacol 15: 655-665, 1990
8. Goldberg AH, Sohn YZ, Phear WPC: Direct myocardial effects of nitrous oxide. Anesthesiology 37:373-380, 1972
9. Price HL: Myocardial depression by nitrous oxide and its reversal by Ca^{++}. ANESTHESIOLOGY 44:211-215, 1976
10. Su JY, Kerrick WGL, Hill SA: Effects of diethyl ether and nitrous oxide on functionally skinned myocardial cells of rabbits. Anesth Analg 63:451-455, 1984
11. Paradise NF, Schnitter JL, Surmitis JM: Criteria for adequate oxygenation of isometric kitten papillary muscle. Am J Physiol 241:H348-H353, 1981
12. Stevens WC, Eger EI, White A, Halsey MJ, Munger W, Gibbons RD, Dolan W, Shargel R: Comparative toxicity of halothane, isoflurane and diethyl ether at subanesthetic concentrations in laboratory animals. ANESTHESIOLOGY 42:408-419, 1975
13. Reiter M, Vierling W, Seibel K: Excitation-contraction coupling in rested-state contractions of guinea pig ventricular myocardium. Naunyn Schmiedebergs Arch Pharmacol 325:159-169, 1984
14. Seibel K, Karema E, Takeya K, Reiter M: Effect of noradrenaline on an early and late component of the myocardial contraction. Naunyn-Schmiedebergs Arch Pharmacol 305:65-74, 1978
15. Honerjäger P, Schafer-Korting M, Reiter M: Involvement of cyclic AMP in the direct inotropic action of amrinone. Biochemical and functional evidence. Naunyn-Schmiedebergs Arch Pharmacol 318:112-120, 1981
16. Shattock MJ, Bers DM: Inotropic response to hypothermia and the temperature-dependence of ryanodine action in isolated rabbit and rat ventricular muscle: Implications for excitationcontraction coupling. Circ Res 61:761-771, 1987
17. Cobbe SM, Poole-Wilson PA: Tissue acidosis in myocardial hypoxia. J Mol Cell Cardiol 12:761-770, 1980
18. Stowe DF, Marijic J, Monroe S, Rooney R, Bosnjak ZJ, Kampine JP: Direct effects of nitrous oxide in the isolated heart (abstract). ANESTHESIOLOGY 71: A503, 1989
19. Motomura S, Kissin I, Aultman D, Reves JG: Effects of fentanyl and nitrous oxide on contractility of blood-perfused papillary muscle of the dog. Anesth Analg 63:47-50, 1984
20. Reuter H, Scholz H : The regulation of the calcium conductance of cardiac muscle by adrenaline. J Physiol (Lond) 264:49-62, 1977
21. Tada M, Kirchberger MA, Repke DI, Katz AM: The stimulation of Ca^{++}transport in cardiac sarcoplasmic reticulum by adenosine $3^{\prime}: 5^{\prime}$-monophosphate-dependent protein kinase. J Biol Chem 249:6174-6180, 1974
22. Hansford RG, Lakatta RG: Ryanodine releases calcium from sarcoplasmic reticulum in calcium-tolerant rat cardiac myocytes. J Physiol (Lond) 390:453-467, 1987
23. Su JY: Effects of ryanodine on skinned myocardial fibers of the rabbit. Pflugers Arch 411:132-136, 1988
24. Rumberger E: The role of the sarcoplasmic reticulum in the pure frequency potentiation: The effect of ryanodine. Pflugers Arch 364:203-204, 1976
25. Komai H, Rusy BF: Direct effect of halothane and isoflurane on the function of the sarcoplasmic reticulum in intact rabbit atria. Anesthesiology 72:694-698, 1990
26. Wendt-Gallitelli MF, Jacob R: Rhythm-dependent role of different calcium stores in cardiac nuscle: X-ray microanalysis. J Mol Cell Cardiol 14:487-492, 1982
27. Wendt-Gallitelli MF: Presystolic calcium-loading of the sarcoplasmic reticulum influences time to peak force of contraction. X-ray microanalysis on rapidly frozen guinea-pig ventricular muscle preparations. Basic Res Cardiol 80:617-625, 1985
28. Reiter M, Vierling W, Seibel K : Where is the origin of activator Ca^{++}in cardiac ventricular contraction? Basic Res Cardiol 79: 1-8, 1984
29. Reiter M: Calcium mobilization and cardiac inotropic mechanisms. Pharmacol Rev 40:189-217, 1988
30. Lynch C III: Depression of myocardial contractility in vitro by bupivacaine, etidocaine, and lidocaine. Anesth Analg 65:551559, 1986
31. Chamberlain BK, Volpe P, Fleischer S: Inhibition of calcium-induced Ca^{++}release from purified cardiac sarcoplasmic reticulum vesicles. J Biol Chem 259:7547-7553, 1984

[^0]: * Assistant Professor of Anesthesiology.
 \dagger Advanced Laboratory Specialist.
 \ddagger Associate Professor of Anesthesiology.
 Received from the Department of Anesthesiology, University of Virginia Health Sciences Center, Charlottesville, Virginia. Accepted for publication June 3, 1990. Supported in part by the Biomedical Research Support Grant No. 5-S07-RR05431-28 (DL) and NIH grant R01 GM31144 (CL3). Presented in part at the Annual Meeting of the American Society of Anesthesiologists, New Orleans, Louisiana, October 1989, and at the Annual Meeting of the Society of Cardiovascular Anesthesiologists, Orlando, Florida, May 1990.

 Address reprint requests to Dr. Lawson: Department of Anesthesiology, Box 238, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908.

