TITLE: IMPACT OF PROPOFOL ON INTRA-

CRANIAL DYNAMICS IN HEAD TRAUMA

ICU PATIENTS.

AUTHORS: C Weinstabl, MD, N Mayer, MD, H Plattner, MD, CK Spiss, MD,

AF Hammerle MD

AFFILIATION: Dept. of Anesthesia and General Intensive Care, Univ. of Vienna,

A-1090 Vienna, Austria.

Previous investigations revealed a beneficial effect of propofol (P) on intracranial dynamics in patients undergoing elective neurosurgery. The present study evaluated the impact of P on ICP in head injured patients with normal or compromised intracranial compliance.

<u>Methods:</u> Epidural ICP-probes were implanted in a total of 14 (GAELTEC) patients head injury. While heart rate, with arterial pressure (MAP), ICP and ETCO2 were recorded continuously, P was given in subsequent doses of 0.5, 1.0 and 2.0 mg/kg; 15 minutes elapsed after each administration. Data were evaluated 1, 2, 5 and 10 min pooled. after each application and The patients were allocated to either group I (ICP<20mmHg) or group II(ICP) 20mmHg) according to their ICP baseline level. Statistical analysis was performed by oneway ANOVA. A p of 0.05 less than

regarded as significant.

Results: In group I significant decreases of MAP were detected with 1.0 and 2.0 mg/kg P, whereas ICP and CPP changed only with the highest dose studied. While in group II significant decreases of MAP and ICP appeared with 1.0 and 2.0 mg/kg P, CPP was not affected significantly (Table).

<u>Discussion:</u> P decreased ICP in patients with normal and compromised intracranial compliance, in particular with 2.0 mg/kg P. As the responses to the hypotensive effects of P were mild and similar in both groups, inadvertent CPP drops were not observed with any of the doses studied. Thus, P can be used safely for the sedation of ICU-patients with head injury and normal or compromised intracranial compliance.

T A B L E					
group		control	Propo	Propofol mg/kg	
_	-		0.5	1.0	2.0
MAP	I	87±3	86±4	82±4*	75±5*
(mmHg)	II	88±4	86±4*	83±4*	79±4*
ICP	I	10±2	10±2	8±2	8±2*
(mmHg)	II	32±7	30±8	29±8*	28±8*
CPP	I	77±4	76±4	73±4	68±5*
(mmHg)	II	56±11	56±11	54±11	51±10
means .	± S.E.	M., *p <	0.05		

A1218

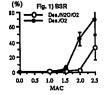
TITLE: HUMAN EEG DOSE RESPONSE TO

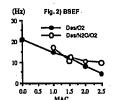
DESFLURANE

AUTHORS: I.J. Rampil, M.D., S.H. Lockhart, Ph.D., M.D.,

E.I. Eger, M.D., R.B. Weiskopf, M.D. AFFILIATION: Department of Anesthesia, University of

California, San Francisco, 94143-0648


Desflurane (D) a derivative of isoflurane (I) has advantageous pharmacokinetics. In swine, EEG is indistinguishable between equipotent doses of D or I. Both agents cause burst suppression above 1.0 MAC. This report describes the EEG dose response to D in human volunteers.


Methods. Twelve healthy, young males (age=23.8±2.6 SD yrs) gave informed consent to this protocol which had been approved by the local Institutional Review Board. Subdermal electrodes provided a bilateral fronto-central and parieto-occipital montage. Subjects relaxed in a darkened room for >20 min before baseline measurements. Anesthesia was induced by inhalation of D and O2 *via* face mask. Following endotracheal intubation, normocapnea and normothermia were maintained. Each subject received .83, 1.24, 1.67 and (if blood pressure was adequate) 2.1 MAC D, and at a different time, equipotent doses of D with 60% N₂O (equilibration at each step >12min). Hypocapnea (PETCO2 ≈ 25mmHg) was also induced at 1.24 MAC and the subject exposed to loud clapping at 1 Hz in an attempt to evoke seizures.

Four channels of EEG were displayed continuously by a prototype monitor (Interspec, Ambler, PA) and recorded on analog tape. The tapes were analyzed by a Macintosh IIx using Labview (National Instruments, Austin, TX) to derive: Burst Suppression Ratio (BSR), Spectral Edge Frequency (SEF) and Burst Compensated Spectral Edge Frequency (BSEF = SEF * (1.0 - BSR/100)).

Results. Epileptiform activity did not occur. Low dose (0.83 MAC) D produced prominent α and β range activity similar to that seen with other volatile agents. Increasing doses of D progressively increased burst suppression (fig. 1); at a given MAC multiple this effect was diminished during D/N2O. BSEF declined with increasing dose (fig 2).

<u>Discussion.</u> D produce similar cerebral electrical, and by extension, metabolic depression as I. There was no evidence of epileptogenicity. As with other inhaled anesthetics, the depression of EEG with D may be associated with decreased metabolic demand. It remains to be determined whether D uncouples cerebral blood flow from metabolic demand.

